文档库 最新最全的文档下载
当前位置:文档库 › 气水反冲滤池的工艺设计与施工

气水反冲滤池的工艺设计与施工

气水反冲滤池的工艺设计与施工
气水反冲滤池的工艺设计与施工

气水反冲滤池的工艺设计与施工

(冯志坚,李燕,李德普)

从1990年以来,国内已陆续建造和改建了数百座气水反冲滤池。随着该种过滤技术的推广应用,其过滤滤速快、过滤周期长、出水水质好、冲洗水量少等特点已普遍得到用户的接受和好评。与此同时,气水反冲滤池的设计与施工也存在着管道布局走向和土建施工复杂、施工精度要求高等问题。

1 设计参数的确定

气水反冲滤池的过滤设计负荷主要与进水浊度、温度等因素有关。理论上讲,滤速一般为8~12m/h,冲洗周期24~48h。随着强化出水水质和挖潜要求的提高,过滤滤速和周期分别有降低和减少的趋势。根据多年设计和施工的体会,建议滤速采用7~10m/h,冲洗周期仍保持24~48h。

气水反冲滤池的反冲洗过程一般采用气冲洗、气水同时冲洗加表洗、水冲洗等。在选择设计参数时,一般气冲强度为(50±5) m3/(s·m2)、水冲洗强度13~15 m3/(s·m2)、表洗强度为7~7.5 m3/(s·m2);冲洗历时分别为1~3 min、2~4min、1~3min。当遇特殊情况时,冲洗强度可适当增减。

2 滤池的进水、出水

由于气水反冲滤池一般为恒水位均匀过滤,因此滤池的进、出水处均应设置堰板,但堰板形式最好采用可调式。滤池的进水渠需设置溢流井,同时排气阀出水管的标高要高于溢流水位。出水井堰板后应考虑足够的空间,便于堰后出水的消力。出水井亦应贴白瓷砖,其上应设照明设施,并加设玻璃罩。

滤池的内外装修应由设计确定,但选择滤池内表面的装修材料时,需考虑反冲时水垢颜色的影响。

3 滤池进水、排水闸门

滤池进水、排水闸门一般采用气动或电动提板闸,其密封要求为迎水面漏失小于0.021 L/(s·m2)。一般,提板闸的密封条和金属框架直接相连,而密封条又与池壁相连,密封条的厚度只有10mm。由于土建施工不可能像设备加工那样精确,容易造成误差,产生过度漏水或提板闸垂直度不够而影响传动系统的寿命。因此在设计和施工时,安装提板闸部位的土建应留有30mm厚的找平带,便于设备安装。目前设计和施工的工程也有采用快开阀的,可降低土建要求。

滤池进水、排水闸门洞的预留位置也非常重要,土建施工中容易造成预留洞堆模、跑模、下沉,给闸板的安装造成不便。在施工中,闸门洞口采用钢板模与主筋焊在一起(不拆除),这样不会造成过多的偏差。

4 排水渠下进气管

滤池过滤出水渠和反冲洗进水、进气渠一般布置在排水渠下面,在出水渠和反冲洗进水、进气渠两侧,与滤板底标高相平的位置。根据过滤面积的不同,均匀布有梭形Φ32mm或Φ50mm进气管,管材一般为ABS,其要求为整池所有进气管的标高误差不得超过±5 mm。由于该管的埋设与池壁混凝土浇注在一起,在混凝土震捣过程中,极容易发生下沉、偏移,会造成气反冲洗进气不均匀,影响气垫层稳定,严重时还会造成冲洗时局部雍砂。为防止这种现象的发生,在施工中应考虑用钢筋将进气管箍住,并与结构主筋焊接,这样可保证误差能满足要求;也可以采用同号或大一号镀锌钢管并注意内防腐后,直接与主筋焊接。

进水渠底部设有进水孔,尺寸大小和分布应均匀。一般管廊侧常设有预留检修孔,便于安装和检修,但应注意安装和检修完成后需将此孔填成与其他进水孔一样的尺寸,否则会造成反冲洗不均匀。

5 滤梁

滤梁用来支撑滤板,有现浇滤梁和预制滤梁两种形式。滤梁形式的选择与设计思想、施工经验、闭气试验要求等因素有关。从安全角度出发,笔者建议采用现浇滤梁。

现浇滤梁最好与滤池底板连接,在1m长度方向上不少于两根Φ16mm预埋钢筋;滤梁本身宽一般为120mm,高度为600~1000mm;滤梁在制作时要注意滤板紧固螺栓的预埋(一般在滤梁板制作完成之后),应按图纸规定的尺寸放置垂直,且有固定措施,不得在浇倒过程中歪斜、移位;滤梁下边有过水孔,呈八字形,均匀布置;滤梁上面应留有30mm高的后浇找平层,单根滤梁平整度不超过±2mm,整池滤梁平整度不超过±3mm;在找平层中,每块滤板中心位置应设一个不小于300mm×30mm的通气孔,可起到平衡气垫层压力的作用。

滤板平整与否首先是滤梁是否平整,因此滤梁的制作和安装是滤板安装的第一道工序,是气水反冲滤池施工中的重要环节。

滤梁制作完成之后应由监理、质检进行验收,复测每根滤梁的平整度,每根滤梁的测量点数不少于梁上滤板数,并作好记录。

6 滤板的制作和安装

滤板安装之前必须对池底进行严格的清扫、清洗,确保不得有污物。

滤板的制作和安装是滤池过滤和气水反冲成败的关键,其主要要求是滤板整体平面的平整度。平整度不仅体现在每块滤板上,而且包括每个滤池及整个滤站所有的池子,即每块滤板的平整度不超过±2 mm,单个池子滤板的平整度不超过±4 mm,整个滤站(所有池)的平整度不超过±5 mm。其中一个滤池两个格的平整度不超过±4 mm尤为重要。这主要是因为一个滤池中,一般两个格要同时冲洗,气垫层同时形成,其平整度决定了反冲洗的均匀程度。

滤板的制作要求很高,最好由专业厂家生产。由于每块滤板的平整度误差不得超过±2 mm,这要求制作滤板模具和滤板制作的误差不得超过±1 mm。生产滤板主要采用水平滤板模具和立式滤板模具,滤板的材料应符合有关卫生标准,主要材料有钢筋混凝土、玻璃钢、ABS等。从国内近几年的生产和使用情况来看,立式滤板模具工艺生产的钢筋混凝土滤板平整度好,质量相对更稳定可靠,价格低,使用周期长。

每块滤板的四周均有25 mm×50 mm的燕尾形折槽,可填充胶泥,用于滤板之间及滤板与池壁之间的密封。滤板的尺寸和定位尺寸应严格按照设计要求进行,滤板定位后,每块滤板需进行平整度测量,并作好相应记录。当滤板平整度超过误差范围时,通过垫片和塞片进行调整,垫片和塞片的材料可采用S304不锈钢、ABS、聚乙烯等。

滤板定位、平整度调整完成后,再进行滤板的固定。滤板的固定采用压板和螺栓,当为中间固定时,压板采用平面尺寸为100 mm×50 mm、厚8 mm的S304不锈钢钢板;当为周边固定时,压板采用100 mm×50 mm、厚8 mm的S304不锈钢角钢。对于池壁侧滤板固定的角钢,其上应采用20 mm腰子孔,不平时填塞片;螺检采用Φ14 S304不锈钢螺栓,在1m长度方向上不少于两个。

滤板之间及滤板与池壁之间的密封采用胶泥,不得有漏气漏水。为避免胶泥遗落池底,在封胶泥前应垫垫片保护池底,垫片材料可采用ABS、聚乙烯等。胶泥的密封应分两次进行,第一次先封厚度60 mm,24 h后再封第二次,厚度40 mm,养护3 d以上再安装滤头。

滤板上的滤头一般为49~64 个/m2,综合考虑冲洗均匀性及土建尺寸等因素,建议采用56 个/m2。滤头应采用标准长柄滤头,其上配有气孔、水孔,每个滤头开孔面积不小于2.5 cm2。滤头安装时要注意标高一致、均匀,密封紧密,不得损坏。

完成之后进行闭气或均匀性试验,由于闭气试验过程复杂,土建安全性差,建议采用均匀性试验。

均匀性试验完成之后可装填砾石(承托层)和石英砂(滤料)。砾石(承托层)的厚度一般为100 mm,粒径为3~5 mm;石英砂(滤料)的厚度一般为1 000~1 400 mm,均质滤料粒径为0.9~0.95 mm±0.03 mm,不均匀系数1.3~1.4,其他可参照有关规范标准。

7 拉毛与喷浆

滤池内滤板以上排水渠堰口以下需要拉毛或喷浆,其目的是为了改善池反冲洗的周边条件,反冲均匀,减少短路、跑砂。

拉毛土建施工相对困难,需人工操作,施工质量随机性较大;喷浆施工可由人工操作机械设备进行,施工效率高,质量容易保证。喷浆厚度一般为6~8 mm,表面粗糙度好,相对均匀,更适用于气水反冲滤池要求。

8 阀门动力管线

滤站中工艺部分的动力线主要为设备和阀门服务,一般设备动力线都预埋在地下或走在桥架中,走向复杂。当采用电动阀时,管廊中可沿桥架走,滤池上的阀门动力线在设计时应考虑好预埋管或管槽,尽量走暗线;当采用气动阀门时,阀门动力需由管道输送,管廊中可沿桥架标高的墙壁走,滤池上最好走管槽和预埋管,管道的管材最好采用紫铜管,卡箍连接或焊接。

采用气动阀门时,还应注意气动头的形式。当气动头为“气保型”时,必须设置阀前过滤器;当气动头为“气散型”时,可不设置阀前过滤器,但以设置为好。

9 鼓风机和水泵

在气水反冲滤池的设计中,鼓风机和水泵台数的选择一般为两台(一用一备);近几年多选择为三台(两用一备),这有助于气垫层形成过程稳定和减少初期反冲洗时对滤料层的冲击。

由于鼓风机的压力一般为39~49 kPa,无论采用罗茨风机还是离心风机,都不强调空车启动,但这与所选择的产品有关。鼓风机内一般有止回阀,但有时效果不理想,应考虑加设电动或气动阀连动,也可加设可靠的微阻止回阀。同时,特别要注意管廊中空气管的高度,避免反冲洗时倒水。另外,鼓风机必需设置减震垫、隔音罩、进出气过滤器等设施。

反冲洗泵房设计时一定要设置吸水井,容积应大于单台水泵额定5 min的流量,并设置通气管。同时,清水池进水端应设置进水堰(停留时间>30 s),既可保证滤池反冲洗有足够的水量,又可使氯与滤后水有充分的接触消毒时间,这在水厂试运行和误操作、故障时尤为重要;反冲洗泵的工作压力一般为88~108 kPa,由于止回阀的最小工作额定压力为1.0 MPa,设计时需特别注明,否则可能由于止回阀密封不严引起水泵的倒转。同时,水泵最好采用自灌式吸水和闭阀启动,一步化操作,并注意排气设施;滤池的反冲洗水管最好采用两根,并分设闸门。

气水反冲洗滤池专项施工方案

气 水 反 冲 洗 滤 池 专 项 施 方 案 编制:谢磊 审核:邱京信 中国对外建设海南有限公司清澜水厂工程项目部 目录 第一章工程概况 (2)

第二章组织机构及设备 (3) 2.1组织机构 (3) 2.2主要设备 (5) 第三章施工方案 (6) 3.1 施工顺序 (6) 3.2 施工测量放线及沉降观测 (6) 3.3 土方工程 (7) 3.4 钢筋工程 (7) 3.5 模板工程 (8) 3.6 砼工程 (10) 3.7 满水试验 (13) 第四章施工措施 (15) 4.1 夏季施工措施 (15) 4.2 雨季施工措施 (15) 4.3 排水措施 (16) 4.4 水池构筑物抗浮保证措施 (16) 第一章工程概况 气水反冲洗滤池设计规模为1.0万m3/d,共设4格,单排布置形式。设计参数:设计过滤滤速为8m/h,单格过滤面积为5.0×3.0m,滤池采用均质级配粗砂滤料,厚度为1.2m,采用双层砾石承托层,总厚度0.2m。滤池反冲洗采 用气冲-水冲方式,设计气冲强度:17L/(m2.s);冲洗时间3min。设计水冲强

度:10L/(m2.s);冲洗时间6min。 滤池占地面积146.41m2,建筑面积80.44m2。滤池下部及回收水池为钢筋混凝土结构,滤池上部为框架结构。滤池下部高度为4.5m,上部为3.3m。 滤池4.5m以下及回收池采用钢筋混凝土砌筑,1:2水泥砂浆(内掺3%WL防水剂)粉面20厚,在标高1.000~2.300范围内为拉毛墙面,4.5m以上女儿墙采用250mm加气混凝土块,M7.5混合砂浆砌筑,管廊1.600m以下为钢筋混凝土 结构,1.600m以上采用250mm加气混凝土块,M7.5混合砂浆砌筑。屋面为有 组织排水,天沟纵向排水坡度为1%,在屋面泛水,雨水口及管道穿通处,均应加铺一道防水材料,凡檐口处、雨篷及女儿墙压顶处、窗顶处,必须认真做好 泛水滴水处理。排雨水管采用Φ100UPVC。外墙四周均为800mm宽混凝土散水,坡度4%。 设鼓风机房一座,内设罗茨鼓风机两台,一用一备,单台Q=15m3/min,升 压34.3KPa,配套电机功率18.5Kw。内设空压机两台,一用一备,单 Q=0.25m3/min,H=0.7MPa,P=2.2Kw。 鼓风机房占地面积91.36m2,建筑面积91.36m2。鼓风机房高度为 6.500~6.900m。机房0.400以下采用MU10蒸压灰砂砖,M 7.5水泥砂浆砌筑,0.400以上采用250mm加气混凝土块,M7.5混合砂浆砌筑。墙体耐火极限2小时,所有墙体均低于室内地面标高-0.060m处设置墙身防潮层,做法:20mm厚1:2.5水泥砂浆掺3~5%防水剂抹平。屋面为有组织排水,天沟纵向排水坡度 为1%,在屋面泛水,雨水口及管道穿通处,均应加铺一道防水材料,凡檐口处、 雨篷及女儿墙压顶处、窗顶处,必须认真做好泛水滴水处理。排雨水管采用 Φ100UPVC。外墙四周均为800mm宽混凝土散水,坡度4%。

水厂活性炭滤池反冲洗操作规程

水厂活性炭滤池反冲洗操作规程 活性炭滤池正常过滤时,值班长和中控人员应经常观察液位、差压和清水阀开度。液位、进水阀、清水阀开度异常时,在故障复位无效时应检查PLC柜是否上电、空压机是否正常运行、贮气罐压力大小。 (一)自动反冲洗 1.滤池反冲洗根据“参数设定”中的“冲洗周期、冲洗差压高限”自动根据“气冲时间、混冲时间、水冲时间”设定值进行自动反冲洗。 2.中控人员应监控每格滤池反冲洗的全过程。 3.冲洗前要求滤池、鼓风机、反冲洗泵均在自动状态,同时检查反冲洗水泵和鼓风机控制模式内“自动”状态,“上电指示”显示红灯,且“仿真模式”处未显示仿真状态,出口阀也显示自动状态,且无故障信息。 4.运行中观察各工艺阀门、鼓风机、反冲洗泵的开或关是否正常。如果出现故障,在故障复位无效时,应将自动改为中控冲洗。 (二)强制冲洗 1.点击“活性炭滤池”——点击所要冲洗的滤格。 2.检查遥控信号是否到位。 3.冲洗前要求滤池、鼓风机、反冲洗泵均在自动状态,同时检查反冲洗水泵和鼓风机工作状态内“远控开关”显示键盘,“上电指示”显示红灯,且“仿真模式”处未显示仿真状态,出口阀也显示自

动状态,且无故障信息。 4.进入“系统管理”菜单,选择“用户登录”,设定“用户名”及“口令”。 5.进入“参数设置”,设定“气冲时间”、“静置时间”、“水冲时间”;参数设定可根据实际情况来设定气冲时间、静置时间、水冲时间,“鼓风机台数、水冲泵台数”选择“一台”。 6.选择“强制冲洗”——点击“强制冲洗”。 注:中控冲洗完毕后,点击“自动“,使滤池进入自动正常过滤。 运行中观察各工艺阀门、鼓风机、反冲洗泵的开或关是否正常。如果出现故障,在故障复位无效时,应将中控冲洗改为滤池手动冲洗。 (三)手动反冲洗 1.在反冲洗泵房的控制柜上将反冲洗水泵、鼓风机的转换开关选择在“手动”状态。 2.滤池手动反冲洗具体步骤如下: (1)在操作台上将所要冲洗的滤池的“手动/自动”转换开关旋转到“手动”位置。 (2)关闭进水阀,将出水阀开至80%左右,待到滤池水位到达预设水位时,关闭出水阀,打开排水阀,打开气冲阀,开启鼓风机(一台),进行气冲,冲至预设时间气冲时间到后,关闭一台鼓风机,关闭气冲阀,打开排气阀。 (3)为了防止活性炭“跑炭”,所以设置静置阶段至预设时间。 (4)打开进水阀,打开水冲阀,开启一台反冲洗水泵,进行水冲,冲至预设时间。

滤池反冲洗操作规程

滤池反冲洗操作规程 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

滤池反冲洗操作规程滤池反冲洗分三个阶段:单独气冲、气水冲和水漂洗,其操作过程如下: 第一阶段:单独气冲 1、操作步骤: (1)关闭“滤池出水阀”、“滤池进水闸”。 (2)开启“滤池反冲洗进气阀”、“滤池反冲洗排污阀”。 (3)待应开的阀门全开,应关的阀门全关后,再开启“反洗风机”对滤池进行气冲,运行约3~5分钟后,进入下一阶段气水冲。 2、注意事项: (1)反洗操作前将反洗管道中所有手动阀全开。 (2)反洗风机为1用1备,反洗时只能启动1台风机,不得启动2台。 (3)开启反洗风机前需保证滤池水位在拦截盖板之下,水位在拦截盖板之上或满水位时不得启动反洗风机。 (4)需先开反洗风机前的阀门,再开反洗风机,否则会损害反洗风机或者管路。 第二阶段:气水冲 1、操作步骤: (1)开启“滤池反冲洗进水阀”。

(2)待阀门全开后,再开启“反洗水泵”对滤池进行气水冲,运行8~10分钟后,进入下一阶段水漂洗。 2、注意事项: (1)反洗水泵为1用1备,反洗时只能启动1台水泵,不得启动2台。 (2)需做到先开水泵前后的阀门,再开反洗水泵。 第三阶段:水漂洗 水漂洗工艺流程图 1、操作步骤: (1)停止“反洗风机”,关闭“反冲洗进气阀”。 (2)保持“反洗水泵”运行3~5分钟后,停止“反洗水泵”,关闭“反冲洗进水阀”。(3)开启“初滤排污阀”、“滤池进水闸”。 (4)运行1~3分钟后,关闭“初滤排污阀”、“反冲洗排污阀”。 (5)开启“滤池出水阀”,此时一个反冲洗过程全部完成。 2、注意事项: (1)滤池反冲洗时只能单独一个滤池进行,且一个滤池反冲洗完成后待清水池满后才能进行下一个滤池反冲洗操作。 (2)反冲洗过程中注意观察设备及管网的运行情况,出现异常立即停止操作。

过滤气水反冲刷滤池原理以及使用

过滤气水反冲刷滤池原理以及使用 过滤体系作为污水处理厂、清水处理厂整个工艺进程的要害工序,对整个体系处理作用起把关保安作用,其运转工况直接影响水厂产品水的质量。为前进滤池滤层截污才能的康复作用,水厂的滤池反洗近年多选用气水联合反冲刷的方法,分为气冲进程、气水一起反洗进程、水洗进程(或省掉气水一起反洗进程),一起一般伴随着外表漂洗进程,使滤池滤层内的污物能有用的被剥离和冲刷排出滤池,然后确保后续的正常过滤周期和作用。 过滤体系作为污水处理厂、清水处理厂整个工艺进程的要害工序,对整个体系处理作用起把关保安作用,其运转工况直接影响水厂产品水的质量。为前进滤池滤层截污才能的康复作用,水厂的滤池反洗近年多选用气水联合反冲刷的方法,分为气冲进程、气水一起反洗进程、水洗进程(或省掉气水一起反洗进程),一起一般伴随着外表漂洗进程,使滤池滤层内的污物能有用的被剥离和冲刷排出滤池,然后确保后续的正常过滤周期和作用。因为这种高效的再生滤层过滤才能的作用,气水反洗滤池被日益广泛地使用到了水厂改造及需要深度处理的清水和污水处理厂。因为其布水布气结构和操控体系杂乱,依托传统的操作职工凭经验手动或半自动操控真实际作用很差,很难到达设计要求。 和滤板组成一套配水配气体系,属于小阻力配水体系。由上部滤帽和下部直管组成。每只滤帽上开有多条缝隙,缝隙在0.5μm~0.25mm之间,视滤料粒径决议。直管上部设有小孔,下部有一条缝隙。装置前,就把套管预先埋进滤板内。选用ABS工程塑料(或不锈钢)制造。当气-水反冲刷时,在滤板下面的空间内,上部为气,构成气垫,下部为水。气垫厚度大小与气压有关。气压愈大,气垫厚度愈大。气垫中的空气先由直管上部小孔进进滤头,气量加大后,气垫厚度相应增大,部分空气由直管下部的直缝上部进进滤头,此时气垫厚度根本中止增大。反冲水则由滤柄下端及缝上部进进滤头,气和水在滤头内充沛混合后,经滤帽缝隙均匀喷出,使滤层得到均匀反冲。滤头安置数一般为48~60个/m2.开孔比约1.5%左右。

气水反冲洗在滤池上的应用.

气水反冲洗在滤池上的应用 1、前言 滤池是水厂常规处理净水构筑物的最后一道工序,滤池运行的好坏直接影响到水厂的出水水质。但是很多快滤池在运行一段时间后,就会出现过滤层含泥量增大,在反冲洗强度设计值范围内不能达到预期的反冲洗效果,并且冲洗历时延长,产水量下降,严重阻碍了快滤池的正常运行。滤池反冲洗对滤池工作效果影响甚大,若采用较好的反冲洗技术,使滤料层经常处于最优条件下反冲洗,不仅可以节水节能,还能提高出水水质,增大滤料层截污能力,提高滤速,延长过滤周期。 2、几种常用的滤池反冲洗方式 目前国内外滤池反冲洗方法主要有三种,一是单纯用水反冲洗,另一种是用水反冲洗并辅以表面冲洗,最后一种是气水反冲洗。 3、气水反冲洗的应用概况 气水反冲洗作为去除滤池中滤料层的污泥,使滤料层恢复使用的技术开始是1902年在美国新泽西州小福尔装置的快滤池中使用的。尔后英国设计的快滤池多数采用了气水反冲洗技术。但由于气的布配设施不过关等原因,一直影响到这项技术的推广应用。直到瑞典的第四次国际供水会议上提出采用长柄滤头作为布气装置以及本世纪六十年代,随着粗粒,均匀粒径深床滤池的应用,气水反冲洗技术得到完善才被各国竟相采用。 我国应用气水反冲洗技术的历史已近70年,但应用的水厂不多。本世纪30年代,抚顺市东公园最早采用气水反冲洗技术,现有设计规模为17万 m3/d,其次是广州三水厂,于40年代采用该技术,现有设计规模为12万 m3/d。50年代后,广东罗定水厂,湛江水厂和抚顺滴台涧水厂等先后采用了气水反冲洗技术。80年代后,引进法国贷款和技术的南京上元门水厂,重庆和肖山水厂,西安曲江水厂,沈阳八水厂建成采用了气水反冲洗的AQUAZUR V型滤池。近年来,昆明五水厂,珠海拱北水厂,杭州消泰门水厂,青岛白沙河水厂,深圳南头水厂、上海市自来水闵行公司第二水厂等先后采用了气水反冲洗技术。 4、气水反冲洗机理研究 自1840年快滤池问世以来,各国的给水处理工作者针对反冲洗的机理极其效果作了大量的研究:Camp认为,反冲洗造成滤料洁净的原因主要是拖曳力而不是粒间互撞;Amirtharajah等人同意这一观点,并导出了剪切力强度和水头损失坡度的关系,据此提出了流化床中的最大剪力将发生在空隙比为 0.68~0.71时,该空隙比相当于80~100%的膨胀度;日本学者将吸附在滤料上的污泥分为二种,一种是滤料直接吸着而不易脱落的污泥,称作一次污泥;另一

V型滤池详解

V型滤池的设计与施工 摘要:结合小榄水厂设计规模为10×104m3/d的扩建工程,对V型滤池在施工中存在的问题进行了探讨,并提出了改进措施,使V型滤池的运行更加安全可靠。 ? 关键字:V型滤池反冲洗施工 小榄水厂三期扩建工程(10×104 m3/d)的V型滤池施工中,由于对一些细节问题给予了充分重视,使得V型滤池顺利通过气密性试验,自投运以来运行良好,出水浊度<,达到了设计要求。 1 进、出水装置 由于V型滤池一般为变水位匀速过滤,因此在进、出水处均应设置堰板,且最好采用可调式。V型滤池的待滤水一般通过进水总渠经两个气动橡皮阀和中间一个用橡胶气囊控制的表面扫洗进水孔进入,再通过溢流堰由两个侧孔经V型槽流入滤池。三期工程中把两边的气动橡皮阀取消,中间一个则改为多点定位气动提板阀,过滤时阀门全开,气洗反冲阶段关闭,气水反冲洗及水反冲洗阶段闸板开启到表面冲洗水量调节位(该位置可根据表面扫洗强度来调节,初设进水闸板开启高度为220 mm,经调试后基本固定)。滤池的进、排水闸门一般采用气动或电动提板闸,对其密封要求为迎水面漏失<0.021L/(s·m2)。由于提板闸的密封条与金属框架、池壁直接相连,密封条的厚度只有10 mm,因而容易产生误差,造成漏水或提板闸垂直度不够。因此在施工时,于安装提板闸的部位设置了30 mm厚的找平带。此外,还在进水渠处设置了溢流井,出水堰板后则留有足够的空间以满足堰后出水的消力,并确保排气管出口标高在溢流水位之上。 2 V型槽孔口标高的确定 滤池气水冲洗设计规程(CECS50:1993)规定:表面扫洗水配水孔低于排水槽顶面的垂直距离,一般可为1 50 mm。水厂原滤池就据此设计,扫洗时发现孔口淹没水深较大,造成扫洗力度不足而使冲洗过程产生的浑浊液及泡沫粘附在池壁上,外观很不整洁。另一方面,V型槽扫洗孔中心仅比滤料面高0.25 m,而低于排水堰0. 15 m,在反冲洗时尽管滤料只是微膨胀,但其膨胀高度仍达~0.125m(膨胀率按8%~10%计),使得V型槽扫洗孔中心仅高出滤料膨胀面约~0.125 m,而低于排水堰顶水面近0.2 m。在这种情况下,扫洗孔的出水将冲向流动水层的中部,把小粒径滤料冲向排水堰,造成滤料面倾斜。根据射流的性质,要使表面扫洗效果最佳则该射流最好为半淹没流,因此在三期工程设计中,将配水孔中心标高设为比反冲洗水位低~2.0 cm。实际运行表明,反冲过程中产生的浑浊液和泡沫被扫洗干净,效果理想。 3 滤梁、滤板的安装 为保证过滤效果,应确保滤板的水平误差不得超过±2 mm,否则空气就无法均匀地分配在滤层上。滤板平整与否首先是滤梁是否平整,工程中滤梁采用10号工字钢为主筋,其宽为110 mm、高为800 mm,预埋的紧

滤池气水反冲洗过程中气泡特征研究

西安建筑科技大学硕士学位论文

西安建筑科技大学硕士学位论文

滤池气水反冲洗过程中气泡特征研究 专 业:市政工程 硕 士 生:刘春杉 指导教师:张建锋 副教授 摘 要 快滤池的运行包括了过滤和反冲洗两个工艺环节,高效的反冲洗是保证滤池稳定运行的关键因素之一,同时也对净水厂节能减排的实际效果影响显著。本文在系统阐述滤池反冲洗的发展和理论的基础上,基于对气水反冲洗设计和实际运行控制参数的分析,对气水反冲洗过程中滤层逸出气泡的特征进行实验研究,以期探明气水反冲洗过程中气泡特征对滤料流失的影响。 研究中设计并搭建模型滤柱,通过系列对比试验分析了在不同的气冲强度和不同的水冲强度下,滤层表面逸出气泡的速度、直径等特征参数的变化规律。主要结论包括: (1) 在试验确定的控制参数范围内,气冲强度、水冲强度的增大导致逸出气泡的上升速度及相界面积增大; (2) 在现有净水厂实际运行的控制参数范围内,气冲强度和水冲强度的增加使得在同一高度处气泡上升速度、直径及数量增加; (3) 滤层表面逸出气泡的大小及上升速度对滤料的流失量有一定的影响。关键词:气水反冲洗;气泡速度;气泡大小

Characteristics of the bubble during simultaneous air-water Backwashing Specialty:Municipal Engineering Candidate: Liu Chunshan Advisor:A.Prof.Zhang Jianfeng ABSTRACT Filter mainly included two processes of filtration and backwashing.Efficient backwash is not only the key to ensure treatment’s effect,but also one of the core contents to save energy and reduct consumption by water purification plants. The Research elaborated systematicly about the development and theory of filter backwash. At the same time according to the relevant operating parameters and design-rules, the characteristics of the bubble during simultaneous air-water backwashing was studied by research and actual production process. Design and build a model filter backwashing experiment,do a series of test and analysis by contrast in order toget the effecters from different water and air-scour rates on the characteristics of the bubble, the bubbles, speed and bubbles, size when they get out the surface of the filtering layer. The main conclusions include: (1)In the extent of parameters which the experiment established, increase water and air-scour rates lead to bubbles, speed、bubbles, size and phase contact area also increased; (2)In the extent of parameters which the water plants are making use of, increase water and air-scour rates lead to bubbles, speed、bubbles, size and bubbles, quantity increased at the same aititude; (3)The speed and size of the bubbles which they get out the surface of the filtering layer have affect on media loss。 Key words:air+water backwash;bubbles, speed; bubbles, size

滤池比较

给水处理中的过滤一般是指通过过滤介质的表面或滤层截留水体中悬浮固体和其他杂质的过程。对于大多数地面水处理来说,过滤是消毒工艺前的关键性处理手段,对保证出水水质具有重要的作用。 根据滤池的结构型式不同,目前常用的池型有普通快滤池、双阀滤池、虹吸滤池、V型滤池等。其中普快滤池使用历史最久,虹吸滤池和无阀滤池是变水头过滤,出水水质不高。目前大中型水厂采用最多的是普通快滤池, V型滤池和翻板滤池。 1、普通快滤池 普通快滤池是传统的快滤池布置形式,滤料一般为单层细砂级配滤料或煤、砂双层滤料,冲洗采用单水冲洗,冲洗水由水塔(箱)或水泵供给。 普通快滤池的工作原理分过滤和反洗两个过程。 过滤时:经过澄清的水浑浊度小于20NTU,从浑水管道经过浑水渠,流入布水槽进入滤池,水经过石英砂滤料层,以8--14m/h过滤速度,将水中的残余杂质截留在石英砂滤料表面剂滤层里面,使水变清为洁净的过滤水。过滤水经由级配卵石组成的承托层、配水支管、汇集到配水干管。最后,从过滤水管进入过滤滤池,此时出水浑浊度小于5NTU或更低。 反洗时:先关闭浑水管道导航的进水阀,等滤池的水位下降10cm左右时,再关过滤管上的阀门,然后开启排水管剂冲洗水的排水阀,冲洗水从冲洗水总管,经过配水系统的干管、支管、水从下而上流过承托层和石英砂滤料层,滤料在上升水流的作用下,悬浮起来逐步膨胀到一定高度,使得滤料中的杂质、淤泥冲洗下来,废水进入布水槽,经浑水渠和排水管,排入沟渠,冲洗直至排出水清澈为止。冲洗强度通常控制在12--15L(s.m2)范围内。 2、V型滤池 V型滤池是一种快滤池,进水为V型槽,采用气水反冲洗,适用于大、中型水厂。V型滤池的主要特点是:可采用较粗较厚滤层以增加过滤周期,由于反冲时滤层不膨胀,故整个滤层在深度方向的粒径分布基本均匀,不发生水力分级现象,即所谓“均质滤料”,使滤层含污能力提高。气水反冲洗均粒滤料滤池的主要特点是滤料粒径更均匀、粒径更粗、滤层厚度更大,具有更强的截污能力,保证了出水水质,延长了过滤周期,节约冲洗水量。由于滤料、冲洗方式的改变,

气水反冲洗技术在滤池中的应用

气水反冲洗技术在滤池中的应用 滤池是水厂常规处理净水构筑物的最后一道工序,滤池运行的好坏直接影响到水 厂的出水水质。但是很多快滤池在运行一段时间后,就会出现过滤层含泥量增大,在反冲洗强度设计值范围内不能达到预期的反冲洗效果,并且冲洗历时延长,产水量下降,严重阻碍了快滤池的正常运行。滤池反冲洗对滤池工作效果影响甚大,若采用较好的反冲洗技术,使滤料层经常处于最优条件下反冲洗,不仅可以节水节能,还能提高出水水质,增大滤料层截污能力,提高滤速,延长过滤周期。 一几种常用的反冲洗方式 目前国内外滤池反冲洗方法主要有三种,一是单纯用水反冲洗,另一种是用水反 冲洗并辅以表面冲洗,最后一种是气水反冲洗。 二气水反冲洗的应用概况 气水反冲洗作为去除滤池中滤料层的污泥,使滤料层恢复使用的技术开始是1902 年在美国新泽西州小福尔装置的快滤池中使用的。尔后英国设计的快滤池多数采用了气水反冲洗技术。但由于气的布配设施不过关等原因,一直影响到这项技术的推广应用。直到瑞典的第四次国际供水会议上提出采用长柄滤头作为布气装置以及本世纪六十年代,随着粗粒,均匀粒径深床

滤池的应用,气水反冲洗技术得到完善才被各国竟相采用。 我国应用气水反冲洗技术的历史已近70 年,但应用的水厂不多。本世纪30 年代,抚顺市东公园最早采用气水反冲洗技术,现有设计规模为17 万m3/d ,其次是广州三 水厂,于40年代采用该技术,现有设计规模为12万m3/d。50年代后,广东罗定水厂,湛江水厂和抚顺滴台涧水厂等先后采用了气水反冲洗技术。80 年代后,引进法国贷款和技术的南京上元门水厂,重庆和肖山水厂,西安曲江水厂,沈阳八水厂建成采用了气水反冲洗的AQUAZUR V 型滤池。近年来,昆明五水厂,珠海拱北水厂,杭州消泰门水厂,青岛白沙河水厂,深圳南头水厂等先后采用了气水反冲洗技术。 三气水反冲洗机理研究 自1840 年快滤池问世以来,各国的给水处理工作者针对反冲洗的机理极其效果作了大量的研究:Camp 认为,反冲洗造成滤料洁净的原因主要是拖曳力而不是粒间互撞;Amirtharajah 等人同意这一观点,并导出了剪切力强度和水头损失坡度的关系,据此提出了流化床中的最大剪力将发生在空隙比为0.68?0.71时,该空隙比相当于 80?100%的膨胀度;日本学者将吸附在滤料上的污泥分为二种,一种是滤料直接吸着而不易脱落的污泥,称作一次污泥;另一种是积滞在砂粒间隙中的污泥,比一次污泥易于去除,称作二次污泥。他们认为在反冲洗时去除二次污泥主要是由水流剪力来完成,而去除一次污泥必须依靠颗粒间的摩擦碰撞作用,而且剪切力作用与颗粒间的碰撞摩擦作用均与平均速度梯度G值呈比例关系,并就G值与反冲洗强度、水温、砂粒 粒径的相互关系作了研究。藤田贤二对最佳反冲洗强度作了理论研究,根据最大水流剪切力条件下求出的反冲洗强度与一般考虑的反冲洗强度差别悬殊,认为水流剪切力不是反冲洗的主要作用,并进一步根据颗粒碰撞次数最多的条件,导出了最佳反冲洗

滤池反冲洗操作规程

滤池反冲洗操作规程滤池反冲洗分三个阶段:单独气冲、气水冲和水漂洗,其操作过程如下: 第一阶段:单独气冲 1、操作步骤: (1)关闭“滤池出水阀”、“滤池进水闸”。 (2)开启“滤池反冲洗进气阀”、“滤池反冲洗排污阀”。 (3)待应开的阀门全开,应关的阀门全关后,再开启“反洗风机”对滤池进行气冲,运行约3~5分钟后,进入下一阶段气水冲。 2、注意事项: (1)反洗操作前将反洗管道中所有手动阀全开。 (2)反洗风机为1用1备,反洗时只能启动1台风机,不得启动2台。 (3)开启反洗风机前需保证滤池水位在拦截盖板之下,水位在拦截盖板之上或满水位时不得启动反洗风机。 (4)需先开反洗风机前的阀门,再开反洗风机,否则会损害反洗风机或者管路。第二阶段:气水冲 1、操作步骤: (1)开启“滤池反冲洗进水阀”。

(2)待阀门全开后,再开启“反洗水泵”对滤池进行气水冲,运行8~10分钟后,进入下一阶段水漂洗。 2、注意事项: (1)反洗水泵为1用1备,反洗时只能启动1台水泵,不得启动2台。 (2)需做到先开水泵前后的阀门,再开反洗水泵。 第三阶段:水漂洗 水漂洗工艺流程图 1、操作步骤: (1)停止“反洗风机”,关闭“反冲洗进气阀”。 (2)保持“反洗水泵”运行3~5分钟后,停止“反洗水泵”,关闭“反冲洗进水阀”。 (3)开启“初滤排污阀”、“滤池进水闸”。 (4)运行1~3分钟后,关闭“初滤排污阀”、“反冲洗排污阀”。 (5)开启“滤池出水阀”,此时一个反冲洗过程全部完成。 2、注意事项: (1)滤池反冲洗时只能单独一个滤池进行,且一个滤池反冲洗完成后待清水池满后才能进行下一个滤池反冲洗操作。 (2)反冲洗过程中注意观察设备及管网的运行情况,出现异常立即停止操作。

67空气擦洗滤池

中国电力投资集团公司 阚山发电 2×600MW超超临界机组空气擦洗滤池合同附件 阚山发电 华东电力 南京亨达环保有限公司 2005年9月

中国电力投资集团公司 阚山发电 2×600MW超超临界机组 (空气擦洗滤池)合同附件签字页江阚山发电有限公司 华东电力 亨达环保 签字日期:2005年9月5日

附件1 技术规 1 总则 1.1 本合同文件适用阚山发电厂2×600MW机组空气擦洗滤池设备的设计、制造、试验、质量保证和验收等方面要求。它提出该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 合同文件所提及的要求和供货围都是最低限度的要求,并未对一切技术细节作出规定,也未充分地详述有关标准和规的条文,但卖方应保证提供符合本合同文件和工业标准的功能齐全的优质产品。 1.3本工程采用KKS标识系统。卖方在中标后提供的技术资料(包括图纸)和设备、系统标识必须有KKS编码。具体标识要求和原则在签定合同后提供。 2 工程概况 2.1厂址及工程概况 阚山电厂位于在市以东的贾汪地区汴塘乡,距市区约40km。规划容量为3000MW,本期为2台600MW超超临界汽轮发电机组。 2.2运输 阚山电厂位于310国道北侧。厂址紧邻310国道和京杭大运河,向南约20公里为徐连高速公路,向西约25公里为京福高速公路;厂址向西13公里有桥煤矿铁路专用线,向西南12公里是董庄煤矿铁路专用线。在厂址南侧的京杭运岸有阚山码头,塔山码头等,厂址附近交通运输条件十分便利。 3 设计和运行条件 3.1 厂址条件 本地区气候温和,光照充足,多年平均降水量约842mm。冬寒干燥,夏热多雨,春秋干旱突出,以下为各气象要素统计特征值: 历年平均气压: 101220Pa 历年平均气温: 14.4 ℃ 极端最高气温: 40.6 ℃ (1972年6月11日) 极端最低气温:-22.6 ℃ (1969年2月6日)

气水反冲滤池的工艺设计与施工

气水反冲滤池的工艺设计与施工 (冯志坚,李燕,李德普) 从1990年以来,国内已陆续建造和改建了数百座气水反冲滤池。随着该种过滤技术的推广应用,其过滤滤速快、过滤周期长、出水水质好、冲洗水量少等特点已普遍得到用户的接受和好评。与此同时,气水反冲滤池的设计与施工也存在着管道布局走向和土建施工复杂、施工精度要求高等问题。 1 设计参数的确定 气水反冲滤池的过滤设计负荷主要与进水浊度、温度等因素有关。理论上讲,滤速一般为8~12m/h,冲洗周期24~48h。随着强化出水水质和挖潜要求的提高,过滤滤速和周期分别有降低和减少的趋势。根据多年设计和施工的体会,建议滤速采用7~10m/h,冲洗周期仍保持24~48h。 气水反冲滤池的反冲洗过程一般采用气冲洗、气水同时冲洗加表洗、水冲洗等。在选择设计参数时,一般气冲强度为(50±5) m3/(s·m2)、水冲洗强度13~15 m3/(s·m2)、表洗强度为7~7.5 m3/(s·m2);冲洗历时分别为1~3 min、2~4min、1~3min。当遇特殊情况时,冲洗强度可适当增减。 2 滤池的进水、出水 由于气水反冲滤池一般为恒水位均匀过滤,因此滤池的进、出水处均应设置堰板,但堰板形式最好采用可调式。滤池的进水渠需设置溢流井,同时排气阀出水管的标高要高于溢流水位。出水井堰板后应考虑足够的空间,便于堰后出水的消力。出水井亦应贴白瓷砖,其上应设照明设施,并加设玻璃罩。 滤池的内外装修应由设计确定,但选择滤池内表面的装修材料时,需考虑反冲时水垢颜色的影响。 3 滤池进水、排水闸门 滤池进水、排水闸门一般采用气动或电动提板闸,其密封要求为迎水面漏失小于0.021 L/(s·m2)。一般,提板闸的密封条和金属框架直接相连,而密封条又与池壁相连,密封条的厚度只有10mm。由于土建施工不可能像设备加工那样精确,容易造成误差,产生过度漏水或提板闸垂直度不够而影响传动系统的寿命。因此在设计和施工时,安装提板闸部位的土建应留有30mm厚的找平带,便于设备安装。目前设计和施工的工程也有采用快开阀的,可降低土建要求。

V型滤池清洗维护工程

XX有限公司 V型滤池清洗维护及恢复活性 施 工 方 案 2019年9月2日

项目负责XX 编写人员XX 审核XX 校对XX 施工XX 设计单位:XX有限公司

目录 1. 编制依据、范围 (3) 1.1编制依据 (3) 1.2编制原则 (3) 1.3编制范围 (3) 2. 工程概况 (3) 2.1前言 (3) 2.2项目概况 (4) 3. 存在的问题分析及建议 (5) 3.1 V型滤池在运行过程中存在的问题 (5) 3.2改进措施与建议 (6) 4. 滤池清洗维护施工方案 (7) 4.1编制目的 (7) 4.2施工次序 (7) 4.3施工方法 (7) 4.3.1排空滤池水 (7) 4.3.2清理前的准备工作 (7) 4.3.3清理滤室 (8) 4.3.4后继工作 (8) 4.4技术措施 (9) 4.5人员安排 (10) 4.5.1人员构架 (10) 4.5.2各岗位的主要职责 (10) 4.6作业工器具及材料 (11) 4.7倒排工期表 (11)

1. 编制依据、范围 1.1编制依据 《室外给水设计规范》; 《滤池气水冲洗设计规程》; 《气水冲洗滤池整体浇筑板及可调式滤头技术规程》; 《给水排水设计手册(第3册)》; 《V型滤池气水反冲洗参数对冲洗效果的影响》-舟山市规划建筑设计研究院第13期刊 《气水反冲洗滤池的优化运行》[J].中国给排水,2001,17(4) 《滤料表面黑化物质的组成及其洗除技术研究》[J].净水技术,2002,21(1) 1.2编制原则 ①采用先进实用、简便易行的施工工艺方法,以达到投资省、人耗少,经济合理; ②严格按照国家有关的工程规范装卸组件,确保人员安全、施工顺利进行; ③合理布置施工次序,做好施工前的准备工作、施工计划。 1.3编制范围 本方案主要实施范围为XX污水处理厂一厂厂内,项目位于V型滤池内。 2. 工程概况 2.1前言 V型滤池是由法国德利满公司在70年代发展起来的,是快滤池的一种形式,因为其进水槽形状呈V字形而得名,它采用较粗、较厚的均质石英砂作为滤料层。其过程是待滤水由进水总渠经进水阀和方孔后,溢流过堰口再经过侧孔进入被待滤水淹沿的V型槽,分别经槽底均匀的配水孔和V型槽堰进入滤池。被均质滤料滤层过滤,去除一定量的COD cr、BOD5和TP,过滤后的水经长柄滤头流入底部

滤池反冲洗

1 .1反冲洗技术发展概况和应用前景 1.1.1概述 在常规的水处理过程中,过滤一般是指以石英砂等粒状滤料层截留水中悬浮杂质,从而使水获得澄清的工艺过程。滤池通常置于沉淀池或澄清池之后。过滤的功效,不仅在于进一步降低水的浊度,而且水中有机物、细菌乃至病毒等都将随水的浊度的降低而被部分去除。至于残留于滤后水中的细菌、病毒等在失去浑浊颗粒物的保护或依附时,在滤后消毒过程中也将容易被杀灭,这就为滤后消毒创造了良好条件。在饮用水的净化工艺中,有时沉淀池或澄清池可省略,但过滤是不可缺少的,它是保证饮用水卫生安全的重要措施。 滤池的形式种类有很多,其中使用历史最为悠久的是以石英砂作为滤料的普通快滤池。从不同的工艺角度出发,在此基础之上发展了多种其他形式的快滤池。其中V型滤池就是在20世纪70年代由法国德格雷蒙(Degremont)公司发展的一种重力式快滤池。因其两侧(或一侧也可)的进水槽设计成了V字型而得名。 水厂中滤池是过滤工艺中的重要构筑物,而滤池稳定高效运行的关键是滤层过滤能力的再生。若采用的反冲洗技术较好,使滤池的工作状态常处于最优条件,不仅可以节能、节水,还能使得水质提高,滤层的截污能力增大,工作周期延长,产水量提高。V型滤池过滤能力的再生,就是采用了先进的气、水反冲洗兼表面扫洗这一反冲洗技术。V型滤池在气冲洗过程中,由于使用鼓风机将空气压入滤层,因而使得滤池的过滤性能从以下几方面得到改善,如表1.1示:

相信随着我们对水资源利用问题越来越重视,V型滤池的普及和运用也会越来越广泛 .1.2反冲洗技术的发展 在滤池的运行过程中,从进水中去除的杂质积聚在滤料表面和颗粒间的孔隙内,随着滤池的继续运转,贮集在滤床中的杂质会导致滤床的孔隙率降低,滤床所能截留的杂质量不断减少,当水头损失增加至水流按预定流量通过时所需的水头即最大允许水头损失时,或是由悬浮物质的穿透最后导致滤后水水质下降时,最终将使滤池停运,此时,需对滤池进行反冲洗,以去除截留的杂质,恢复滤池的运行能力。 所谓“反冲洗”,就是为恢复滤池的正常工作所采用的反向水流冲洗滤层的操作过程,是让经过过滤后的清洁水反向(由下而上)高速通过过滤层,截留在滤料表面的悬浮杂质依靠高速水流的作用冲洗下来,被水流带出滤层。反冲洗的效果好坏会直接影响过滤行为,如果滤池冲洗的效果不佳,就会产生一系列的有害作用。 对于老式的慢滤池,绝大多数从水中去除的杂质会积聚在滤床表面,当过滤水的水质下降时,上层滤料用清洁的砂子替换,以恢复滤池的运行能力。早期的砂滤料快滤池清洁的方法是通过对砂颗粒进行轻轻的清洗}s},以便使得滤床表面上留下一层未受破坏的有机膜,在对砂滤料慢滤池的过滤工艺沿袭下来的认识和理解的基础上,认为进行有效过滤是需要这一薄膜的。在美国最早出现的砂滤料滤池中装设有环形搅动耙子,用来在清洗过程中搅动砂子,来帮助杂质与砂分离开来。但此类滤池反冲洗的强度仅有1.7 -3.4L/s m2。自然,滤床在这种低速弱强度的冲洗下得不到彻底的清洁,效果并不理想。 而早在十九世纪末的英国,就有人开始对浸湿了的滤料进行空气吹洗,然后再用水进行反冲洗,这可以被认为是气一水反冲洗的雏形。到了1900年,美国新泽西州小福尔装置的重力快滤池采用了空气搅动代替旋转的搅动耙子,这被认为是气一水反冲洗技术的最早运用。之后几年哈佛大学所做的实验表明,空气冲洗是打碎滤池砂层表面形成的泥浆或者泥块所需要的。 1903年到1905年间,在美国辛辛那提过滤水厂的实验研究过程当中,开始采用了所谓的“高速冲洗法”,即反冲洗强度为10-16L/sm2,放弃了旋转耙和空气冲洗。这样,在较高的反冲洗强度冲洗下,整个滤层都处于悬浮状态,滤层处于流化状态,这时滤料颗粒上吸附的污物被上升水流中滤料间相互的接触碰撞冲洗下来然后被冲洗水带出池外,从而使滤料得到“清洁”。由于此法的构造简单,运行管理较方便,且冲洗效果明显,因而在美国以及日本等国家得到了长期广泛的应用。但若是采用此种冲洗方式,就必须使水流达到足以使滤料膨胀流化的要求,即滤层表观体积在膨胀后至少增加15%. 1929年Hublert和Herring 根据高强度反冲洗研究成果表明,反冲洗膨胀率为50%较宜,此后高速反冲洗为世界各国广泛采用。 在反冲洗过程中,不管是水流的剪切力还是颗粒间的碰撞摩擦力都是由水的速度梯度G值产生的,高速水流反冲洗实际产生的G值一般并不高,通常砂粒产生的。值为300-400s-1,煤粒为150-300s-1,是一种弱冲洗的方式。另外加之滤层膨胀所造成的水流涡动作用,使得会有一部分在滤料表面形成的密实污泥层被带入到滤层的深部并逐步形成大个、坚硬的泥球,这样若是在通常的设计反冲洗强度下,滤池反冲洗的效果就不佳,且随着冲洗时间延长,泥球现象就更趋严重,反冲洗的耗水量增加,由此形成恶性循环。除此之外,高速水反冲洗也易造成滤池滤料的流失,因此在后来的应用当中通常加以表面冲洗辅助。在1908年首次于加利福利亚州的OKlahom自来水公司出现了第一套表面冲洗设备。最初采用辅助的冲洗方法是利用机械搅拌或者水力搅拌来促使表层滤料的摩擦碰撞作用加强,以达到更好的效果。 从1910年起,英国设计的大多数快滤池均是采用了先用空气清洗或者旋转耙冲洗

气水反冲洗V型滤池的调试

气水反冲洗V型滤池的调试 开封市三水厂降氟改水扩建工程规模为10万m3/d,于1996年5月1日开工,1998年8月1日试运行。水源为黄河水,净水工艺为常规反应、沉淀、过滤、消毒工艺。滤池采用的是气水反冲洗V型滤池,共12格,单格有效过滤面积66m2,滤料为均质石英砂,有效粒径0.95~1.35mm,K60=1.21,滤层厚度1.2m;承托层为4~8mm粒径的卵石,厚度50mm;滤头为QS-Ⅰ型20×292长柄滤头,每m2滤板安装49个滤头,开孔率为1.225%。设计滤速7m/h,为恒水位恒速过滤方式,最大滤层水头差2.4m。原设计的滤池反冲洗方式为气水混合反冲洗,其步骤为先单独气洗2min;再气水混合冲洗2min;然后单独水漂洗6min;整个反冲洗过程中均利用滤前水进行表面扫洗,气洗强度14~16L/(s.m2),水洗强度4~6L/(s.m2)。经过近3个月的试运行,我们发现冲洗效果不很理想,为获得较好的运行效果,确定合理的运行参数,我们于1998年12月至1999年4月进行了反冲洗强度及反冲洗时间的实际试验和调试工作。并于1999年7月24日又进行了检查。 1过滤周期的控制 滤前水浊度稳定在3~6NTU,滤层成熟期后,过滤时间、出水浊度及滤层水头损失如表1。 表1滤池出水浊度、滤层水头损失变化

均质滤料孔隙率高,截污容纳量大,过滤周期长,出水水质稳定。为确保较好的出水水质,而且为防止周期过长在滤层形成泥球,我们确定以滤层损失为2.0m水头控制过滤周期。同时,为防止监测滤层水头损失的差压变送器故障,而造成滤池继续过滤发生“泄漏”现象使出水水质劣化,我们确定最大过滤周期为56h。因此,我们确定开始反冲洗自动化控制工艺条件如下,任何一个条件达到即进行反冲洗:(1)滤层水头损失2.0m(程序可调)。(2)超过滤池内控制最高水位延时30min(程序可调)。(3)累计连续运行56h。 2反冲洗强度及反冲洗时间的确定 冲洗效果的好坏是影响滤池运行的关键因素。冲洗主要是使沉积在滤料颗粒上的悬浮固体脱落并清除掉,使滤料保持清洁。冲洗效果以冲洗后滤料的含泥量及冲洗的均匀性来衡量。 到差的范围,当大于5%时属于极差[1]。 用气洗、气水混合洗和水洗的顺序进行冲洗的方式,采用不致引起砂层膨胀的反冲洗流速,同时利用空气搅动滤层的作用。这种方式可保持砂层稳定,表面壳层可被空气完全破碎,不会形成泥球,在滤层内,由于气泡运动的变化造成滤料的剧烈搅动,使所附着的悬浮固体剥离脱落。我们在反冲洗水泵出口及鼓风机出口的管道上分别安装了手动调节阀门和流量计以控制和计量反冲洗水量和气量,参考其它水厂的运行经验参数对我厂的滤池进行了气洗和水洗强度的调试。在气水冲洗期间,在滤料不流化范围内水冲洗强度越大,冲洗愈快,效果愈好。单独水漂洗时间与反冲洗强度成反比,与滤料深度及滤料层上面水深度成正比,深度为1.65m,单独漂洗时间在水冲洗强度6L/(s.m2)时,最短为4.5min,可将池内污水彻底置换为清水。我们通过不同的反冲洗强度与时间组合进行了多次反冲洗试验,结果详见表2。 表2反冲洗试验结果

滤池反冲洗操作规程

滤池反冲洗操作规程 Prepared on 22 November 2020

滤池反冲洗操作规程滤池反冲洗分三个阶段:单独气冲、气水冲和水漂洗,其操作过程如下: 第一阶段:单独气冲 1、操作步骤: (1)关闭“滤池出水阀”、“滤池进水闸”。 (2)开启“滤池反冲洗进气阀”、“滤池反冲洗排污阀”。 (3)待应开的阀门全开,应关的阀门全关后,再开启“反洗风机”对滤池进行气冲,运行约3~5分钟后,进入下一阶段气水冲。 2、注意事项: (1)反洗操作前将反洗管道中所有手动阀全开。 (2)反洗风机为1用1备,反洗时只能启动1台风机,不得启动2台。 (3)开启反洗风机前需保证滤池水位在拦截盖板之下,水位在拦截盖板之上或满水位时不得启动反洗风机。 (4)需先开反洗风机前的阀门,再开反洗风机,否则会损害反洗风机或者管路。 第二阶段:气水冲 1、操作步骤: (1)开启“滤池反冲洗进水阀”。

(2)待阀门全开后,再开启“反洗水泵”对滤池进行气水冲,运行8~10分钟后,进入下一阶段水漂洗。 2、注意事项: (1)反洗水泵为1用1备,反洗时只能启动1台水泵,不得启动2台。 (2)需做到先开水泵前后的阀门,再开反洗水泵。 第三阶段:水漂洗 水漂洗工艺流程图 1、操作步骤: (1)停止“反洗风机”,关闭“反冲洗进气阀”。 (2)保持“反洗水泵”运行3~5分钟后,停止“反洗水泵”,关闭“反冲洗进水阀”。(3)开启“初滤排污阀”、“滤池进水闸”。 (4)运行1~3分钟后,关闭“初滤排污阀”、“反冲洗排污阀”。 (5)开启“滤池出水阀”,此时一个反冲洗过程全部完成。 2、注意事项: (1)滤池反冲洗时只能单独一个滤池进行,且一个滤池反冲洗完成后待清水池满后才能进行下一个滤池反冲洗操作。 (2)反冲洗过程中注意观察设备及管网的运行情况,出现异常立即停止操作。

相关文档