文档库 最新最全的文档下载
当前位置:文档库 › 电动力学考试大纲

电动力学考试大纲

电动力学考试大纲
电动力学考试大纲

国家海洋局第一海洋研究所硕士研究生入学考试

遥感概论考试大纲

一、考试说明

本遥感概论考试大纲适用于国家海洋局第一海洋研究所硕士研究生入学考试。主要考察考生对遥感的基本概念、基本理论和方法的掌握,以及应用遥感技术解决问题的能力。考试对象为参加海洋一所研究生入学考试的物理海洋学考生。

二、考试内容

(一)遥感的基本知识:

内容:

遥感的基本概念、特点和发展。

考试要求:

1.理解并掌握遥感的基本概念和特点。

2.了解遥感系统的工作原理。

3.熟悉主流的遥感器、数据和应用。

(二)电磁辐射与地物光谱特征

内容:

遥感的电磁学原理和地物光谱基础。

考试要求:

4.理解电磁波谱与电磁辐射原理。

5.理解并掌握太阳辐射及大气对辐射对遥感数据的影响。

6.熟练掌握和理解地球表面不同地物类型的反射辐射特征,了解并掌握地物波谱特征的测量方法,并可辨识绿色植被、水体和裸土地等几种典型地物的光谱特征。

(三)遥感成像原理与遥感图像特征:

内容:

成像遥感器的数据获取原理,以及不同类型遥感图像的特点。

考试要求:

1.了解目前主流的遥感平台。

2.了解扫描成像的原理,并能运用所学原理分析遥感影像中的各种成像问题。

3.了解微波遥感的特点和成像方式,熟悉目前主流的微波传感器。

4.理解遥感影像的几种分辨率特征:空间分辨率、时间分辨率、光谱分辨率和辐射分辨率。(四)遥感图像处理:

内容:

光学、微波遥感影像的校正、增强和融合等处理方法。

考试要求:

1.对于光学影像,熟练掌握假彩色合成、分辨率融合和光学增强等图像处理方法,并理解其中的原理。

2.对于微波影像,熟练掌握微波图像的去噪和多视处理等图像处理方法,并理解其中的原理。

3.熟练掌握遥感图像辐射校正和几何校正方法,了解地面控制点的野外测量方法。

4.理解并掌握遥感图像的直方图变换、空间滤波、图像运算和图像融合等图像增强方法和原理。

(五)遥感图像解译与制图:

内容:

遥感物理学、地理学和GIS技术的结合。

考试要求:

1.了解当前主流的遥感影像类型、主要特点及其应用。

2.熟练掌握目视解译方法和基本步骤。

3.了解计算机自动分类的常用方法、算法,并能分析其优缺点。

4.熟悉遥感影像地图和信息专题图的制图流程,熟悉遥感影像地图的图面配置。

(六)遥感应用:

内容:

水体遥感、植被遥感、地质遥感、土壤遥感和高光谱遥感的应用

考试要求:

熟练掌握水体遥感、植被遥感、地质遥感、土壤遥感和高光谱遥感的原理、主要方法和应用,并能运用理论知识解决实际问题。

(七) RS、GIS和GPS综合应用:

内容:

3S技术及其相互关系和综合应用。

考试要求:

1.熟悉3S技术各自的特点和相互结合应用。

2.了解3S技术的一些实例应用。

电动力学试题库十及其答案

简答题(每题5分,共15分)。 1.请写出达朗伯方程及其推迟势的解. 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什 么? 3.请写出相对论中能量、动量的表达式以及能量、动量和静止质量的关 系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足: 1 21 2εεθθ= t a n t a n ,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两 侧电力线与法线的夹角。(15分) 四. 综合题(共55分)。 1.平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,介电常数为1ε和 2ε,今在两板上接上电动势为U 的电池,若介质是漏电的,电导率分别为1 σ和2σ,当电流达到稳恒时,求电容器两板上的自由电荷面密度f ω和介质分界面上的自由电荷面密度f ω。(15分) 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔内的电场(分离变量法)。(15分)

3.一对无限大平行的理想导体板,相距为d ,电磁波沿平行于板面的z 轴方向传播,设波在x 方向是均匀的,求可能传播的波型和相应的截止频率.(15分) 4.一把直尺相对于∑坐标系静止,直尺与x 轴夹角为θ,今有一观察者以速度v 沿x 轴运动,他看到直尺与x 轴的夹角'θ有何变化?(10分) 二、简答题 1、达朗伯方程:2 2 022 1A A j c t μ??-=-? 222201c t ?ρ?ε??-=-? 推迟势的解:()()0 ,,, , ,44r r j x t x t c c A x t dV x t dV r r ρμμ?π π ?? ?? ''-- ? ?? ?? ? ''= =?? 2、由于电磁辐射的平均能流密度为222 3 2 0sin 32P S n c R θπε= ,正比于2 sin θ,反比于 2 R ,因此接收无线电讯号时,会感到讯号大小与大小和方向有关。 3 、能量:2 m c W = ;动量:),,m iW P u ic P c μ?? == ??? ;能量、动量和静止质量的关系为:22 22 02 W P m c c -=- 三、证明:如图所示 在分界面处,由边值关系可得: 切线方向 12t t E E = (1) 法线方向 12n n D D = (2) 1 ε

电动力学期末考试试题库word版本

第一章 电磁现象的普遍规律 1) 麦克斯韦方程组是整个电动力学理论的完全描述。 1-1) 在介质中微分形式为 D ρ??=r 来自库仑定律,说明电荷是电场的源,电场是有源场。 0B ??=r 来自毕—萨定律,说明磁场是无源场。 B E t ???=-?r r 来自法拉第电磁感应定律,说明变化的磁场B t ??r 能产生电场。 D H J t ???=+?r r r 来自位移电流假说,说明变化的电场D t ??r 能产生磁场。 1-2) 在介质中积分形式为 L S d E dl B dS dt =-??r r r r g g ? , f L S d H dl I D dS dt =+??r r r r g g ?, f S D dl Q =?r r g ?, 0S B dl =?r r g ?。 2)电位移矢量D r 和磁场强度H r 并不是明确的物理量,电场强E r 度和磁感应强度B r ,两者 在实验上都能被测定。D r 和H r 不能被实验所测定,引入两个符号是为了简洁的表示电磁规律。 3)电荷守恒定律的微分形式为0J t ρ ??+ =?r g 。 4)麦克斯韦方程组的积分形式可以求得边值关系,矢量形式为 ()210n e E E ?-=r r r ,()21n e H H α?-=r r r r ,()21n e D D σ?-=r r r ,() 210n e B B ?-=r r r 具体写出是标量关系 21t t E E =,21t t H H α-=,21n n D D σ-=,21n n B B = 矢量比标量更广泛,所以教材用矢量来表示边值关系。 例题(28页)无穷大平行板电容器内有两层线性介质,极板上面电荷密度为f σ±,求电场和束缚电荷分布。 解:在介质1ε和下极板f σ+界面上,根据边值关系1f D D σ+-=和极板内电场为0,0 D +=r 得1f D σ=。同理得2f D σ=。由于是线性介质,有D E ε=r r ,得

电动力学

《电动力学》课程教学大纲 课程英文名称:Electrodynamics 课程编号:0312033002 课程计划学时:48 学分:3 课程简介: 电动力学的研究对象是电磁场的基本属性, 它的运动规律以及它和带电物质之间的相互作用,本课程在电磁学的基础上系统阐述电磁场的基本理论。另外,本课程还系统地阐述狭义相对论的重要内容,而相对论是现代物理学的重要基础,它与量子论一起对物理学的发展影响深刻,是二十世纪科学与技术飞速发展的基础。本课程是材料物理专业本科的重要专业基础课。 电动力学是物理类有关各专业的一门基础理论课。学电动力学的目的:(1)是使学生系统地掌握电磁运动的基本概念和基本规律,加深对电磁场性质的理解;(2)是使学生获得分析和处理一些问题的基本方法和解决问题的能力,提高逻辑推理和插象思维的能力,为后继课程的学习和独立解决实际问题打下必要的理论基础。 在教学过程中,使用启发式教学,尽量多介绍与该课程相关的前沿科技动态,充分调动和发挥学生的主动性和创新性;提倡学生自学,培养学生的自学能力。 一、课程教学内容及教学基本要求 第一章电磁现象的普遍规律 本章重点:在复习矢量分析、?算符、?算符及其运算法则、δ函数性质的基础上,从电磁场的几个基本实验律(库仑定律,毕奥--萨伐尔定律,电磁感应定律,电荷守恒律) 出发,加上位移电流假定, 总结出电磁场的基本运动规律Maxwell方程组、电荷守恒律和洛仑兹力公式。讨论了介质中的Maxwell方程, 电磁场的能量。本章内容是本课程的基础,必须深刻掌握。 难点:电磁场边值关系,电磁场的能量和能流。 本章学时:10学时 教学形式:讲授 教具:黑板,粉笔 第一节矢量分析和张量;?算符、?算符及其运算规则、δ函数性质 本节要求:理解:矢量分析和张量运算。掌握:?算符、?算符及其运算法则、δ函数性质(重点:考核概率50%)。 1 矢量分析和张量(理解:矢量运算法则,在电动力学中张量是如何引入的;了解:线性各

电动力学复习总结电动力学复习总结答案

第二章 静 电 场 一、 填空题 1、若一半径为R 的导体球外电势为b a b r a ,,+=φ为非零常数,球外为真空,则球面上的电荷密度为 。 答案: 02a R ε 2、若一半径为R 的导体球外电势为3 002cos cos =-+E R E r r φθθ,0E 为非零常数, 球外为真空,则球面上的电荷密度为 . 球外电场强度为 . 答案:003cos E εθ ,303[cos (1)sin ]=-+-v v v r R E E e e r θθθ 3、均匀各向同性介质中静电势满足的微分方程是 ;介质分界面上电势的边值关系是 和 ;有导体时的边值关系是 和 。 答案: σφ εφσφεφεφφερφ-=??=-=??-??=- =?n c n n ,,,,1122212 4、设某一静电场的电势可以表示为bz y ax -=2φ,该电场的电场强度是_______。 答案:z y x e b e ax e axy ? ??+--22 5、真空中静场中的导体表面电荷密度_______。 答案:0n ? σε?=-? 6、均匀介质部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ_____的倍。 答案: -(1- ε ε0 ) 7、电荷分布ρ激发的电场总能量1 ()() 8x x W dv dv r ρρπε''= ??v v 的适用于 情 形. 答案:全空间充满均匀介质 8、无限大均匀介质中点电荷的电场强度等于_______。 答案: 3 4qR R πεv 9、接地导体球外距球心a 处有一点电荷q, 导体球上的感应电荷在球心处产生

的电势为等于 . 答案: 04q a πε 10、无电荷分布的空间电势 极值.(填写“有”或“无”) 答案:无 11、镜象法的理论依据是_______,象电荷只能放在_______区域。 答案:唯一性定理, 求解区以外空间 12、当电荷分布关于原点对称时,体系的电偶极矩等于_______。 答案:零 13、一个外半径分别为R 1、R 2的接地导体球壳,球壳距球心a 处有一个点电荷,点电荷q 受到导体球壳的静电力的大小等于_______。 答案:212014() R q a R a a πε- 二、 选择题 1、泊松方程ε ρ φ- =?2适用于 A.任何电场 B. 静电场; C. 静电场而且介质分区均匀; D.高频电场 答案: C 2、下列标量函数中能描述无电荷区域静电势的是 A .2363y x + B. 222532z y x -+ C. 32285z y x ++ D. 2237z x + 答案: B 3、真空中有两个静止的点电荷1q 和2q ,相距为a ,它们之间的相互作用能是 A .a q q 0214πε B. a q q 0218πε C. a q q 0212πε D. a q q 02132πε 答案:A 4、线性介质中,电场的能量密度可表示为 A. ρφ21; B.E D ? ??21; C. ρφ D. E D ??? 答案:B 5、两个半径为12,R R ,124R R =带电量分别是12,q q ,且12q q =导体球相距为a(a>>12,R R ),将他们接触后又放回原处,系统的相互作用能变为原来的 A. 16,25倍 B. 1,倍 C. 1,4倍 D. 1 ,16倍 答案: A

电动力学试题库十及其答案

电动力学试题库十及其答案 简答题(每题5分,共15分)。 1 .请写出达朗伯方程及其推迟势的解. 2 .当您接受无线电讯号时,感到讯号大小与距离与方向有关,这就是为什 么? 3. 请写出相对论中能量、动量的表达式以及能量、动量与静止质量的关系式。 证明题(共15分)。 当两种绝缘介质的分界面上不带面电荷时,电力线的曲折满足:史宜w,其中i与2分别为两种介质的介电常数,1与2分别为界面两tan 1 1 侧电力线与法线的火角。(15分) 四、综合题(共55分)。 1. 平行板电容器内有两层介质,它们的厚度分另U为11与12,介电常数为1与2,今在两板上接上电动势为U的电池,若介质就是漏电的,电导率分别为1与2,当电流达到稳包时,求电容器两板上的自由电荷面密度f与介质分界面上的自由电荷面密度f。(15分) 2. 介电常数为的均匀介质中有均匀场强为E。,求介质中球形空腔内的电场(分离变量法)。(15分) 3. 一对无限大平行的理想导体板,相距为d,电磁波沿平行丁板面的z轴方向传播,设波在x方向就是均匀的,求可能传播的波型与相应的截止频率.(15分)

电动力学试题库十及其答案 4.一把直尺相对丁坐标系静止,直尺与x轴火角为,今有一观察者以速度v 沿x轴运动,她瞧到直尺与x轴的火角' 有何变化? (10分)二、简答题r、 (2v) 1、达朗伯万程:A i 2A c t2 ,八v v 推退势的 解:A x,t v,t v,t x,t —dV v 2、由于电磁辐射的平均能流密度为S32 2 c3R2 sin2音,正比于 sin2,反比于R2, 因此接收无线电讯号时,会感到讯号大小与大小与方向有关。 2 3、能量:W :m。:. i u2c2 m 。 ,1 u2c2 v u,ic V iW …,一… P,—;能重、动重与静止 c 质量的关系为:P2W 2 c 2 2 m b c 三、证明:如图所示 在分界面处,由边值关系可得 切线方向 法线万向 v v 又DE 由⑴得: E i sin i 由⑵(3)得: i E i cos E it D in E2t D2n E2sin i 2 E2 cos (5) 由⑷(5)两式可得:

电动力学期末考试试卷及答案五

判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1. 库仑力3 04r r Q Q F πε??'=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ? 。 ( ) 4. 在介质的界面两侧,电场强度E ?切向分量连续,而磁感应强度B ? 法向分 量连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 一. 简答题(每题5分,共15分)。 1.如果0>??E ρ ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ρ,能流密度s ρ 之间的关系。

二. 证明题(共15分)。 多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体内、外空间的B ?、H ? ; (2)体内磁化电流密度M j ? ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ? ,求介质中球形空腔内的电势和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B v 以及能流密度平均值S v 。(15分) 4.在接地的导体平面有一半径为a 的半球凸部,半球的球心在导体平面上,如图所示。点电荷Q 位于系统的对称轴上,并与平面相距为b (a b >)。试用电像法求空间电势。(10分) Q a b ?

《电磁学》教学大纲解析

《电磁学》教学大纲 英文名称:electromagnetics 授课专业:物理学学时:72学分:4 开课学期:二年级上学期 适用对象:物理学专业 一、课程性质与任务 电磁学是物理学专业的一门专业基础课。电磁学已渗透到物理学的各个领域,成为研究物质过程必不可少的基础。通过本门课程的教学,要求:使学生能全面地认识和理解电磁运动的基本现象和基本概念,系统地掌握电磁运动的基本规律,具有一定的分析和解决电磁学问题的能力,并为学习后继课程打下必要的基础。通过对电磁学发展史上某些重大的发现和发明的介绍,使学生了解物理学思想和实验方法,培养学生的辩证唯物主义世界观,使学生获得科学方法论上的教益。 二、课程教学的基本要求 1 、正确理解以下基本概念和术语: 基本粒子、静电场、库仑力、电场强度、电通量、电位、电位差、电功、静电平衡、静电屏蔽、电容、加速器、静电能、极化强度、电位移向量、电流密度、超导、电功率、经典金属电子论、电动势、非静电力、温差电动势、静磁场、磁感应强度、安培力、磁通量、磁矩、电磁感应、感生电场、自感、互感、涡电流、趋肤效应、磁能、磁化强度、磁化电流、磁场强度、顺磁性、抗磁性、铁磁性、磁畴、铁磁屏蔽、位移电流、电磁场、能流密度、电磁波谱。 2 、掌握以下基本规律及分析计算方法 (1)静电场基本定律和定理:库仑定律、电荷守恒定律、高斯定理、环路积分定理、叠加原理。 (2)稳恒电流和电路:欧姆定律、焦耳定律、基尔霍夫定律(节点方程、回路电压方程)

(3)稳恒磁场的基本定律和定理:毕——伐定律,安培定律、高斯定理、环路积分定理。 (4)交变电磁场的基本定律和定理:楞次定律、法拉第电磁感应定律、麦克斯韦方程组。 (5)掌握以下物理量的分析计算方法:电场强度、电位、电位差、电通量、电容、磁感应强度、磁通量、安培力、磁矩、电动势、电磁能量等。 3 、注意培养学生以下几方面能力 (1)分析电磁运动规律及物理实验构思方法,重视对实验现象的总结,培养科学分析问题的能力。 (2)积极思考并总结研究方法、实验技能,培养创新意识。 (3)灵活有效应用高等数学知识,解决物理问题,进一步提高科学知识、科学方法、科学态度和科学精神等科学素质。 三、课程教学内容 第一章静电场的基本规律(12课时) 第二章有导体时的静电场(8课时) 第三章静电场中的电介质(8课时) 第四章恒定电流和电路(8课时) 第五章恒定电流的磁场(12课时) 第六章电磁感应与暂态过程(12课时) 第七章磁介质 (8课时) 第九章时变电磁场和电磁波(4课时) 四、教学重点、难点 静电场的高斯定理,静电场的环路定理,电位,静电平衡时导体的性质,用电力线工具讨论静电平衡的若干电现象,电介质存在时场的讨论方法及场强计算,电介质存在时高斯定理的应用,电动势的物理意义及数学表示方法,基尔霍夫方程组求解电路,磁感应强度矢量的概念,毕奥—萨伐尔定律,磁场的

(完整版)电动力学-郭硕鸿-第三版-课后题目整理(复习备考专用)

电动力学答案 第一章 电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=??A A A A )()(2 21??-?=???A 2. 设u 是空间坐标z y x ,,的函数,证明: u u f u f ?= ?d d )(, u u u d d )(A A ? ?=??, u u u d d )(A A ??=?? 证明:

3. 设222)'()'()'(z z y y x x r -+-+-= 为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。 (1)证明下列结果,并体会对源变量求微商与对场变量求微商的关系: r r r /'r =-?=? ; 3/)/1(')/1(r r r r -=-?=? ; 0)/(3=??r r ; 0)/(')/(33=?-?=??r r r r , )0(≠r 。 (2)求r ?? ,r ?? ,r a )(?? ,)(r a ?? ,)]sin([0r k E ???及 )]sin([0r k E ??? ,其中a 、k 及0E 均为常向量。 4. 应用高斯定理证明 f S f ?=????S V V d d ,应用斯托克斯 (Stokes )定理证明??=??L S ??l S d d

5. 已知一个电荷系统的偶极矩定义为 'd '),'()(V t t V x x p ? = ρ,利用电荷守恒定律0=??+ ??t ρ J 证明p 的变化率为:?=V V t t d ),'(d d x J p 6. 若m 是常向量,证明除0=R 点以外,向量3 /R )(R m A ?=的旋度等于标量3 /R R m ?=?的梯度的负值,即 ?-?=??A ,其中R 为坐标原点到场点的距离,方向由原 点指向场点。

电动力学试题及其答案(3)

电动力学(C) 试卷 班级 姓名 学号 题号 一 二 三 四 总 分 分数 一、填空题(每空2分,共32分) 1、已知矢径r ,则 ×r = 。 2、已知矢量A 和标量 ,则 )(A 。 3、一定频率ω的电磁波在导体内传播时,形式上引入导体的“复电容率”为 。 4、在迅变电磁场中,引入矢势A 和标势 ,则E = , B = 。 5、麦克斯韦方程组的积分形 式 、 、 、 。 6、电磁场的能流密度为 S = 。 7、欧姆定律的微分形式为 。 8、相对论的基本原理 为 , 。 9、事件A ( x 1 , y 1 , z 1 , t 1 ) 和事件B ( x 2 , y 2 , z 2 , t 2 ) 的间隔为 s 2 = 。

10、位移电流的表达式为 。 二、判断题(每题2分,共20分) 1、由j B 0 可知,周围电流不但对该点的磁感应强度有贡献,而且对该点磁感应强度的旋度有贡献。( ) 2、矢势A 沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( ) 3、电磁波在波导管内传播时,其电磁波可以是横电波,也可以是横磁波。( ) 4、任何相互作用都是以有限的速度传播的。( ) 5、由0 j 可知,稳定电流场是无源场。。( ) 6、如果两事件在某一惯性系中是同时同地发生的,在其他任何惯性系中它们必同时发生。( ) 7、平面电磁波的电矢量和磁矢量为同相位。( ) 8、E 、D 、B 、H 四个物理量中只有E 、B 为描述场的基本物理量。( ) 9、由于A B ,虽然矢势A 不同,但可以描述同一个磁场。( ) 10、电磁波的亥姆霍兹方程022 E k E 适用于任何形式的电磁波。( ) 三、证明题(每题9分,共18分) 1、利用算符 的矢量性和微分性,证明 )cos()]sin([00r k E k r k E 式中r 为矢径,k 、0E 为常矢量。 2、已知平面电磁波的电场强度j t z c E E )sin(0 ,求证此平面电磁波的 磁场强度为 i t z c c E B )sin(0 四、计算题(每题10分,共30分) 1、迅变场中,已知)(0t r k i e A A , ) (0t r k i e ,求电磁场的E 和B 。 2、一星球距地球5光年,它与地球保持相对静止,一个宇航员在一年

“电磁场理论”课程教学大纲

西安交通大学 “电磁场理论”课程教学大纲 英文名称:Theory of Electromagnetic Field 课程编码:PHYS2012 学时:64 学分:4 适用对象:电子科学与技术专业本科生 先修课程:普通物理,数理方程,矢量与张量分析 使用教材及参考书: 金泽松,《电磁场理论>>, 电子科技大学出版社, 1995 郭硕鸿,《电动力学》,高等教育出版社,1989 冯慈璋,《电磁场》高等教育出版社,1983 李承祖,《电动力学教程》(修订版),国防科技大学出版社,1997 一、课程性质、目的和任务 本课程是电子科学与技术系各专业本科生必修的一门工程基础课.通过本课程的学习,使学生熟悉电磁场的基本理论,掌握基本规律,加深对电磁场的性质和时空概念的理解,获得分析和处理一些电磁现象的方法和能力,为以后的专业课程学习打下基础。 二、教学基本要求 1. 了解电磁现象的普遍规律,掌握库仑定律、高斯定理、毕奥定律、电磁感应定律和麦克斯韦方程组, 熟悉电磁场的边值关系。 2. 了解静电场和稳恒电流磁场的性质,熟悉静电势和微分方程、磁矢势和微分方程,掌握求解静电场和磁场问题的常用分析方法。 3.掌握波动方程和亥姆霍兹方程,熟悉平面电磁波的性质, 掌握电磁波传播的规律。 4.了解时变电磁场的性质和势,掌握辐射电磁场的规律和计算方法。 5.了解狭义相对论和相对论电动力学,掌握电磁场量在不同参考系间的变化规律。了解带电粒子和电磁场的相互作用,掌握运动带电粒子的位和电磁场,了解加速运动带电粒子的辐射。 三、教学内容及要求 第一章:电磁现象的普遍规律 1.了解电荷和电场、电流和磁场。 2.掌握库仑定律、高斯定理、毕奥定律、电磁感应定律。 3.重点掌握麦克斯韦方程组和电磁场的边值关系。 4.了解介质的电磁性质。 5.掌握电磁场的能量和能流密度表示式,了解电磁能量的传输。

电动力学复习提纲

矢量分析 重点内容:三矢量的混合积、叉乘及顺序;nabla算符和梯度、散度、旋度的定义;nabla算符的微分特和矢量性;拉普拉斯算符;各种矢量公式的推导;梯度场和旋度场的重要性质。

电磁场的普遍规律 重点内容:电场磁场的定义,以及散度旋度性质的推导;位移电流;各种情况下的麦克斯韦方程组(必考);边界条件;电荷守恒定律;本构关系;能量守恒定律,能流密度,能量密度。

重点内容:静电场的散度旋度方程,和边界条件;静电势的泊松方程和拉普拉斯方程,及边界条件(分电介质和导体情况);唯一性定理所对应的两种边界条件;本征函数展开法的物理根据,和用此法求解电势(必考);镜像法求解电势(必考)。

重点内容:重点掌握概念和定义,如下。静磁场的散度旋度方程,和边界条件;矢势的泊松方程,及边界条件;磁标势的适用条件,方程和边界条件

电磁波传播 重点内容:从麦克斯韦方程组推导波动方程,以及波动方程的物理意义;如何从波动方程得到Helmholtz 方程(Helmholtz方程要配合??D=0和??B=0一起使用);电磁波在均匀的各向同性且无衰减介质中的色散关系;如何通过??D=0和??B=0(横波条件)得出电磁波是否为TE波和TM波;求得电场后,如何通过法拉第关系得到磁场H,以及电磁波的手性问题;介质的折射率和阻抗的定义;电磁波的偏振;斯涅尔定律的物理意义;从界面处切向波矢守恒的角度讨论全反射和倏逝波问题;菲涅耳公式中的TE(s波)和TM(p波)如何区分,以及界面处入射光反射和透射光的偏振示意图(菲涅耳公式不用记);Brewster角;导体的趋肤效应;完美金属边界条件;从驻波的角度得到谐振腔的本征振荡模式满足的条件,并理解其物理意义,以及从驻波条件得出谐振腔的所允许的最低振荡频率;从驻波的角度得到波导的本征传播模式满足的条件,并理解其物理意义,以及从驻波条件理解波导的最低截止频率及意义(即最低传播频率);波导内传播模式的偏振特点。(谐振腔和波导必考)

电动力学试题库一及答案

福建师范大学物理与光电信息科技学院 20___ - 20___ 学年度学期____ 级物理教育专业 《电动力学》试题(一) 试卷类别:闭卷 考试时间:120分钟 姓名______________________ 学号____________________ 一.判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分) 1.电磁场也是一种物质,因此它具有能量、动量,满足能量动量守恒定律。 ( ) 2.在静电情况,导体内无电荷分布,电荷只分布在表面上。 () 3.当光从光密介质中射入,那么在光密与光疏介质界面上就会产生全反射。

() 4.在相对论中,间隔2S在任何惯性系都是不变的,也就是说两事件时间先后关系保持不变。 () 5.电磁波若要在一个宽为a,高为b的无穷长矩形波导管中传播,其角 频率为 2 2 ? ? ? ? ? + ? ? ? ? ? ≥ b n a m με π ω () 二.简答题。(每题5分,共15分) 1.写出麦克斯韦方程组,由此分析电场与磁场是否对称为什么 2.在稳恒电流情况下,有没有磁场存在若有磁场存在,磁场满足什么方程 3.请画出相对论的时空结构图,说明类空与类时的区别.

三. 证明题。(共15分) 从没有电荷、电流分布的麦克斯韦方程出发,推导真空中的E 、B 的波动方程。 四. 综合题。(共55分) 1.内外半径分别为1r 和2r 的无穷长空心导体圆柱,沿轴向流有稳恒均 匀自由电流f j ,导体的磁导率为μ,求磁感应强度和磁化电流。(15分) 2. 有一个很大的电解槽中充满电导率为2σ的液体,使其中流着均匀 的电流f j ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和 面电荷分布。(分离变量法)(15分) 3. 有带电粒子沿z 轴作简谐振动t i e z z ω-=0,设c z <<ω0,求它的辐 射场E 、B 和能流S 。(13分) 4. 一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物 时,看见其避雷针跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线的两铁塔。求列车上观察者看到的两铁塔被电光照亮的时间差。该建筑

光学教学大纲

《光学》课程教学大纲(54学时) (理论课程) 一课程说明 (一)课程概况 课程中文名称:《光学》 课程英文名称:Optics 课程编码:3910252108 开课学院:理学院 适用专业/开课学期:物理学/第三学期 学分/周学时:3/3 《光学》是物理学本科专业的一门重要的专业必修基础课程,是普通物理学的一个重要组成部分,是研究光的本性、光的传播及光和物质的相互作用的基础学科,它和《原子物理学》、《电动力学》和《量子物理学》等后继课程有着密切联系。激光的出现和发展使光学的研究进入了一个崭新的阶段,更加扩大了光学在高科技领域、生产和国防上的应用。 先修课程:高等数学、电磁学 (二)课程目标 1. 牢固掌握有关光的传播及其本性,包括干涉、衍射、偏振等基本现象、原理和规律,为后继课程奠定必要的基础。并了解它们在科研、生产和实践上的应用。 2. 牢固掌握几何光学的基本概念、成像规律和作图方法。熟悉典型助视光学仪器的基本结构及原理。 3. 了解现代光学的发展概况以及现代光学的基本概念、原理,研究的方法、手段,培养学生学习的兴趣。 4. 培养学生的学习能力、科学探究能力和分析解决问题的能力,培养学生实事求是、勇于探究的科学精神和辩证唯物主义世界观。 (三)学时分配

二教学方法和手段 以启发式教学为主,利用多媒体辅助教学,同时开展课堂讨论、课外自学、学生课外查阅文献了解学科前沿,结合课程内容完成课程论文等多种形式教学。 三教学内容 第一章(含绪论)光的干涉(10学时) 一、教学目标 1.了解光学研究的内容和研究方法;知道光学发展历程; 2.理解相干叠加和非相干叠加的区别联系; 3.理解光的相干条件和光的干涉定义; 4.了解干涉条纹的可见度以及空间相干性和时间相干性对可见度的影响; 5.掌握光程差和相位差之间的关系; 6.掌握分波面干涉装置的干涉强度分布的基本规律,即干涉条纹的间距和干涉条纹 的形状; 7.掌握分振幅法等倾干涉条纹的条纹特征和光强分布及其应用; 8.掌握分振幅等厚干涉的条纹特征和光强分布及其应用; 9.掌握迈克尔孙干涉仪和法布里干涉仪的基本原理及其应用。 二、教学重、难点 重点:相干条件,以及分振幅和分波面干涉装置及干涉光强分布。 难点:薄膜干涉和多光束干涉。 三、主要内容 1.光学的研究内容和方法,光学发展史; 2.波动的独立性、叠加性和相干性; 3.光程和光程差,实现相干光束的方法; 4.半波损失; 5.等倾干涉和等厚干涉; 6.迈克耳孙干涉仪; 7.多光束干涉,法布里-珀罗干涉仪。 第二章光的衍射(8学时) 一、教学目标 1.了解光的衍射现象,并注意区分菲涅尔衍射和夫琅和费衍射; 2.理解衍射现象的理论基础-----惠更斯-菲涅尔原理;

电动力学复习题

电动力学复习题 填空题 1.电荷守恒定律的微分形式可写为0=??+??t J ρ 。 2.一般介质中的Maxwell 方程组的积分形式为???-=?S l S d B dt d l d E 、 ???+=?S f l S d D dt d I l d H 、f s Q S d D =?? 、?=?S S d B 0 。 3.在场分布是轴对称的情形下,拉普拉斯方程在球坐标中的通解为 ()().cos ,01θθψn n n n n n P r b r a r ∑∞ =+??? ? ? +=。 4.一般坐标系下平面电磁波的表示式是()() t x k i e E t x E ω-?= 0,。 5.在真空中,平面电磁波的电场振幅与磁场振幅的比值为光速C 。 6.引入了矢势和标势后,电场和磁场用矢势和标势表示的表达式为 ,A B A t E ??=??--?=和?. 7. 核能的利用,完全证实了相对论质能关系。 8.洛仑兹规范条件的四维形式是 0=??μ μx A 。 9.真空中的Maxwell 方程组的微分形式为t ??- =??、 ε ρ = E ??、0=B ??、t J ??+=B ??εμμ000。 10.引入磁矢势A 和标量势Φ下,在洛伦兹规范下,Φ满足的波动方程是 02 222 1ερ- =?Φ?-Φ?t c 。

11.电磁场势的规范变换为t A A A ??- ='→?+='→ψ???ψ 。 12.细导线上恒定电流激发磁场的毕奥-萨伐尔定律可写为()??=3r r l Id x B . 13.介质中的Maxwell 方程组的微分形式为 t B E ??-=?? 、 f D ρ =?? 、0=??B 、t D J H f ??+=?? 。 14.时谐电磁波的表达式是()()t i e x E t x E ω-= ,和()()t i e x B t x B ω-= ,。 15.在两介质界面上,电场的边值关系为()f D D n σ=-?12 和 ()01 2 =-?E E n . 16.库仑规范和洛伦兹规范的表达式分别为 0=??A 和012 =??+??t c A ? 。 17.狭义相对论的二个基本原理分别是狭义相对性原理和光速不变原理。 18.狭义相对论的质速关系是 2 2 1c v m m -= 。 19.真空中位移电流的表达式可写为t E J D ??= 0ε。 20.在场分布球对称的情形下,拉普拉斯方程在球坐标中的通解为().,?? ? ??+=r b a r θψ 21.满足变换关系νμνμV a V ='的物理量称为相对论四维矢量。 22.揭示静电场是保守力场的数学描述是?=?=??0,0l d E E 或者。 23.介质中的Maxwell 方程组的边值关系为()012=-?E E n 、()α =-?12H H n 、 ()σ=-?12D D n 、()012=-?B B n 。 24.介质的极化现象是当介质置于外电磁场中,分子中的电荷将发生相对位移,分

电动力学期末考试试卷及答案五

. . 20___ - 20___ 学年度 学期 ____ 级物理教育专业 《电动力学》试题(五) 试卷类别:闭卷 考试时间:120分钟 ______________________ 学号____________________ 一. 判断以下概念是否正确,对的打(√),错的打(×)(共15分,每 题3分) 1. 库仑力3 04r r Q Q F πε '=表明两电荷之间作用力是直接的超距作用,即电荷Q 把作用力直接施于电荷Q '上。 ( ) 2. 电磁场有能量、动量,在真空中它的传播速度是光速。 ( ) 3. 电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: t j ??=??/ρ 。 ( )

. . 4. 在介质的界面两侧,电场强度E 切向分量连续,而磁感应强度B 法向分 量 连续。 ( ) 5.在相对论中,粒子能量,动量以及静止质量的关系为: 4 2022c m c P W += 。 ( ) 二. 简答题(每题5分,共15分)。 1.如果0>??E ,请画出电力线方向图,并标明源电荷符号。 2.当你接受无线电讯号时,感到讯号大小与距离和方向有关,这是为什么? 3.以真空中平面波为例,说明动量密度g ,能流密度s 之间的关系。 三. 证明题(共15分)。

多普勒效应被广泛应用,请你利用洛伦兹变换证明运动光源辐射角频率 ω与它的静止角频率0ω的关系为:) cos 1(0 θγωωc v -= ,其中 122)/1(--=c v γ;v 为光源运动速度。(15分) 四. 综合题(共55分)。 1.半径为a 的无限长圆柱形导体,均匀通过电流I ,设导体的磁导率为μ,导体外为真空,求: (1)导体、外空间的B 、H ; (2)体磁化电流密度M j ;(15分)。 2.介电常数为ε的均匀介质中有均匀场强为0E ,求介质中球形空腔的电势 和电场(分离变量法)。(15分) 3.两频率和振幅均相等的单色平面电磁波沿z 轴方向传播,一个沿x 方向偏振,另一个沿y 方向偏振,且其相位比前者超前2 π 。求合成波的偏振。若 合成波代表电场矢量,求磁场矢量B 以及能流密度平均值S 。(15分)

数学物理方法 课程教学大纲

数学物理方法课程教学大纲 一、课程说明 (一)课程名称:数学物理方法 所属专业:物理、应用物理专业 课程性质:数学、物理学 学分:5 (二)课程简介、目标与任务 这门课主要讲授物理中常用的数学方法,主要内容包括线性空间和线性算符、复变函数、积分变换和δ-函数、数学物理方程和特殊函数等,适当介绍近年来的新发展、新应用。本门课程是物理系学生建立物理直观的数学基础,其中很多内容是为后续物理课程如量子力学、电动力学等服务,是其必需的数学基础。 这门课中的一些数学手段将在今后的基础研究和工程应用中发挥重要的作用,往往构成了相应领域的数学基础。一般来讲,因为同样的方程有同样的解,掌握和运用这些数学方法所体现的物理内容将更深入,更本质。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接 本课程以普通物理、高等数学和部分线性代数知识为基础,为后继的基础课程和专业课程研究有关的数学问题作准备,也为今后工作中遇到的数学物理问题求解提供基础。 (四)教材:《数学物理方法》杨孔庆编 参考书:1. 《数学物理方法》柯朗、希尔伯特著 2. 《特殊函数概论》王竹溪、郭敦仁编著 3. 《物理中的数学方法》李政道著 4. 《数学物理方法》梁昆淼编 5. 《数学物理方法》郭敦仁编 6. 《数学物理方法》吴崇试编 二、课程内容与安排 第一部分线性空间及线性算子 第一章R3空间的向量分析 第一节向量的概念 第二节R3空间的向量代数

第三节R3空间的向量分析 第四节R3空间的向量分析的一些重要公式 第二章R3空间曲线坐标系中的向量分析 第一节R3空间中的曲线坐标系 第二节曲线坐标系中的度量 第三节曲线坐标系中标量场梯度的表达式 第四节曲线坐标系中向量场散度的表达式 第五节曲线坐标系中向量场旋度的表达式 第六节曲线坐标系中Laplace(拉普拉斯)算符▽2的表达式第三章线性空间 第一节线性空间的定义 第二节线性空间的内积 第三节Hilbert(希尔伯特)空间 第四节线性算符 第五节线性算符的本征值和本征向量 第二部分复变函数 第四章复变函数的概念 第一节映射 第二节复数 第三节复变函数 第五章解析函数 第一节复变函数的导数 第二节复变函数的解析性 第三节复势 第四节解析函数变换 第六章复变函数积分 第一节复变函数的积分 第二节Cauchy(柯西)积分定理 第三节Cauchy(柯西)积分公式 第四节解析函数高阶导数的积分表达式 第七章复变函数的级数展开

电动力学复习题

第一章电磁现象的普遍规律 1. 根据算符?的微分性与向量性,推导下列公式: B A B A A B A B B A )()()()()(??+???+??+???=?? A A A A )()(2 1??-?=???A 解:(1))()()(c c A B B A B A ??+??=?? B A B A A B A B )()()()(??+???+??+???=c c c c B A B A A B A B )()()()(??+???+??+???= (2)在(1)中令B A =得: A A A A A A )(2)(2)(??+???=??, 所以A A A A A A )()()(21??-??=??? 即A A A A )()(221??-?=???A 11. 平行板电容器内有两层介质,它们的厚度分别为1l 和2l ,电容率为1ε和2ε,今在两板 接上电动势为E 的电池,求:(1)电容器两极板上的自由电荷面密度1f ω和2f ω; (2)介质分界面上的自由电荷面密度3f ω。(若介质是漏电的,电导率分别为1σ和2σ 当电流达到恒定时,上述两物体的结果如何?) 解:忽略边缘效应,平行板电容器内部场强方向垂直于极板,且介质中的场强分段均匀,分别设为1E 和2E ,电位移分别设为1D 和2D ,其方向均由正极板指向负极板。当介质不漏电时,介质内没有自由电荷,因此,介质分界面处自由电荷面密度为 03=f ω 取高斯柱面,使其一端在极板A 内,另一端在介质1内,由高斯定理得: 11f D ω= 同理,在极板B 内和介质2内作高斯柱面,由高斯定理得: 22f D ω-= 在介质1和介质2内作高斯柱面,由高斯定理得: 21D D = 所以有111εωf E =,2 1 2εωf E = 由于 E )(d 2 2111221111εεωεωεωl l l l l E f f f +=+=?=? 所以=-=21f f ωω E )( 2 2 1 1 εεl l + 当介质漏电时,重复上述步骤,可得: 11f D ω=, 22f D ω-=, 312f D D ω=- 213f f f ωωω--=∴ 介质1中电流密度 111111111//εωσεσσf ===D E J 介质2中电流密度 2312222222/)(/εωωσεσσf f +===D E J 由于电流恒定,21J J =, 2312111/)(/εωωσεωσf f f +=∴

电动力学教学大纲

电动力学教学大纲 课程编号: 060093 适用专业:物理学 学时数: 72 学分数: 4 1.课程类别:本课程是物理学专业的专业基础课程。 2.教学目的:通过电磁现象的普遍规律——麦克斯韦方程组及洛伦兹力公式的学习,掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解。通过应用麦克斯韦方程组研究静电场和静磁场的主要特征及电磁波的传播和辐射的基本性质,进一步掌握电磁学的基本理论,同时学习理论物理学处理问题解决问题的一些基本方法。获得本课程领域内分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础。通过狭义相对论及电磁场与带电粒子相互作用的学习,建立新的时空观念,并了解近代物理对高速和微观现象的一些处理方法。 3.学时分配:见下表 学时分配表

绪论和相关数学知识回顾 教学时数:8学时 重点难点:重点:梯度、散度、旋度,高斯定理、斯托克斯定理。难点:?算符的运算、?算符等微分算符在不同坐标系(柱坐标系、球坐标系)中的表示。教学要求:了解本课程的研究对象、学习目的、学习方法、学习要求;掌握数学基础:梯度、散度、旋度;高斯定理、斯托克斯定理。 教学内容: (1)电动力学课程的研究对象与主要内容 (2)矢量代数 (3)场的概念和标量场的梯度 (4)高斯定理与矢量场的散度 (5)斯托克斯公式与矢量场的旋度 (6)常用的运算公式 (7)有关矢量场的一些定理 (8)“三度”在各种坐标系中的表示式 第一章电磁现象的普遍规律 教学时数:12学时 重点难点:重点:麦克斯韦方程组,电磁场的能量和边值关系。难点:麦克斯韦方程组及其边值关系。 教学要求:掌握高斯定理和电场的散度及旋度。掌握毕奥--萨伐尔定律及磁场的环量和旋度、磁场的散度。了解磁场的旋度和散度公式的证明。理解位移电流。掌握麦克斯韦方程组,电磁场的能量和边值关系。

电动力学习题集答案

电动力学第一章习题及其答案 1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普 适常数)中的_ C ___选项成立时,则必有高斯定律不成立. 2. 若 a 为常矢量 , r (x x ')i ( y y ')j (z z ')k 为从源点指向场点的矢量 , E , k 为常矢量,则 ! (r 2 a ) =(r 2 a ) (r a 2r a , )a ) ddrr r a 2r r r 2 r i j — k (x x ') (y y ') (z z ') i j k — ! 2(x x ') (x x ') ,同理, ? x (x x ') 2 (y y ') 2 (z z ') 2 / r 2 (x x ')(y y ')(z z ') (y y ') (x x ') ( (y y ') 2 (z z ') y (x x ') 2 (y y ') 2 (z z ') # 2 , z 2 2 (z z ') r 【 r e e e x x x ! r (x-x') r (y-y') y (z-z') 3 z , ' x y z x x ' y y ' z z ' 0, x (a r ) a ( r ) 0 , : ) r r r r r r r 0 r rr ( r 1 1 r 《 a , , ( ) [ a (x -x' )] [ a (y - y')] … j [a (z -z')] a r i k x y z * r r r r 1 r 1 r … r 3 r 2 3 r , ( A ) __0___. r r , [E sin(k r )] k E 0 cos(k r ) __0__. (E 0e ik r ) , 当 r 0 时 , ! (r / r ) ik E 0 exp(ik r ) , [rf (r )] _0_. [ r f ( r )] 3f (r )r # s 3. 矢量场 f 的唯一性定理是说:在以 为界面的区域V 内, 若已知矢量场在V 内各点的旋度和散 度,以及该矢量在边界上的切向或法向分量,则 在 内唯一确定. f V 0 ,若 J 为稳恒电流情况下的电流密度 ,则 J 满足 4. 电荷守恒定律的微分形式为 — J t J 0 . 5. 场强与电势梯度的关系式为, E .对电偶极子而言 ,如已知其在远处的电势为

相关文档
相关文档 最新文档