文档库 最新最全的文档下载
当前位置:文档库 › 阀门压差损失计算公式

阀门压差损失计算公式

阀门压差损失计算公式

阀门压力损失计算公式

△=(Q/Kv)2

公式1.P

△=压力损失,bar

P

Q=流量, m3/h

Kv=(额定压差1bar),m3/h

△=0.0102×(Q/Kv)2

公式2.P

△=压力损失,mm水柱

P

Q=流量,l/h

Kv=(额定压差1bar), m3/h

△=0.01×(Q/Kv0.01)2公式3.P

P

△=压力损失,bar

Q=流量,l/h

Kv0.01=(额定压差0.01bar), l/h 公式4.P

△=102×(Q/Kv0.01)2

△=压力损失,mm水柱

P

Q=流量,l/h

Kv0.01=(额定压差0.01bar),l/h 公式5.Kv=0.01×Kv0.01

Kv=(额定压差1bar)m3/h

Kv0.01=(额定压差0.01bar)l/h

压差平衡阀

压差平衡阀 压差平衡阀,亦称自力式压差控制阀,是一种不需外来能源依靠被调 介质自身压力变化进行自动调节的阀门,适用于分户计量或自动控制系统中。压差平衡阀为双瓣结构,阀杆不平衡力 河北平衡阀门制造有限公司压差平衡阀 小,结构紧凑,用于供热(空调)水系列中,恒定被控制系统的压差,并 有以下的特点: 1、恒定被控制系统压差; 2、支持被控系统内部自主调节; 3、吸收外网压差波动; 4、采用先进的无级调压结构,控制压差可调比可达25:1; 5、具备自动消除堵塞功能; 6、法兰尺寸符合中灰铸铁法兰尺寸。 压差平衡阀的使用方法: 1、介质流动方向应与阀体箭头方向一致; 2、压差平衡阀应安装在回水管上,阀上接导压管,导压管的另一端与供水管连接,建议在导压管供水端安装1/2"球阀,以便启动消除堵塞功能; 3、在导压管前的供水管上应安装过滤网,避免水质太差造成该阀失去自动调节功能; 4、供水管和该阀前的回水管应分别装设压力表,便于调节控制压差; 5、如发现该系统流量过大或过小,可能的原因是管道元件安装时的杂物卡阻在阀塞上,可将1/2"球阀关闭3—5分钟,这时如果是较轻堵塞,即可自动消除,如还不能消除,则要拆开阀门检查消除堵塞物; 6、控制压差调节方法:逆时针方向调节调压阀杆,观察压差。 [1]压差平衡阀选型说明: 按式KV=G/式中(G-M3/h),根据最大流量和可能的最小工作压差计算所需的最大KV值,应小于阀门的最大KV值;根据最小流量和可能的最大 工作压差计算所需的最小KV值,应大于阀门的最小KV值,如G=3-10M/h,

△P"最大=200KPa,△P"最小=20KPa,KV最大=10/=25,KV最小=3/=,选择DN50即符合要求,建议尽量不变径选用阀门。 压差平衡阀的用途: 为何室内安装自控装置必须安装压差平衡阀原因如下: 1.如果不安装压差平衡阀,近端用户由于压差过大,当近端用户室内温度达到设置值时,由于感温包的膨胀推力是有限的使恒温阀无法关断,使近端用户室内温度超标。 2.如果不安装压差平衡阀,近端用户压差过大,远端用户压差小,外网压差不平衡,造成近端和远端用户室内温度产生时序,如果采用间接性供暖方式,由于时序过长造成远端用户还未达到用户需求时就到了供暖的间歇时间,使远端用户无法达到供暖要求,如变频变流量调节时由于时序过长远端用户还未达到用户需求时即到了热源循环水泵的转数调小的时候,使变频装置无法发挥应有的功效。 3.如果不安装压差平衡阀当各用户调节时会相互干扰,如果一个或几个恒温阀调节时,会引起所有的恒温阀无谓的动作。 4.如果不安装压差平衡阀,室内温度达到需求时由于近端用户压差过大,会导致恒温阀产生噪音,影响舒适度。 5.如果不安装压差平衡阀,感温包长时间在高压差工资下还会简短恒温阀的使用寿命。

阀门流量计算

阀门流量计算方法 发表于: 2010-1-29 9:39:55 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C 的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 12.DN350 x DN300 x DN350,压力等级Class 900缩喉 管压力密封闸阀,其它条件与例1相同,求压降。 What is the pressure drop through a 14"x12"x14" Class 900 Venturi pressure seal gate valve with the same conditions as example 1. 解:采用公式1 Solution: Use formula 1. Cv = 6285 (来自本页) Cv = 6285 (from page 26) 3.温度900o F, 压力1200 PSI,流速500,000磅/小时的 蒸汽应用中压降小于5 PSI的压力等级Class 2500 闸阀的最小通径是多少? What is the smallest Class 2500 gate valve that will have less than a 5 PSI pressure drop in 900o F, 1200 PSI steam service at a flow rate of 500,000 lbs/hr? 解:采用公式1 Solution: Use formula 1. F = 500,000 = 0.785 (来自900o F, 1200 PSIG蒸汽表 )

差压计计算液位公式

一、计算液位的高度(卧罐计算公式) h(m)=P/(ρ气*g)? P=差压变送器测到的值,单位为Kpa ρ气=~(看流量计正常加气后的最大密度值,可设置,单位:g/cm2)g= 重力加速度(m/s2) 二、计算储罐容积 (1)如果hr时(r为内罐容器的半径,单位m,项目为 角度L AOB=2*arccos((h-r)/r),单位为弧度 截面积S=πr2*(2π-L AOB)/(2π)+(1/2)*r2*sinL AOB u 显示体积=S*罐长度(项目罐长度米)

二、线性换算公式(适用在立罐) (V代表压差,V_H代表压差的下一次,V_L代表本次压差,H,为液位的下一次,L为当前液位) 首先把下一次压差和当前压力想减得到在某个区间中的压力值,然后液位也同样想减得到在这个区间内液位的大小,然后把现场采集来的压差减去当前压差得到实际压差 H-L=值1 V_H-V_L = 值2 压力差-V_L = 值3 根据区间计算出来的液位和压差,相除得到了每kpa多少立方,然后通过现场压差和储罐的当前压差想减的值相乘得到的当前压差的液位,然后在加上储罐在上一区间的压差液位,既到的了液位 值1/值2 = 值4 值4/值3 = 值5 值5+L= 液位

中央空调压差旁通阀的介绍及作用

压差旁通阀 电动压差旁通阀 压差旁通阀分自力式压差旁通阀和电动压差旁通阀2种。 电动压差旁通阀是通过控制压差旁通阀的开度控制冷冻水的旁通流量,从而使供回水干管两端的压差恒定。广泛应用于中央空调集分水器之间,热力泵供回水之间,可有效保持设备不被损坏。 电动压差旁通阀常用于气体或液体系统,控制气体或液体管路与回路之间的压差。把电动压差旁通阀安装在系统水泵附件的旁通管路中,当系统压差增大而超过控制阀设定值时,阀门则进而开大,使更多的水流经旁通阀,从而使系统压差减小。相反,压差的减小导致阀门开度减小从而使系统压差增加。 自力式压差旁通阀 旁通阀又名自力式旁通压差阀,自力式自身压差控制阀 自力式自身压差控制阀(旁通式-C)在控制范围内自动阀塞为关闭状态,阀门两端压差超过预设值,阀塞即自动打开。并在感压膜的作用下自动调节开度,保持阀门两端压差相对恒定,依靠自身的压差工作,不需任何外来动力,性能可靠。 性能特点: 自力式自身压差控制阀为电动压差控制阀替代产品。 为安全可靠,解决了电动压差控制阀对电的信赖和电路出现问题造成机组损伤的机率,并且自力式自身压差控制阀便于安装,节省费用。 自力式自身压差控制阀的用途: 此经过,以保证机组流量不小于限制值。 自力式自身压差控制阀应用于集中供热系统中以保证某处散热设备不超压或不倒空。比如某系统高低差较大,且不分高低区系统,这时如按高处定压,低处散热设备可能压爆;如按低处定压,高处倒空。

这种情况如热源在低外可在进入高区分支水管加增压泵,回水管加压差阀使高区压力经过提升后,由阀门再降到低区回水压力;如热源在高处可进入低区供水管加装压差阀,回水加增压泵,使通过阀门压力降低的循环水能回到系统中。空调系统中旁通阀的作用和原理: 空调系统的的压差旁通阀是用在冷水机组的集水器与分水器之间的主管道上的,其原理是通过压差控制器感测集水器与分水器两端水压力,然后根据测试到的压力计算出差值,再由压差控制器根据计算出的差值与预先设定值进行比较决定输出方式,以控制阀门是增加开度或减少开度,从而来调节水量,以达到平衡主机系统的水压力的目的。 自力式自身压差控制阀的性能参数: 控制压差在 依靠压差自动工作,无须外接动力,运行安全稳定可靠。 介质温度:0--150℃。 公称压力:1.6Mpa 。 自力式自身压差控制阀的安装调试: 适用于分集水器之间 旁通管安装保护冷热源 适用于高层建筑分区供暖,安装于高区回水管避免高 区倒空和水垂 1、热源 2、循环水泵 3、系统补给水泵 4、自力式 自身压差控制阀 5、加压水泵 6、止回阀 7、后部补水压力调节阀 8、热用户

压差流量计计算公式

()差压式流量计差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量地平方成正比.在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛 地应用.孔板流量计理论流量计算公式为:式中,为工况下地体积流量,;为流出系数,无量钢;β,无量钢;为工况下孔板内径,;为工况下上游管道内径,;ε为可膨胀系数,无量钢;Δ为孔板前后地差压值,;ρ为工况下流体地密度,.对于天然气而言,在标准状态下天然气积流量地实用计算公式为: 式中,为标准状态下天然气体积流量,;为秒计量系数,视采用计量单位而定,此式×;为流出系数;为渐近速度系数;为工况下孔板内径,;为相对密度系数,ε为可膨胀系数;为超压缩因子;为流动湿度系数;为孔板上游侧取压孔气流绝对静压,;Δ为气流流经孔板时产生地差压,. 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高地场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等.流量计算器.()速度式流量计速度式流量计是以直接测量封闭管道中满管流动速度为原理地一类流量计.工业应用中主要有:①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器地磁阻值,检测线圈中地磁通随之发生周期性变化,产生周期性地电脉冲信号.在一定地流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体地体积流量成正比.涡轮流量计地理论流 量方程为:式中为涡轮转速;为体积流量;为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关地参数;为与涡轮顶隙、流体流速分布有关地系数;为与摩擦力矩有关地系数. ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则地交替排列地旋涡涡街.在一定地流量(雷诺数)范围内,旋涡地分离频率与流经涡街流量传感器处流体地体积 流量成正比.涡街流量计地理论流量方程为:式中,为工况下地体积流量,;为表体通径,;为旋涡发生体两侧弓形面积与管道横截面积之比;为旋涡发生体迎流面宽度,;为旋涡地发生频率,;为斯特劳哈尔数,无量纲. ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成地起旋器后,流体被强迫围绕中心线强烈地旋转形成旋涡轮,通过扩大管时旋涡中心沿一锥形螺旋形进动.在一定地流量(雷诺数)范围内,旋涡流地进动频率与流经旋进涡流量传感器处流体地体积流量成正比.旋进旋涡流量计地理论流量方程 为:式中,为工况下地体积流量,;为旋涡频率,;为流量计仪表系数,(为 脉冲数). ④时差式超声波流量计:当超声波穿过流动地流体时,在同一传播距离内,其沿顺流方向和沿逆流方向地传播速度则不同.在较宽地流量(雷诺数)范围内,该时差与被测流体在管道中地体积流量(平均流速)成正比.超声波流量计地流量方程式为:

阀门弯头法兰表面积计算公式

阀门弯头法兰表面积计 算公式 Document number:BGCG-0857-BTDO-0089-2022

阀门、弯头、法兰表面积计算公式【】 阀门按下面的公式计算:1.V体积(m3)=π(D=1.033δ) *2.5D*1.033δ*1.05*N D:公称直径δ:保温层厚度 N:阀门个数 和就折合到管道里面计算了 11.什么是阀们、弯头和法兰?如何计算其防腐蚀工程量? 阀们指在工艺管道上,能够灵活控制管内介质流量的装置,统称阀们或阀件。 弯头是用来改变管道的走向。常用弯头的弯曲角度为90°、45°和180°,180°弯头也https://www.wendangku.net/doc/987002586.html,/santong.html称为U形弯管,也有用特殊角度的,但为数极少。 法兰是工艺管道上起连接作用的一种部件。这种连接形式的应用范围非常广泛,如管道与工艺设备连接,管道上法兰阀门及附件的连接。采用法兰连接既有安装拆卸的灵活性,又有可靠的密封性。 阀门、弯头、法兰表面积计算式如下。 (1)阀门表面积: S=πD×2.5DKN (1-3) 式中 D——直径; K一一系数,取1.05;

N——阀门个数。 (2)弯头表面积: S=πD×1.5DK×2π/B×N (1-4) 式中 D——直径; K——系数,取1.05 N——弯头个数; B值取定为:90°弯头.B=4;45°弯头B=8 (3)法兰表面积: S=πD×1.5DKN (1-5) 式中 D——直径; K——系数,取1.05; N——法兰个数。 (4)设备和管道法兰翻边防腐蚀工程量计算式。 S=π(D+A)A (1-6) 式中D——直径; A——法兰翻边宽。 12.如何计算绝热工程的工程量?(1)设备简体或管道绝热、防潮和保护层计算公式:

压差阀

压差阀 目录 ZYC型自力式压差控制阀 低真空电磁压差充气阀DYC-Q 压差旁通平衡阀-800X压差旁通平衡阀 压差旁通平衡阀 压差旁通阀-800X压差旁通阀 无压差电磁阀-ZCT无压差电磁阀 电磁真空压差式充气阀DYC-JQ、GYC-JQ 自力式压差控制阀-ZYC自力式压差控制阀 自力式压差控制阀ZYC 自力式差压调节阀-ZZV自力式差压调节阀 自力式差压调节阀-ZZYW型自力式差压调节阀

ZYC型自力式压差控制阀 一、产品[自力式压差控制阀]的详细资料: 产品型号:ZYC型 产品名称:自力式压差控制阀 产品特点:ZYC型自力式压差控制阀,是一种利用介质自身的压力变化进行自我控制而保持流经该被控系统介质压差不变的阀门。适用于供暖方式采用双管系统的压差控制,保证系统基本不变,降低噪音,平衡阻力,消除热网和水力失调。 二、主要技术参数: 型号公称压力壳体实验压力 压差控制范围 定压差型可调压差型ZYC-16一H3T16MPa 2.4MPa10KPa、20KPa、30KPa10.30KPa 三、ZYC型自力式压差控制阀主要外型尺寸(法兰连接尺寸按GB4216规定): DN mm 连接方式 L mm H(mm)流量 m3/h 适用介质介质温度 主要零 件材料定压差型可调压差型 15 螺纹1109514502-1 水0~100℃ 阀体、上盖和 下盖 为铸铁、阀芯 201101101500.3-1.5 2511513016505-2

为铜、膜片为尼龙强化橡胶、弹簧为不锈钢 32 法兰1301401901-440 20019034015-650 2152053552-865 2302403903-1280 2753005005-20100 29035055010-3012531038058015-45订货须知: 一、①ZYC 型自力式压差控制阀产品名称与型号②ZYC 型自力式压差控制阀口径③ZYC 型自力式压差控制阀是否带附件二、若已经由设计单位选定公司的ZYC 型自力式压差控制阀型号,请按ZYC 型自力式压差控制阀型号 三、当使用的场合非常重要或环境比较复杂时,请您尽量提供设计图纸和详细参数, 相关产品: WM341系列隔膜可调式减压阀 波纹管式减压阀 T44H/Y 型波纹管减压阀 YZ11X 直接作用薄膜式水用减压阀 直接作用薄膜式减压阀 内螺纹活塞式蒸汽减压阀 Y45H/Y 型手动双座蒸汽减压阀 Y945H/Y 型电动双座蒸汽减压阀 YB43X 固定比例式减压阀 比例式减压阀 高灵敏度蒸汽减压阀

水流量与压强差的准确计算公式

水流量与压强差的准确 计算公式 -CAL-FENGHAI.-(YICAI)-Company One1

水流量与压强差的准确计算公式 最佳答案 对于有压管流,水流量与压强差的准确计算公式和计算步骤如下: 1、计算管道的比阻S,如果是旧铸铁管或旧钢管,可用舍维列夫公式计算管道比阻s=d^ 或用s=d^计算(n为管内壁糙率,d为管内径,m),或查有关表格; 2、确定管道两端的作用水头差ΔH=ΔP/(ρg),),H 以m为单位;ΔP为管道两端的压强差(不是某一断面的压强),ΔP以Pa为单位,ρ——水的密度, ρ=1000kg/m^3;g=kg 3、计算流量Q: Q = (ΔH/sL)^(1/2) 4、流速V=4Q/^2) 式中: Q——流量,以m^3/s为单位; H——管道起端与末端的水头差,以m 为单位;L——管道起端至末端的长度,以 m为单位。^表示乘方运算,d^2 表示管径的平方;d^表示管径的方。是圆周率取至小数点后第4位。 或者先求管道断面平均流速,再求流量: 管道流速:V=C√(RJ)= C√(RΔP/L) 确定 流量: Q=^2/4)V 式中:V——管道断面平均流速;C——谢才系数,C=R^(1/6)/n,n管道糙率;R——水力半径;对于圆管R=d/4,d为管内径;J——水力坡降,即单位长度的水头损失,当管道水平布置时,也就是单位长度的压力损失,J=ΔP/L;ΔP——长为L 的管道上的压力损失;L——管道长度。 总公式:Q=√(ΔP/9800)x (d^)x3600 m^3/h 多晶炉:d=40,压差=4x10^5,L=200m 流量^3/h 单晶炉: d=94,压差=^5,L=200m 流量^3/h 如果流量为15 m^3/h 侧要求L=100,d= mm 侧要求L=200,d=60.7 mm 如果流量为 m^3/h 侧要求L=200,d=68 mm 2

压差旁通阀的作用是什么

压差旁通阀的作用是什么,管径如何确定? 压差旁通阀的作用是什么,管径如何确定? 答:对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户侧要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,其工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,旁通阀将自动打开,由于旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。 水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容

调节阀压差的确定

调节阀压差的确定 一、概述 在化工过程控制系统中,带调节阀的控制回路随处可见。在确定调节阀压差的过程中,必须考虑系统对调节阀操作性能的影响,否则,即使计算出的调节阀压差再精确,最终确定的调节阀也是无法满足过程控制要求的。 从自动控制的角度来讲,调节阀应该具有较大的压差。这样选出来的调节阀,其实际工 有人会问,一般控制条件在流程确定之后即要提出,而管道专业的配管图往往滞后,而且配管时还需要调节阀的有关尺寸,怎样在提调节阀控制条件时先进行管系的水力学计算呢?怎样进行管系的水力学计算,再结合系统前后总压差,最终在合理范围内确定调节阀压差,这就是本文要解决的问题。 二、调节阀的有关概念 为了让大家对调节阀压差确定过程有一个清楚的认识,我们需要重温一下与调节阀有关的一些基本概念。 1、调节阀的工作原理 如图1所示,根据柏努力方程,流体流经调节阀前后1-1和2-2截面间的能量守恒关系如下式所示。 ) 1(222 2 222111------+++=++f h g U rg P H g U rg P H

由于H 1=H 2,U 1=U 2,则有: 在流体阻力计算时,还有: 则有: 2 1当调节阀单位相对开度变化引起的相对流量变化是一个常数时,称调节阀具有直线流量特性。其数学表达式为: 其积分式为: 代入边界条件l=0时, Q=Qmin; l=lmax 时, Q=Qmin 。得: )2(2 1-------= rg P P h f 2)10(max max ------=l l kd Q Q d )11(max max -------+=常数l l k Q Q max min 1Q Q k - =max min Q Q = 常数

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

调节阀流量系数计算公式与选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判不式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流

量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 关于只有一个流路的调节阀, 如单座阀、套筒阀,球阀等: 关于有五个平行流路调节阀, 如双座阀、蝶阀、偏心施转阀 等 文字符号讲明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临 界压力比系数, F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判不式(气体、蒸气)表1-2 文字符号讲明: X-压差与入口绝对压力之比(△P/P1);X T- 压差比系数; K-比热比; Qg-体积流量,Nm3/h

压力与流速的计算公式

压力与流速的计算公式 没有“压力与流速的计算公式”。流体力学里倒是有一些类似的计算公式,那是附加了很多苛刻的条件的,而且适用的范围也很小。 1,压力与流速并不成比例关系,随着压力差、管径、断面形状、有无拐弯、管壁的粗糙度、是否等径/流体的粘度属性……,无法确定压力与流速的关系。2,如果你要确保流速,建议你安装流量计和调节阀。也可以考虑定容输送。要使流体流动,必须要有压力差(注意:不是压力!),但并不是压力差越大流速就一定越大。当你把调节阀关小后,你会发现阀前后的压力差更大,但流量却更小。 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n, n是糙率,其大小视管壁光洁程度,光滑管至污秽管在0.011至0.014之间取

列举五种判别明渠水流三种流态的方法 [ 标签:明渠,水流,方法 ] (1)明渠水流的分类 明渠恒定均匀流 明渠恒定非均匀流 明渠非恒定非均匀流 明渠非恒定均匀流在自然界是不可能出现的。 明渠非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。(2)明渠梯形断面水力要素的计算公式: 水面宽度 B = b+2 mh (5—1) 过水断面面积 A =(b+ mh)h (5—2) 湿周(5—3) 水力半径(5—4)式中:b为梯形断面底宽,m为梯形断面边坡系数,h为梯形断面水深。 (3)当渠道的断面形状和尺寸沿流程不变的长直渠道我们称为棱柱体渠道。

阀门保温计算公式

有换算表,用广联达软件套价时,可以选择计算公式,里边有阀门的保温计算公式,自动计算。 或你打开软件看看公式,然后手动计算。 v=3.1415926×(D+1.033×δ)×2.5×D×1.033×δ×K×N/1000000000 V-体积 D-阀门公称直径mm K=1.05 N-阀门个数 δ-保温厚度mm 例如:保温厚度40mm,直径100的阀门20个,那么保温体积为: V=3.1415926*(100+1.033*40)*2.5*100*1.033*40*1.05*20/1000000000=0.0963 立方 V=π×(D+1.033δ)×2.5D×1.033δ×1.05×N(m3) S=π×(D+2.1δ)×2.5D×1.05×N(m2) (4)阀门绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×2.5D×1.033δ×1.05×N S=π(D+2.1δ)×2.5D×1.05×N 若设计要求阀门保温时,其绝热工程量和外扎保护层工程量计算公式为: V阀门=2.712*3.14*D2*δ*N S阀门=3.14(D+2.12δ)*2.5D*1.05*N V-体积 D-阀门公称直径mm K=1.05 N-阀门个数 δ-保温厚度mm 若设计文件要求法兰保温,则 V法兰=1.627*3.14*D2*δ*N S法兰=3.14(D+2.1δ)*1.5D*1.05*N 管道、阀门绝热保温工程量计算公式(含个人理解) 绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ 个人理解上述体积公式的含义: D+1.033δ表示:保温层中心到中心的长度+ 单根的扎带厚度(0.033δ)= 调整后的保温层中心线长度 π×(D+1.033δ)表示:保温层中心圆的周长(可想象成长度,仅管是圆形) 1.033δ表示:保温层调整过系数的厚度(可想象成宽度) π×(D+1.033δ)×1.033δ表示:长度*宽度 S=π×(D+2.1δ+0.0082)×L 个人理解:D+2.1δ+0.0082表示:(直径+ 保温层厚度* 2.1)+0.0082 = 外表层实际直径+扎带厚度

压差计算

6.2.1、6.2.2 为了保证洁净室在正常工作或空气平衡暂时受到破坏时,气流都能从空气洁净度高的区域流向空气洁净度低的区域,使洁净室的洁净度不会受到污染空气的干扰,所以洁净室必须保持一定的压差。 在国内外洁净室标准和空气洁净度等级中,对洁净室内压差值的大小都做了明确的规定。压差值的大小应选择适当。压差值选择过小,洁净室的压差很容易破坏,洁净室的洁净度就会受到影响。压差值选择过大,就会使净化空调系统的新风量增大,空调负荷增加,同时使中效、高效过滤器使用寿命缩短,故很不经济。另外,当室内压差值高于 50Pa时,门的开关就会受到影响,因此,洁净室压差值的大小应根据我国现有洁净室的建设经验,参照国内外有关标准和试验研究的结果合理地确定。 1 我国的建设经验。自《洁净厂房设计规范》(GBJ 73-84)在 1985年颁布以来,我国按规范设计、建造了数百万平方米的各种洁净级别的洁净室,并且都经过了数年的运行考验,满足了工艺的要求。实践经验证明,《洁净厂房设计规范》(GBJ 73-84)中有关洁净室内正压值的选择是正确的可行的。 2 国内外标准中对压差值的规定。最新颁布发行的国际标准 ISO14644-1、美国联邦标准 FS209E、日本工业标准 JIS9920、俄罗斯国家标准ГOCTP50766-95等有关现行的洁净室标准中都明确地规定,为了保持洁净室的洁净度等级免受外界的干扰,对于不同等级的洁净室之间、洁净室与相邻的无洁净度级别的房间之间都必须维持一定的压差。虽然各个国家规定的最小压差值不尽相同,但最小压差值都在 5Pa以上。 3 试验研究的结果。通过试验得出,洁净室内正压值受室外风速的影响,室内正压值要高于室外风速产生的风压力。当室外风速大于 3m/s时,产生的风压力接近5Pa,若洁净室内正压值为 5Pa时,室外的污染空气就有可能渗漏到室内。但根据我国现行《采暖通风和空气调节设计规范》(GBJ 19)编制组提供的全国气象资料统计,全国 203个城市中有 74个城市的冬夏平均风速大于 3m/s,占总数的 36.4%。这样如果洁净室与室外相邻时其最小的正压值应该大于 5Pa。因此,规定洁净室与室外的最小压差为 10Pa。 6.2.3 国内外洁净室压差风量的确定,多数是采用房间换气次数估算的。因为压差风量的大小是与洁净室围护结构的气密性及维持的压差值大小有关,对于相同大小的房间,由于门窗的数量及型式的不同,气密性不同,导致渗漏风量也不同,故维持同样大小的压差值所需压差风量就有所差异。因此,在选取换气次数时,对于气密性差的房间取上限,气密性较好的房间可取的小一些。 1 采用缝隙法来计算渗漏风量,既考虑了洁净室围护结构的气密性,又考虑了室内维持不同的压差值所需的正压风量。因此,缝隙法比按房间的换气次数估算法较为合理和精确。单位长度缝隙渗漏空气量用公式计算是比较困难的,一般是通过不同型式的门、窗进行多次试验的数据统计后得出的。表 7是对国内洁净室的 20多种常用的门、窗在实验室进行了大量的试验,取得的数据,虽然近年来洁净室门窗的材料和型式有很大的发展,但目前还有部分洁净室仍然采用钢制密封门窗。故表中数据仍可供设计时参考。 缝隙法宜按下式计算: Q =a ·Σ(q·L) 式中 Q—维持洁净室压差值所需的压差风量(m3/h); a—根据围护结构气密性确定的安全系数,可取 1.1~1.2; q—当洁净室为某一压差值时,其围护结构单位长度缝隙的渗漏风量(m3/h·m); L—围护结构的缝隙长度(m)。

自力式压差控制阀工作原理与分析

自力式压差控制阀工作原理与分析 自力式压差控制阀工作原理与分析 自力式压差控制阀亦称动态差压调节阀、动态差压平衡阀,差压控制器,定压差阀。它的结构是由阀体、双节流阀座、阀瓣、感压膜、弹簧及压差调节装置等组成,如图1所示: 图1:自力式压差控制阀结构示意图图2:回水安装示意图 P1为外网热力入口装置处供水管的压力;△P为被控系统的差; P2为通过被控系统后,阀前的压力;△P'为压差阀工作压差 P3为热力入口装置出口处回水管压力。 一、工作原理 1、当供水压力P1 增大或减少时,信号由导压管供入感压膜上腔,带动阀瓣上移或下移,使阀口的流通面减少或增大,△P'= P2-P3 亦增大或减少,直至△P= P1-P2 保证原值恒定。 2、当回水压力P3 增大或减少的瞬间,由阀口流经出水口的流速降低或增高膜下压力P2 也在这个瞬间增高或降低,直至感压膜的受力重新平衡,P2 恢复原值,△P= P1-P2 保持压差不变。 3、当被控系统阻力减小或增大时,P2 减小或增大,带动阀上移或下移,阀口的流通面积增大或减小,引起P2 减小或增大,△P= P1-P3 亦随之减小或增大,直至△P= P1-P2 保持原值恒定。 从工作示意图中看出,△P= P1-P2 (1),△P'= P2-P3 (2)两式相加即得△P+△P'= P1-P3 ,由式3可以看出压差阀的控制压差与工作压差之和等于热力入口装置的供水管与热力入口装置出口处回水管之间的压差。 自力式压差控制阀工作原理分析 (1).孔板流量计—导阀—主阀原理。主阀前设置一个流量孔板,导阀感测,比较孔板前后压力差,如压力差大于设定压差,意味着流量超过设定流量,导致控制主阀做关阀动

压降计算公式

压降计算公式 在计算压降时,请确保参数正确,不鞥混淆电压降和电压差。考虑电压Vs处的源极上的母线和负载下的电压为V1。线路阻抗上的电压降是deltaV,等于电流和线路阻抗乘积的矢量。然后,源极电压等于负载电压加上向量加法线上的电压降。源极和负载之间的电压差等于模数| Vs |的差值 - | Vl |。这不一定等于线路上的电压降。

近似公式为:DV = K [r.cos(FI)+ x.sen(FI)]。 电缆的R和X(欧姆/公里),长度(km);I(A)。 对于3相,K = sqrt(3)或具有2个导体的单相的K = 2。 但是如果用负载流研究计算两点的电压,则可以获得电压降的精确值,并使两个电压值

的模块的差值| V1 |在入口处和| V2 |输出。 注意,相量方程V1-V2 = Z.I,它是AC的直接OHM定律,其中Z = R + JX不提供值,由因为重要的差异通常是模块的差异dV = | V1 | - | V2 |而不是| V1-V2 | = | Z.I |这个方程式提供。 电压表连接在V1和V2会读| V1-V2 | = | Z.I |,入口处电压表的测量| V1 |和输出的测量值V2 |,即dV = | V1 | - | V2 |。 最后有这些概念: 电压降可以理解为电路(例如母线)的一个点的电压差,但对于两种不同的负载情况。事实是,在无负载的情况下,输出电压等于输入,从而计算出无负载状态下输出的电压降,而负载下的情况对应于计算模块之间的差值|输入电压|和|负载输出电压|其中Z = R + jX 是输入(源)和输出(母线)之间的阻抗。

调节阀压差的确定

调节阀压差的确定 一、概述 在化工过程控制系统中,带调节阀的控制回路随处可见。在确定调节阀压差的过程中,必须考虑系统对调节阀操作性能的影响,否则,即使计算出的调节阀压差再精确,最终确定的调节阀也是无法满足过程控制要求的。 从自动控制的角度来讲,调节阀应该具有较大的压差。这样选出来的调节阀,其实际工作性能比较接近试验工作性能(即理想工作性能),即调节阀的调节品质较好,过程容易控制。但是,容易造成确定的调节阀压差偏大,最终选用的调节阀口径偏小。一旦管系压降比计算值大或相当,调节阀就无法起到正常的调节作用。实际操作中,出现调节阀已处于全开位置,所通过的流量达不到所期望的数值;或者通过调节阀的流量为正常流量值时,调节阀已处于90%开度附近,已处于通常调节阀开度上限,若负荷稍有提高,调节阀将很难起到调节作用。这就是调节阀压差取值过大的结果。 从工艺系统的角度来讲,调节阀应该具有较小的压差。这样选出来的调节阀,可以避免出现上述问题,或者调节阀处于泵或压缩机出口时能耗较低。但是,这样做的结果往往是选用的调节阀口径偏大,由于调节阀压差在管系总压降中所占比例过小,调节阀的工作特性发生了严重畸变,调节阀的调节品质不好,过程难于控制.实际操作中,出现通过调节阀的流量为正常流量值时,调节阀已处于10%开度附近,已处于通常调节阀的开度下限,若负荷稍有变化,调节阀将难以起到调节作用,这种情况在低负荷开车时尤为明显.这就是调节阀压差取值过小的结果。同时,调节阀口径偏大,既是调节阀能力的浪费,使调节阀费用增高;而且调节阀长期处于小开度运行,流体对阀芯和阀座的冲蚀作用严重,缩短调节阀的使用寿命。 正确确定调节阀的压差就是要解决好上述两方面的矛盾,使根据工艺条件所选出的调节阀能够满足过程控制要求,达到调节品质好、节能降耗又经济合理. 关于调节阀压差的确定,常见两种观点。其一认为根据系统前后总压差估算就可以了;其二认为根据管系走向计算出调节阀前后压力即可计算出调节阀的压差.这两种方法对于估算国内初步设计阶段的调节阀是可以的,但用于详细设计或施工图设计阶段的调节阀选型是错误的,常常造成所选的调节阀口径偏大或偏小的问题.正确的做法是对调节阀所在管系进行水力学计算后,结合系统前后总压差,在不使调节阀工作特性发生畸变的压差范围内合理地确定调节阀压差. 有人会问,一般控制条件在流程确定之后即要提出,而管道专业的配管图往往滞后,而且配管时还需要调节阀的有关尺寸,怎样在提调节阀控制条件时先进行管系的水力学计算呢?怎样进行管系的水力学计算,再结合系统前后总压差,最终在合理范围内确定调节阀压差,这就是本文要解决的问题。 二、调节阀的有关概念 为了让大家对调节阀压差确定过程有一个清楚的认识,我们需要重温一下与调节阀有关的一些基本概念. 1、调节阀的工作原理 1 / 19

如何控制洁净室的压差_共7页

如何控制洁净室的压差 ? 如何控制洁净室的压差呢 ?今天就以制药行业为例,来进行说明,制药企业 HVAC 空调净 化)系统是保证药品质量的关键系统之一,而压差控制在制药企业净化空调系统中是一个关 键的环节。例如无尘厂房必须保持一定的正压使外界未经净化的空气不会进人净化区域, 保证洁净级别 ;并且通过对各净化区域的不同的压差控制,达到净化分区的作用。只有保证 合理的气流组织和对压差的有效控制,才能达到 GMP 规定的洁净度要求和工艺要求。 压差控制在实现中是比较困难,特别是在生物制药安全实验室中,要得到并保持精确、 稳定的压差对 于控制工程师而言绝对是一件具有挑战性的任务。因此在设计压差控制系统 时,必须要根据实际情况从以下几个方面进行分析和确定 : ① 风险分析评估 ; ② 定风量系统和变风量系统选择 ; ③ 压差控制和余风量控制方法 ; ④ 控制信号与噪声的影响 ; ⑤ 制稳定性及响应速度 ; ⑥ 建筑结构对压差控制的影响 ;风管泄漏对压力控制的影响。 GMP 第十六条规定:洁净室(区)的窗户、天棚及进入室内的管道、风口、灯具与墙壁或天 棚的连接部位均应密封。空气洁净级别不同的相邻房间之间的静压差应 >5Pa,洁净室(区) 与室外大气的静压差应 >10 Pa,并应有指示压差的装置。为达到这一要求,制药企业生产必 须设置HVAC 系统。 一、 HVAC 系统的构成 HVAC 系统的任务是保证洁净室的空气参数达到所要求的状态,通常由通风系统、 设 备、冷源 / 热源、空调水系统及自控系统组成,其构造概况如图所示。 HVAC 系统构造 (1) 通风系统:包括送风系统、回风系统及排风系统。 (2) 空气处理设备:利用物理方法对空气进行各种处理 (净化、加热、冷却、 以达到规定状态。 (3) 冷、热源:冷源通常是各类冷水机组等制冷设备,其为空气处理设备提供 水; 热源通 常包括电加热器、锅炉、热水及热泵机组等,为空气处理设备提供热量。 (4) 空调水系统:包括循环水泵及其管路系统。 (5) 自控系统:包括空气净化、温湿度控制、压差控制及安全、节能方面的自动控制和调节 装置。 二、 HVAC 系统基本流程 2. 伯VAC 系统与一般空调系统的区别 由于制药企业生产工艺特殊性及 GMP 要求,其HVAC 系统工艺要求也有其特点,以保 证生产区域空气洁净度、温湿度、压差、风量、风速、微生物等技术要求,其与一般空调 系统的区别主要体现在空气过滤、气流组织、室内压力控制、风量能耗及造价等方面。 2.2基本流程 室外大气 (新风)通过送风管道进入空调机组,经过相应温湿度处理 ,并经过初、中效两 级净化过滤,由送风机送入送风管道分配到各送风口 (装有高效过滤器 )进入生产区域,洁 净室设有回风口或排风口,一部分洁净室空气经回风口回到空调机组再利用,另一部分经 排风口由排风机排到室外。 三、 洁净室压差控制 空气处理 加湿、除湿等 ) 7?12C 低温

相关文档