文档库 最新最全的文档下载
当前位置:文档库 › 计算延伸率

计算延伸率

计算延伸率
计算延伸率

有明显屈服点钢筋的强度和变形

◆应力-应变(σ-ε)关系曲线

图2-2 有物理屈服点钢筋的应力-应变关系

※点以前,σ与ε成比例,即σ =ε,为弹性模量,点应力称为比例极限;

※点过后,σ与ε不再成比例,但仍为弹性变形;a点以后为非弹性,a点称为弹性极限;

※达到b点时,ε出现塑性流动现象,b点位置与加载速度、断面形式、表面光洁度等因素有关,称为屈服上限;

※降至c点后,σ不增加而ε急剧增加,σ-ε关系接近水平,直至d点,c点称为屈服下限,cd段称为屈服台阶;

※d点以后,σ随ε的增加而继续增加,至e点σ达最大值,e点对应的σ称为钢筋的极限强度,de段称为强化段;

※e点以后,试件的薄弱位置将产生颈缩现象,变形迅速增加,断面缩小,应力降低,直至f点拉断。

◆反映钢筋力学性能的基本指标

——屈服强度、延伸率和强屈比

※屈服强度是钢筋强度的设计依据,钢筋屈服后将产生很大的塑性变形。一般取屈服下限作为屈服强度。

※延伸率是反映钢筋塑性性能的指标,指钢筋拉断时(f点)对应的应变,按下式确定:

(2-1)

式中

——试件拉伸前量测标距的长度,一般取5d或10d

l——拉断时量测标距的长度,量测标距包括颈缩区

延伸率指标存在的缺陷

不同量测标距长度得到结果不一致;

仅考虑到颈缩断口区域的残余应变。

※均匀延伸率——最大力作用下的总伸长率,包括残余应变和弹性应变,反映了钢筋真实的变形能力(见图2-4)。

图2-4 均匀延伸率

※强屈比——钢筋极限强度与屈服强度的比值,反映了钢筋的强度储备。通常热轧钢筋的强屈比约为1.4~1.6。

◆《规范》理想弹塑性应力-应变(σ-ε)关系

实际计算分析中,一般采用双线性的理想弹塑性关系(见图2-3),即

(2-2)

式中

——钢筋的弹性模量;

——钢筋的屈服应变,=/。

图2-3钢筋的理想弹塑性应

力-应变关系

年均增长率

年均增长率=每年的增长率之和/年数,年均增长率其实是为了计算方便,而人为设定的几年在一起计算的平均增长率。这里就排除了个别年的特别情况,在较详细的财务计算中应该是不用平均增长率的。 n 年数据的增长率=【(本期/前n 年)^{1/(n-1)}-1】×100% 本期/前N 年 应该是本年年末/前N 年年末,其中,前N 年年末是指不包括本年的倒数第N 年年末,比如,计算2005年底4年资产增长率,计算期间应该是2005、2004、2003、2002四年,但前4年年末应该是2001年年末。括号计算的是N 年的综合增长指数,并不是增长率。 ^{1/(n-1)} 是对括号内的N 年资产总增长指数开方,也就是指数平均化。因为括号内的值包含了N 年的累计增长,相当于复利计算,因此要开方平均化。应该注意的是,开方数应该是N ,而不是N-1,除非前N 年年末改为前N 年年初数。总之开方数必须同括号内综合增长指数所对应的期间数相符。而具体如何定义公式可以随使用者的理解。 [( )^1/(n-1)]-1 减去1是因为括号内计算的综合增长指数包含了基期的1,开方以后就是每年的平均增长指数,仍然大于1,而我们需要的是年均增长率,也就是只对增量部分实施考察,因此必须除去基期的1,因此要减去1. 实例 某市2001年第三产业产值为991.04亿元,2004年为1762.5亿元,问2001-2004年的年均增长率? 解1:(1762.5/991.04-1)/3=25.9% 这种解法很明显是错误的,每一年的增长率是在前一年的基础上计算的,也就是说这种解法中2004年的增长率误计算为是再2001年的基础上算的,不要把问题简单化 解2:(1762.5/991.04)^1/3-1=21.1% 解法2是正确的,符合定义的公式!!!年均增长率=报告期/基期^1/N-1,其中:1/N 为开N 次方,N 为报告期与基期间隔的年限 增长量=报告期水平-基期水平 采用的基期不同分为 1. 累计增长量 表示为,01y y -1312,,----n n y y y y y y 2. 逐期增长量 表示为,01y y -11312,,y y y y y y n --- 发展速度=报告期水平/基期水平*100% 采用的基期不同分为 1.环比发展速度 表示为11201/,,/,/-n n y y y y y y 2.定基发展速度 表示为0 y y n

2021年转动惯量计算折算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:341032-??= g L rD J π ) (1078.0264s cm kgf L D ???- M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2.丝杠折算到马达轴上的转动惯量: 2i Js J =(kgf· cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22 ? ?? ???=n v J π g w 2s 2 ? ?? ??=π(kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g=980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 1 22 22 1????? ???????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量 (kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速(r/min); 当n=n max 时,计算M amax n=n t 时,计算M at n t —切削时的转速(r/min)

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

CEMS数据折算计算公式

Cems环保数据折算公式 流速 Vs = Kv * Vp 其中 Vs 为折算流速 Kv为速度场系数 Vp 为测量流速 粉尘 1 粉尘干基值 DustG = Dust / ( 1 – Xsw / 100 ) 其中 DustG 为粉尘干基值 Dust 为实测的粉尘浓度值 Xsw 为湿度 2 粉尘折算 DustZ = DustG * Coef 其中 DustZ 为折算的粉尘浓度值 DustG 为粉尘干基值 Coef 为折算系数,它的计算方式如下: Coef = 21 / ( 21 - O2 ) / Alphas 其中 O2 为实测的氧气体积百分比。 Alphas 为过量空气系数(燃煤锅炉小于等于折算系数为; 燃煤锅炉大于折算系数为; 燃气、燃油锅炉折算系数为 3粉尘排放率 DustP = DustG * Qs / 1000000 其中 DustP 为粉尘排放率 Dust 为粉尘干基值 Qs 为湿烟气流量,它的计算方式如下: Qs = 3600 * F * Vs 其中 Qs 为湿烟气流量 F 为测量断面面积 Vs 为折算流速 SO2 1 SO2干基值 SO2G = SO2 / ( 1 – Xsw / 100 ) 其中

SO2 为实测SO2浓度值 Xsw 为湿度 2 SO2折算 SO2Z = SO2G * Coef 其中 SO2Z 为 SO2折算率 SO2G 为SO2干基值 Coef 为折算系数,具体见粉尘折算 3 SO2排放率 SO2P = SO2G * Qsn / 1000000 其中 SO2P 为SO2排放率 SO2G 为SO2干基值 Qsn 为干烟气流量,它的计算方式如下: Qsn = Qs * 273 / ( 273 + Ts ) * ( Ba + Ps ) / 101325 * ( 1 – Xsw / 100 )其中 Qs 为湿烟气流量 Ts 为实测温度 Ba 为大气压力 Ps 为烟气压力 Xsw 为湿度 NO 1 NO干基值 NOG = NO / ( 1 – Xsw / 100 ) 其中 NOG 为NO干基值 NO 为实测NO浓度值 Xsw 为湿度 2 NO折算 NOZ = NOG * Coef 其中 NOZ 为 NO折算率 NOG 为NO干基值 Coef 为折算系数,具体见粉尘折算 3 NO排放率 NOP = NOG * Qsn / 1000000 其中 NOP 为NO排放率

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。

实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的

折算标准煤的计算方法如下

折算标准煤的计算方法如下(以电耗为例): (折算标准煤系数)×(电耗用数)=(耗用标准煤数量) 对于电耗,折算标准煤系数为0.429 即270万度,折合成标准煤量115.83万公斤,即1158.3吨 各类能源折算标准煤的参考系数 品种折标准煤系数 原煤0.7143千克标准煤/千克 洗精煤0.9000千克标准煤/千克 洗中煤0.2857千克标准煤/千克 煤泥0.2857-0.4286千克标准煤/千克 焦炭0.9714千克标准煤/千克 原油 1.4286千克标准煤/千克 汽油 1.4714千克标准煤/千克 煤油 1.4714千克标准煤/千克 柴油 1.4571千克标准煤/千克 燃料油 1.4286千克标准煤/千克 液化石油气油 1.7143千克标准煤/千克 炼厂干气 1.5714千克标准煤/立方米 油田天然气 1.3300千克标准煤/立方米 气田天然气 1.2143千克标准煤/立方米 煤田天然气(即煤矿瓦斯气) 0.5000-0.5174千克标准煤/立方米 焦炉煤气0.5714-0.6143千克标准煤/立方米 其他煤气 (1)发生炉煤气0.1786千克标准煤/立方米 (2)重油催化裂解煤气0.6571千克标准煤/立方米 (3)重油热裂煤气 1.2143千克标准煤/立方米 (4)焦炭制气0.5571千克标准煤/立方米 (5)压力气化煤气0.5143千克标准煤/立方米 (6)水煤气0.3571千克标准煤/立方米) 电力(等价0.4040千克标准煤/千瓦小时(用于计算最终消费) 电力(当量) 0.1229千克标准煤/千瓦小时(用于计算火力发电) 热力(当量) 0.03412千克标准煤/百万焦耳 (0.14286千克标准煤/1000千卡) 能源折标准煤系数=某种能源实际热值(千卡/千克)/7000(千卡/千克) 在各种能源折算标准煤之前,首先直测算各种能源的实际平均热值,再折算标准煤。平均热值也称平均发热量.是指不同种类或品种的能源实测发热量的加权平均值。计算公式为:平均热值(千卡/千克)=[∑(某种能源实测低发热量)×该能源数量]/能源总量(吨)

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于0.12W/(m·K)的材料称为保温材料),而把导热系数在0.05瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有0.03w/m.k,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

财务数据增长率的计算方法

基期为负数时的增长率计算 此公式应用广泛,基本应用于所有比例类数据的计算,如:工资总额、人均工资、利润人力等增长率的计算应用。这个计算有其不足,无法体现统计期间的波动,即假如:2008年100万,2009年250万,2010年100万,其计算增长率为零。 如果要体现波动,建议还是用逐年比率波动来表达。 一、利润增长率计算 应用于逐年利润增长率计算 1、当基期数据为正数时,公式:利润增长率=(报告期水平/基期水平-1)*100%,应用于企业非亏损状态。 2、当基期数据为负数时,公式:亏损增长率=[1-(报告期水平/基期水 平)]*100%,应用于企业亏损状态或亏转盈状态。 举例1: 说明基期报告期增长率公式套用 年度2003 2004 利润1 1000 1200 20% =(1200/1000-1)*100% 利润2 1000 -500 -150% =(-500/1000-1)*100% 举例2: 说明基期报告期增长率公式套用 年度2003 2004 利润1 -1000 -500 50% =[1-(-500/-1000)]*100% 利润2 -1000 25 102.5% =[1-(25/-1000)]*100%

二、年均利润增长率的计算 应用于连续几年平均利润增长率计算,注意了,年均增长率不是单纯的各年增长率平均值也不是总增长率除年数,而是有公式计算的。 基本公式:利润增长率=[(报告期/基期)^(1/n)-1]×100% ,n=年数,这是个可以copy至excel使用。 公式解读:报告期/基期为期间总增长率,报告期与基期跨越年份数进行开方,如7年则开7次方,7年资产总增长指数开方(指数平均化),再-1计算其实际年均增长率。 1、当基期数据为正数时,n年数据的利润增长率=[(报告期/基期) ^(1/n)-1]×100% 2、当基期数据为负数时,n年数据的亏损增长率=[1-(报告期/基 数)]^(1/n)]×100% 说明基期报告期n 增长率公式套用 年度2003 2010 7 利润1 1000 2000 7 10% =[(2000/1000)^(1/7)-1]×100% 利润2 1000 -500 7 -191% =[(-500/1000)^(1/7)-1]×100% 举例2: 说明基期报告期n 增长率公式套用 年度2003 2010 7 利润1 -1000 -100 7 99% =[1-(-100/-1000)]^(1/7)]×100% 利润2 -1000 1000 7 110% =[1-(1000/-1000)]^(1/7)]×100% 另外要注意的是年数。有的说2003年到2010年应该是8年,其他我们说的

热传导计算

热传导计算 随着微电子技术的飞速发展,芯片的尺寸越来越小,同时运算速度越来越快,发热量也就越来越大,如英特尔处理器3.6G 奔腾4终极版运行时产生的热量最大可达115W ,这就对芯片的散热提出更高的要求。设计人员就必须采用先进的散热工艺和性能优异的散热材料来有效的带走热量,保证芯片在所能承受的最高温度以内正常工作。 如图 1所示,目前比较常用的一种散热方式是使用散热器,用导热材料和工具将散热器安装于芯片上面,从而将芯片产生的热量迅速排除。本文介绍了根据散热器规格、芯片功率、环境温度等数据,通过热传导计算来求得芯片工作温度的方法。 芯片的散热过程 由于散热器底面与芯片表面之间会存在很多沟壑或空隙,其中都是空气。由于空气是热的不良导体,所以空气间隙会严重影响散热效率,使散热器的性能大打折扣,甚至无法发挥作用。为了减小芯片和散热器之间的空隙,增大接触面积,必须使用导热性能好的导热材料来填充,如导热胶带、导热垫片、导热硅酯、导热黏合剂、相转变材料等。如图2所示,芯片发出的热量通过导热材料传递给散热器,再通过风扇的高速转动将绝大部分热量通过对流(强制对流和自然对流)的方式带走到周围的空气中,强制将热量排除,这样就形成了从芯片,然后通过散热器和导热材料,到周围空气的散热通路。 表征热传导过程的物理量

在图3的导热模型中,达到热平衡后,热传导遵循傅立叶传热定律: Q="K"·A·(T1-T2)/L (1) 式中:Q为传导热量(W);K为导热系数(W/m℃);A 为传热面积(m2);L为导热长度(m)。(T1-T2)为温度差。 热阻R表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: R=(T1-T2)/Q=L/K·A (2) 对于单一均质材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其导热面积与接触表面间的接触热阻的乘积,表示如下: Z=(T1-T2)/(Q/A)=R·A (3) 表面平整度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件。导热系数指物体在单位长度上产生1℃的温度差时所需要的热功率,是衡量固体热传导效率的固有参数,与材料的外在形态和热传导过程无关,而热阻和热阻抗是衡量过程传热能力的物理量。 芯片工作温度的计算 如图4的热传导过程中,总热阻R为: R="R1"+R2+R3 (4) 式中:R1为芯片的热阻;R2为导热材料的热阻;R3为散热器的热阻。导热材料的热阻R2为: R2=Z/A (5) 式中:Z为导热材料的热阻抗,A为传热面积。芯片的工作温度T2为: T2=T1+P×R (6)

增长率计算

* 资料分析之增长率解题技巧 计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。 两年混合增长率公式: 如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为: r1+r2+r1× r2 增长率化除为乘近似公式: 如果第二期的值为A,增长率为r,则第一期的值A′:A′=A/1+r≈A×(1-r) (实际上左式略大于右式,r越小,则误差越小,误差量级为r2) 平均增长率近似公式: 如果N年间的增长率分别为r1、r2、r3……r n,则平均增长率:r≈r1+r2+r3+……r n/n (实际上左式略小于右式,增长率越接近,误差越小) 求平均增长率时特别注意问题的表述方式,例如: 1.“从2004年到2007年的平均增长率”一般表示不包括2004年的增长率; 2.“2004、2005、2006、2007年的平均增长率”一般表示包括2004年的增长率。 “分子分母同时扩大/缩小型分数”变化趋势判定: 1.A/B中若A与B同时扩大,则①若A增长率大,则A/B扩大②若B增长率大,则A/B缩小;A/B中若A与B同时缩小,则①若A减少得快,则A/ B缩小②若B减少得快,则A/B扩大。 2.A/A+B中若A与B同时扩大,则①若A增长率大,则A/A+B扩大②若B增长率大,则A/A+B缩小;A/A+B中若A与B同时缩小,则①若A减少得快,则A/A+B缩小②若B减少得快,则A/A+B扩大。 多部分平均增长率: 如果量A与量B构成总量“A+B”,量A增长率为a,量B增长率为b,量“A+B”的增长率为r,则A/B=r-b/a-r,一般用“十字交叉法”来简单计算: A:a r-b A r = B:b a-r B 注意几点问题: 1.r一定是介于a、b之间的,“十字交叉”相减的时候,一个r在前,另一个r在后; 2.算出来的A/B=r-b/a-r是未增长之前的比例,如果要计算增长之后的比例,应该在这个比例上再乘以各自的增长率,即A′/B′=(r-b)×(1+a)/(a-r)×(1+b)。 等速率增长结论:

各种能源折算标准

《各种能源的标准折算》 一、标准油与标准煤 标准油(又称油当量)是指按照标准油的热当量值计算各种能源量时所用的综合换算指标。与标准煤相类似,到目前为止,国际上还没有公认的油当量标准。中国采用的油当量(标准油)热值为: (10000kcal/kg) 常用单位: 标准油(toe)和桶标准油(boe)。 标准煤(又称煤当量): 是指按照标准煤的热当量值计算各种能源时所用的综合换算指标。国家标准GB 2589—1990《综合能耗计算通则》规定,收到基低位发热量等于(兆焦)的燃料,称为1kg(千克)标准煤。 在统计计算中可采用t(吨)标准煤做单位,用符号表示为tce。 二、标准煤和标准油折算方法 要计算某种能源折算成标准煤或标准油的数量,首先要计算该种能源的折算系数,能源折算系数可由下式求得:

能源折算系数=能源实际含热值/标准燃料热值 然后再根据该折算系数,将具有一定实物量的该种能源折算成标准燃料的数量。其计算公式如下: 能源标准燃料数量=能源实物量×能源折算系数下面仅以标准煤折算方法为例加以说明,能源标准煤折算系数(折标煤系数)要分别采取当量计算和等价计算两种方法。 (1)燃料能源的当量计算方法。即以燃料能源的应用基低位发热量为计算依据。例如,我国原煤1kg的平均低位发热量为20910kJ(5000kcal),则:原煤的折标煤系数=20910÷= 如果某企业消耗了1万t原煤,折合为标准煤即为: 10000×=7143(tce) (2)二次能源及耗能工质的等价计算方法,即以等价热值为计算依据。例如,2007年我国电的等价热值为(kW·h)。 如果某企业消耗了1万kW·h的电,折合为标准煤即为: 10000× =3500 kgce= 三、能源折算系数

CEMS污染物、颗粒物、流量的计算和折算公式

CEMS污染物、颗粒物、流量的计算和折算公式1、烟气流量的计算公式: - V S= K V﹡- V P Q Sn干=3600﹡F﹡-V S﹡273﹡(B a+P S)﹡(1-X SW)/(273+t S)/101325 Q Sn----标态干基流量,单位Nm3/h F----烟道截面积,单位m2(π﹡r2) - V S----湿态平均流速,单位m/s Q S----工况湿态流量,单位m3/h B a----大气压力,单位Pa P S----烟气静压,单位Pa(压力的测量值) X SW----烟气湿度,单位%(湿度的测量值) t S----烟气温度,单位℃(温度的测量值) K V----速度场系数,一般取1.1~1.2 - V P----cems测得流速,单位m/s(流量测量值) 2、颗粒物的折算计算公式: C S干=C湿/(1-X SW) C Sn干= C S干﹡(273+t S)﹡101325 /273/(B a+P S) C折= C Sn干﹡(21-C O2S)/ (21-C VO2干) C折----折算成实际的污染物排放浓度,单位mg/Nm3 C Sn干----标态干基颗粒物,单位mg/Nm3 C S干----工况干基颗粒物,单位mg/m3 C湿----工况湿基颗粒物,单位mg/m3

X SW----烟气湿度,单位%(湿度的测量值) B a----大气压力,单位Pa P S----烟气静压,单位Pa(压力的测量值) t S----烟气温度,单位℃(温度的测量值) C O2S----行业内氧气基准值,单位%(火电厂6%,垃圾焚烧11%,钢铁烧结机16%) C VO2干----烟气中含氧量干基体积浓度,单位%(氧气的测量值) 3、气态污染物的折算计算公式:(SO2、HCL、HF、NO﹡、CO、) C S干=C湿/(1-X SW) C Sn干= C S干﹡(273+t S)﹡101325 /273/(B a+P S) C折= C Sn干﹡(21-C O2S)/ (21-C VO2干) C折----折算成实际的污染物排放浓度,单位mg/Nm3 C Sn干----标态干基污染物,单位mg/Nm3 C S干----工况干基污染物,单位mg/m3 C湿----工况湿基污染物,单位mg/m3 X SW----烟气湿度,单位%(湿度的测量值) B a----大气压力,单位Pa P S----烟气静压,单位Pa(压力的测量值) t S----烟气温度,单位℃(温度的测量值) C O2S----行业内氧气基准值,单位%(火电厂6%,垃圾焚烧11%,钢铁烧结机16%) C VO2干----烟气中含氧量干基体积浓度,单位%(氧气的测量值)

如何用计算器或Excel计算年均增长率

如何用计算器或Excel计算年均增长率? 如何用计算器或Excel计算年均增长 率?

【程阳解答】如何用计算器或Excel计算多年平均增长率? 【问】 程老师,我不是学数学的,冒昧问问,这11.7%的平均增长率是怎么算出来的?我算的怎么不对?我算的是76%!谢谢指教! (534-24)/24=21.25=2125%(28年总增长率) 2125/28(年)=75.9% 说明:问题来自程阳的新浪博客博文“程阳:1980-2008年全美彩票销售”[查看]的评论,博文中提到,1980年全美彩票销售24亿元,2008年为534亿元,年平均增长率为11.7%。

【答】 其实,这和你是不是学数学的没有关系,这只是初中的知识。 遗憾的是,很多理工科毕业的,多年不用,也会犯懵。 加上中国彩票从业者,众所周知的人员构成,我们就按“通俗易懂”来展开吧——一、基本推导(看不懂可以跳过) 假设第一年销售为A,第N年销售为B,平均年增长率为X,那么 B=A×(1+X)N-1 B/A=(1+X)N-1 ㏑(B/A)=(N-1)㏑(1+X) (1+X)=e(㏑(B/A))/(N-1) X=e(㏑(B/A))/(N-1)-1 = (B/A)1/(N-1)-1 二、计算器计算(会按计算器就行) 用计算器计算增长率,首先要知道计算㏑(Y)和e Y,假设Y=7如下图所示: ㏑(7)=1.9459

e7=1096.6631 X=e(㏑(B/A))/(N-1)-1 A=24 B=534 N=29

把三个数据代入公式,用计算器计算可以得到 X=0.1171=11.7% 归纳为一句话,"两年值相除㏑,再除年数e,最后减1" 另一种角度,可以用计算器的 x y函数(x^y)直接计算 x=B/A=22.25 y=1/(N-1)=1/28=0.03571 X =x y-1=22.250.03571-1=0.1171 =11.7% 但是,前面的方法不用二次计算填数,不用MS暂存也可以一气呵成! 三、Excel计算(照着做就行) Excel中,有一个Power(Q,M)函数,也是计算x y的 例如,210=1024,代入Power(2,10)=1024

小学一年级人民币换算计算方法

人民币换算计算方法 很多家长朋友都会困惑在家辅导孩子人民币学习的方法,小编今天和大家一起分享一下。 首先大家一定要清楚一点再辅导孩子:您面对的是年龄不足十岁的小宝贝,他们的生活经历不是很丰富,理解力上远远不及我们成年人,对于人民币的接触实在是太少了! 因此对于什么换算的大道理请大家别白费了,孩子学起来不理解很吃力,咱们教的也上火不见效果。换种语言和方式也可以达到我们的效果。 一、对于单一单位的换算 对于单一的单位换算我们利用了一句小儿歌来教给学生。 “大变小,长尾巴,加一个0就好啦;小变大,去尾巴,把0去掉就长大!”(小单位变大单位的时候让孩子们联想小蝌蚪变成青蛙的样子,大单位变成小单位的时候让孩子们联想青蛙生小蝌蚪的样子) 如:7元=()角,从元变成角是大单位变成小单位,就是“长尾巴”,在7的后面加一个0就可以了。 30分=()角,是从小单位变成大单位,去掉尾巴0就可以了!如果出现跨级换算的时候,就是分换算成元,或者元换算成分,那就去掉或者加上2个0就可以了! 二、对于两个单位转换成一个单位和一个单位转换成两个单位 其实很简单,只要孩子们记得住哪个单位大,哪个单位小,谁和谁相邻就可以了。(简单说就是爷爷、爸爸、孩子的关系就好) 在一个单位的两位数中间加上比自己大的相邻单位,或者去掉两个单位中间的大单位就可以了。 如:1元3角=()角,两个单位变成一个单位,把两个单位中的大单位“元”去掉就实现了换算了。 28分=()角()分,一个单位变成两个单位,就把两位数拆开十位放在大单位里,个位放在小单位里就好了。或者说在2和8中间添上分的相邻大单位“角”就可以了。 三、对于人民币的简单运算 用双手配合进行简单的分解运算。“元加减元,角加减角,分加减分” 如:3元5角+4元3角=()元()角,用两只手指头按住相同单位的数字进行运算。3元+4元=7元,5角+3角=8角,因此答案就是7元8角。减法亦如此! 如果出现了缺单位的情况,如:7角6分+2角=()元()角,第二个加数上就缺少单位“分”。这时只要告诉孩子们把6分直接写上就好了,因为6分没有被加减所以没有变化,直接写到最后的结果里就好了。

热传导率

热传导率 材料直接传导热量的能力称为热传导率,或称热导率(Thermal Conductivity)。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的热量。热导率的单位为瓦每米每开尔文((W/m.K))。保温系数是指能反映一种媒介传到热系数的倒数,既导热系数的倒数。 导热系数为在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度(W/m·K,此处的K可用℃代替)。 目录 编辑本段概念 材料直接传导热量的能力称为热传导率,或称热导率(Thermal Conductivity)。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的热量。热导率的单位为瓦每米每开尔文((W/m.K))。 热传导率的单位有W/m·k和W/m·℃的两种表示方法,差别在温度的单位,用k是对应热力学温度(或者开尔文温度)(用K表示),用摄氏度就用℃表示。因为温度升高或降低的度数对于以热力学温度和摄氏温度为单位的温度的变化数值是一致的。 编辑本段详细解说 材料直接传导热量 的能力称为热传导率,或称热导率。热导率定义为单位截面、长度的材料在单位温差下和单位时间内直接传导的热量。温度升高快慢还要看物质的热容大小。 总热容:同样热传导率,升温可能快,也可能慢。 比如铜的热传导率大,大铜块热容大,局部加热铜的大部件温度升高就慢。

同样是铜,如果用作电烙铁头,烙铁头小,热容量也小,就很快加热了 比热容:热传导率大升温反而慢的例子。 水和油比,水的热传导率比油大,但比热容也比油大,所以烧热一水壶水,比烧热同样体积的一水壶油就要花更长的时间。或者说水壶的温度没有油壶里的温度升的快。

如何用计算器或EXCEL计算年均增长率

如何用计算器或E X C E L 计算年均增长率 Last revision date: 13 December 2020.

如何用计算器或Excel计算年均增长率 如何用计算器或Excel计算年均增长率

【程阳解答】如何用计算器或Excel计算多年平均增长率 【问】 程老师,我不是学数学的,冒昧问问,这%的平均增长率是怎么算出来的我算的怎么不对我算的是76%!谢谢指教! (534-24)/24==2125%(28年总增长率) 2125/28(年)=% 说明:问题来自程阳的新浪博客博文“”的评论,博文中提到,1980年全美彩票销售24亿元,2008年为534亿元,年平均增长率为%。

【答】 其实,这和你是不是学数学的没有关系,这只是初中的知识。 遗憾的是,很多理工科毕业的,多年不用,也会犯懵。 加上中国彩票从业者,众所周知的人员构成,我们就按“通俗易懂”来展开吧—— 一、基本推导(看不懂可以跳过) 假设第一年销售为A,第N年销售为B,平均年增长率为X,那么 B =A×(1+X)N-1 B/A = (1+X)N-1 ㏑(B/A)= (N-1)㏑(1+X) (1+X) = e(㏑(B/A))/(N-1) X = e(㏑(B/A))/(N-1)-1 = (B/A)1/(N-1)-1 二、计算器计算(会按计算器就行) 用计算器计算增长率,首先要知道计算㏑(Y)和e Y,假设Y=7如下图所示: ㏑(7)= ?

e7= X = e(㏑(B/A))/(N-1)-1 A=24 B=534 N=29 把三个数据代入公式,用计算器计算可以得到

转动惯量计算折算公式

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 4 . 对于钢材:J rD -L 10^ 32g 0.78D 4 L 10-6 (kgf cm s 2 ) 2. 丝杠折算到马达轴上的转动惯量: J s -丝杠转动惯量(kgf cm s 2); i-降速比,,乞 Z 1 v-工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s ; s-丝杠螺距(cm) 2.丝杠传动时传动系统折算到驱轴上的总转动惯量: 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 J t 1 L w 丿; 2 2 (kgf cm s ) i _W — F J # J S J 1-齿轮Z 1及其轴的转动惯量; J 2-齿轮Z 2的转动惯量(kgf cms 2); 2 J s -丝杠转动惯量(kgf cm s ); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). W R 2 2 (kgf cm s) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 Js 72" i 2 (kgf cm s) 3. 工作台折算到丝杠上的转动惯量 Z 1

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 J i , J 2-分别为I 轴, 2 II 轴上齿轮的转动惯量(kgf cms ); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 ⑴快速空载时所需力矩: M = M amax M f M 0 (2) 最大切削负载时所需力矩: M = M a t M f M 0 M t (3) 快速进给时所需力矩: M =M f M 0 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf m); M f —折算到马达轴上的摩擦力矩(kgf m); M o —由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩 (kgf m); M at —切削时折算到马达轴上的加速力矩(kgf m); M t —折算到马达轴上的切削负载力矩(kgf m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M o 、M t 的计算公式如下: ⑷加速力矩: 17 J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速(r/mi n ); 当n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速(r / min ) J t W 2 J 2 R g J r n 9.6T 10’ (kgf m) i —J i

热传导计算

第二节热传导 本节主要讨论以下三个问题: 1 热传导热流产生的原因及热流的方向; 2 热传导热流的大小; 3 平壁及圆筒壁稳定热传导的计算。 4-4 傅立叶定律 一、温度场和等温面 温度场某一时刻物体内各点温度分布的总和。 物体的温度分布是空间和时间的函数,即t=f(x、y、z、θ) t—温度; x、y、z—空间坐标; θ—时间。 对于一维场的温度分布表达式为:t=f(x、θ) 稳定温度场:温度场中各点温度不随时间而改变,称该温度场为稳定温度场。 不稳定温度场:温度场内各点温度随时间而改变,称该温度场为不稳定温度场。 等温面:温度场中,同一时刻相同温度的各点组成的面称为等温面。不同等温面彼此不能相交。 二、温度梯度 相邻两等温面的温度差Δt与两面间的法向距离Δx之比的极限称为温度梯度,即 温度梯度是向量,规定其以温度增加的方向为正。与热量传递方向相反。 对稳定的一维温度场,温度梯度可表示为d t/d x。 三、傅立叶定律

单位时间内传导的热量与温度梯度及垂直于热流方向的截面积成正比,即 x t dA dQ ??-=λ Q —单位时间传导的热量,简称传热速率,W ; A —导热面积,即垂直于热流方向的表面积,m 2; λ—比例系数,称为物质的导热系数,W/(m 2·K)(或W/(m 2·℃)。式中的负号是指热流方向和温度梯度方向相反,即热量从高温向低温传递。 傅立叶定律是热传导的基本定律。 4-5 导热系数 导热系数在数值上等于单位导热面积、单位温度梯度、在单位时间内传导的热量,故导热系数是表征物质导热能力的一个参数,为物质的物理性质之一。 物质的导热系数是一物性参数,其值依物质的组成、结构、密度、温度和压力等不同而异。导热系数值由实验测定。当物质一定时,通常不考虑压力对其影响而考虑温度因素。工程计算时,遇到温度变化的情况,可取平均温度下的导热系数值进行计算。 一般来说,固体的导热系数大于液体的导热系数,而气体的导热系数最小。导热系数大的材料可用于制造换热设备,如金属;导热系数小的材料可用于保温或隔热设备,如石棉。玻璃棉等。非金属建筑材料和绝热材料的导热系数与温度、组成及结构的紧密程度有关。 表4-1常用固体材料的导热系数 固体 温度, ℃ 导热系数W/(m 2·℃) 铝 300 230

相关文档
相关文档 最新文档