文档库 最新最全的文档下载
当前位置:文档库 › 高造斜率导向工具的研制

高造斜率导向工具的研制

高造斜率导向工具的研制
高造斜率导向工具的研制

自动旋转导向钻井工具结构原理及特点

自动旋转导向钻井工具结构原理及特点 [摘要] 自动旋转导向钻井工具弥补了滑动式导向钻井工具在定向井钻井,特别是在大位移井及长距离水平井的使用中暴露的缺点与不足。浅显分析国内外在定向钻井工具技术差距,从结构原理和特点上出发阐述了自动旋转导向向钻井工具的。 [关键词] 自动旋转导向钻井工具 一.前言 现有的滑动式导向钻井工具在定向钻井,特别是在大位移井及长距离水平井的使用中暴露出不少缺点与不足。自动旋转导向钻井工具可以弥补这些缺点,是目前定向钻井工具发展的一个热点及方向。笔者据此介绍美国三家公司的自动旋转导向钻井工具的结构原理及特点。针对现有定向钻井工具的缺点和不足,浅析今后旋转导向钻井工具结构设计的发展趋势。 迄今为止,定向钻井技术经历了三个里程碑:①利用造斜器(斜向器)定向钻井; ②利用井下马达配合弯接头定向钻井(造斜率是弯接头弯角、井下马达刚度和地层岩石硬度的函数);③利用导向马达(弯壳体井下马达)定向钻井(弯角点离钻头的距离近得多,因此产生的造斜率大)。 目前这三种定向钻井工具在世界各地被广泛使用,并促进了定向钻井技术的快速发展,使得今天人们能够应用斜井、丛式井、水平井技术开发油田。 二.目前国内定向钻井工具现状 随着石油工业的发展,为了获得更好的经济效益,需要开发深井、超深井、大位移井和长距离水平井,而且常常要在更复杂的地层,如高陡构造带钻井。这些都对定向钻井工具提出了更高的要求。目前以井下马达为主的定向钻井工具已不能满足现代钻井技术的要求,主要存在以下缺点和不足: (1)利用井下马达导向时是滑动钻进,钻柱弯曲比旋转钻进时严重,井壁与钻柱间的轴向摩擦力大,使钻压很难加在钻头上。在大延伸井和水平井中这一情况更严重,在极端情况下会造成钻柱屈服,因此它限制了水平井和大斜度井的深度。 (2)在地面对井下马达进行扭方位操作时,旋转摩擦、钻头扭矩、钻杆的扭转弹性变形等都妨碍了工具面的控制,从而影响井下马达在大斜度井和水平井中的使用。 (3)在导向钻进时,钻柱的扭转弹性变形会引起工具面角不稳定,从而导致井眼轨迹扭曲,进一步加大钻柱受到的摩擦力,同样限制了钻井深度。

塔里木深井旋转地质导向钻井技术

【技术】塔里木深井旋转地质导向钻井技术 文/张程光吴千里王孝亮吕宁,中国石油钻井工程技术研究院中国石油塔里木油田公司中国石化石油工程公司胜利分公司 引言 对于埋藏深、地质构造复杂的油藏,应用弯壳体导向螺杆钻具通常无法有效引导井身轨迹准确达到或穿越储集层,而旋转地质导向钻井因其技术优势被越来越广泛地应用,目前已成为一项主流技术。近年来全球范围内的地质导向与旋转导向服务井数快速增长:以斯伦贝谢公司为例,地质导向作业井由2006年的近300 口上升至2009 年的700 口,旋转导向系统进尺则从2006 年的5 898 km 提高至2011 年的19 740km;2004—2010 年在国内各种复杂、难动用油气藏应用地质导向技术的水平井超过345 口。 塔里木油田某区块的薄砂层油层埋藏深、厚度小,且构造边缘横向发育不稳定。为了更高效地开发该类油层,引入旋转地质导向技术,并通过不断摸索试验使该技术更好地适应区块地层条件,确保井眼轨迹始终处于油层中最佳位置。 1 塔里木油田深井薄油层钻井技术难点及对策 ①的层埋藏深、厚度薄。目的层垂深超过5 000m,完钻井深5 500~6 000 m,采用传统滑动钻进方式会因井深增加造成摩阻扭矩的增加,对MWD(随钻测量)信号传输的要求也会提高;目的层为两套砂岩,油层薄,厚度仅为1~2 m。为获得较好的开发效果,需采用双台阶水平井钻井。旋转地质导向钻井技术的旋转钻进方式有利于岩屑运移和井眼清洁,能降低摩阻,从而提高水平井段延伸能力。 ②裸眼井段长、岩性变化大。二开裸眼井段长达5 000 m 左右,易出现托压和黏卡现象,渗漏层和垮塌层均处于同一井眼内,地层砂泥岩互层多,钻时不均匀,地层研磨性强。因此,需控制合适的钻井液黏度和切力、根据导向工具的作业特点选择钻头型号,同时在旋转钻进的基础上加强短程起下钻协助带砂。 ③构造边缘储集层横向展布不均、地层对比困难。油藏构造边缘的砂体发育不稳定、地层倾角变化大,地层对比困难,增加了着陆位置判断和油层追踪的难度。因此,在作业过程中需特别保证随钻测井数据的准确性以及导向工具快速稳定的造斜调整能力。

旋转导向钻井工具的研制原理

第26卷 第5期2005年9月 石油学报 AC TA PETROL EI SIN ICA Vol.26 No.5Sept. 2005   基金项目:国家高技术研究发展计划(863)“旋转导向钻井系统关键技术研究” (2003AA602013)和中国石油化工集团公司重大攻关项目(J P01005)联合资助。 作者简介:闫文辉,男,1965年9月生,1999年获西安石油学院硕士学位,现为西安石油大学副教授,硕士生导师,主要从事石油机械设计及设备 检测与故障诊断方面的教学和科研工作。E 2mail :ywh369@https://www.wendangku.net/doc/9e10592225.html, 文章编号:0253Ο2697(2005)05Ο0094Ο04 旋转导向钻井工具的研制原理 闫文辉 彭 勇 张绍槐 (西安石油大学机械工程学院 陕西西安 710065) 摘要:介绍了旋转导向钻井工具的工作原理及结构,指出了研制该工具的主要技术特点。旋转导向钻井工具主要由稳定平台单元、工作液控制分配单元和偏置执行机构单元3部分组成,其测试元件将测得的井眼参数通过短程通讯传输到随钻测量仪,再由随钻测量仪将信息传输到地面。同时,旋转导向钻井工具接收由地面发出的指令,并通过稳定平台单元调控工作液来控制分配单元中的上盘阀高压孔的位置。工作液控制分配单元将过滤后的泥浆依次分配到3个柱塞,给推板提供推靠动力,并使该推靠力的合力方向始终保持在上盘阀高压孔所对应的位置,在近钻头处形成拍打井壁的侧向力。通过对侧向力的大小、方向和拍打频率的调整,可直接控制该工具的导向状态。 关键词:旋转导向钻井工具;测试元件;导向控制;井眼参数;随钻测量中图分类号:TE82 文献标识码:A Mechanism of rotary steering drilling tool YAN Wen 2hui PEN G Y ong ZHAN G Shao 2huai (College of Mechanical Engineering ,X i πan S hi you Universit y ,X i πan 710065,China ) Abstract :The working principle and structure of a rotary steering drilling tool are introduced.The main technical properties of the tool are described.The tool mainly includes three parts :①unit of stabilization platform ;②unit for controlling and assigning work 2ing liquid ;③unit of Push 2the 2Bit working structure.The wellbore data can be transmitted to measurement while drilling (MWD )u 2nit f rom the test component in the tool through a short distance communication component and then transmitted to the instrument on ground by MWD unit.At the same time ,the receiver in the component receives the instruction f rom the instrument on ground ,and then control the high 2pressure hole located on the upper plate hose by controlling and assigning working liquid with a controller in the stabilization platform unit.The unit for controlling and assigning working liquid takes the filtered mud as the working liquid distribu 2ted in three mud pipes in turn.The mud provides the “pad ”with a motive force and maintains the direction of the join force on the position in accord with the high 2pressure hole on the upper valve all the time.Thus there will form a side force near the bit flapping the wall of the well.The adjustment of the size and direction of the side force acted on the wall and the flapping f requency could di 2rectly control the steering state of the drilling tool. K ey w ords :rotary steering drilling tool ;measurement unit ;steering control ;wellbore data ;measurement while drilling 旋转导向钻井技术是20世纪90年代初发展起来的一项自动化钻井新技术。国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度、减少了事故,也降低了钻井成本。国外目前主要有3种不同类型的旋转导向钻井系统,即:Auto Trak 旋转闭环钻井系统、Power Drive 调制式全旋转导向钻井系统和Geo 2Pilot 旋转导向自动钻井系统[1~8]。国内学者也对该 技术进行了介绍并开展了相关的研究工作[9~14]。胜利石油管理局与西安石油大学联合,研制和开发了具有自主知识产权的旋转导向钻井系统。该旋转导向钻 井技术主要包括井下旋转自动导向钻井系统、地面监控系统以及将上述两部分相结合的双向通讯技术[15]。笔者主要对井下旋转自动导向钻井系统中的旋转导向钻井工具进行了介绍。 1 旋转导向钻井工具工作原理 旋转导向钻井工具的最基本功能有2种:①导向功能;②稳斜或不导向功能。导向功能是指当需要向某一个井斜、方位导向时,可由稳定平台通过控制轴将上盘阀高压孔的中心即工具面角调整到与所需导向的井斜、方位相反的位置上,这时钻具沿所需的井斜及方位进行

水平井地质导向与测井资料解释方法研究

水平井地质导向与测井资料解释方法研究 如今测井人员面临的挑战有以下几个方面:水平井进行测井后的数据解释、其地质模型的建立与导向等。文章建筑现场所掌握的经验以及技术对这两个部分进行简单的论述。文章针对水平井钻眼调整过程以及石油测井信息都着重讲述了地质建模措施的用途。文章还讲述了水平井轨道策划的内容以及在水平井钻眼调整和石油探井信息中一些建筑现场真实发生的情况。 标签:水平井地质导向;水平井地质建模;水平井测井资料解释;地质模型 最近几年伴随着我国很多油田的开采都已经进入到了中后阶段,水平井能够为油田的增量提升效率获得了普遍的运用。然钻录井设施和调整钻眼轨迹程序的落后是水平井向前发展的重要因素之一。即使最近几年我国各个油田都慢慢的采用了一些从国外进口的随钻录井测量井的设施,不过因为相应的调整钻眼轨迹水平还没有获得应有的注重,致使许多水平井使用随钻录井只能做查看井眼的作业,很多水平井是有测井信息未有适宜的解析方法,致使没有适宜的解析,在很大程度上降低了水平井的开发速度。文章主要综合水平井钻眼轨迹、石油测井信息等方面经验进行简单的论述。 1 水平井地质导向 1.1 水平井地质建模 在开展水平井调整井眼轨迹之前,要先创建水平井的井眼轨迹模型。地质模型主要有结构模型以及属性模型两类,结构模型使用井震信息分析建造水平井位置的地质类型,制造构造地质模型;属性模型就是使用已经清楚的岩石的物理特性对整个结构中的岩石开展推测。 1.1.1 构造建模 大多数状态下,结构模型需要引入周围水平井的数据和建筑现场地震资料,使用多井地层进行对比,对分层开展区分,多井进行比较之后能够和地震信息相综合。如果附近的水平井数量很多,只需要使用石油测井来创建地质模型。 1.1.2 属性建模 在构造建模生成的地质体基础上利用已知网格的岩石物理属性和数学统计与插值算法预测未知网格上的岩石物理属性。 1.2 水平井轨迹设计 在地质建模基础上交互设计水平井轨迹可以让用户使井轨迹通过储层最有利的构造部位和属性区域。这里会用到一些钻井工程上的知识,比如狗腿度、闭

旋转导向钻井技术介绍

旋转导向钻井技术介绍 引言 近十几年来,水平井、大位移井、多分支井等复杂结构井和“海油陆采”的迅速发展。为了节约开发成本和提高石油产量,对那些受地理位置限制或开发后期的油田,通常通过开发深井、超深井、大位移井和长距离水平井来实现,进而造成复杂结构的井不断增多。目前通行的滑动钻井技术已经不能满足现代钻井的需要。于是,自20世纪80年代后期,国际上开始加强对旋转导向钻井技术的研究;到90年代初期,旋转导向钻井技术已呈现商业化。国外钻井实践证明,在水平井、大位移井、大斜度井、三维多目标井中推广应用旋转导向钻井技术,既提高了钻井速度,也减少了钻井事故,从而降低了钻井成本。旋转导向钻井技术是现代导向钻井技术的发展方向。 旋转导向钻井技术 旋转导向钻井法是在用转盘旋转钻柱钻井时随钻实时完成导向功能。钻进时的摩阻与扭阻小、钻速高、钻头进尺多、钻井时效高、建井周期短、井身轨迹平滑易调控。此外,其极限井深可达15 km,钻井成本低。旋转导向钻井技术的核心是旋转自动导向钻井统,如图1所示。它主要由地面监控系统、地面与井下双向传输通讯系统和井下旋转自动导向钻井系统3部分组成。 1、地面监控系统 旋转导向钻井系统的地面监控系统包括信号接收和传输子系统及地面计算存储分析模拟系统,有的还具有智能决策支持系统。旋转导向钻井系统的主要功能通过闭环信息流监视并随钻调控井身轨迹,其关键技术是从地面发送到井下的下行控制指令系统。 2、地面与井下双向传输通讯系统 目前已提出的信号传输方式有4种,即钻井液脉冲、绝缘导线、电磁波和声波。通过比较分析,笔者发现这4种传输方式各有优缺点和应用局限,如表1所示。

3、井下旋转自动导向钻井系统 井下旋转自动导向钻井系统是旋转自动导向系统的核心,它主要由3部分构成,即测量系统、导向机构、CPU和控制系统。 (1)测量系统测量系统主要用于监测井眼轨迹的井斜、方位及地层情况等基本参数,使钻井过程中井下地质参数、钻井参数和井眼参数能够实时测量、传输、分析和控制。它经历了随钻测量(MWD)、随钻测井(LWD)、随钻地震(SWD)、随钻地层评价测试技术(FEMWD)和地质导向技术(GST)几个阶段。 (2)导向机构导向机构代表了目前导向技术的先进水平。按原理不同,导向机构原理可分为: ①导向力原理。推力式(或称偏置式)旋转导向工具和指向式旋转导向工具。推力式旋转导向工具是通过侧向力推靠钻头来改变钻头的井斜和方位。而指向式旋转导向工具是预先定向给钻头一个角位移,通过为钻头提供一个与井眼轴线不一致的倾角来使钻头定向造斜。 ②控制原理。可变径稳定器式旋转导向工具和调制式旋转导向工具。前者是先通过电磁阀调节在伸缩块上的液压,以使导向力矢量满足所需导向目标;再通过定向控制系统进行方位与井斜的控制(图2)。而后者是通过调节涡轮发电机负载电流改变涡轮发电机绕组回路阻抗,以使携带高强度永磁铁的涡轮叶片与稳定平台内的扭矩线圈耦合产生不同的电磁转矩和加速度,进而使旋转换向阀保持一个相对于井壁的固定角度,即工具面角,最终实现控制轴在受控状态下的运动状态改变(图3)。 ③套筒旋转与否原理。全旋转导向工具和不旋转套筒旋转导向工具。全旋转导向工具与井壁动态接触,其旋转控制阀在垂直井段随钻柱一起旋转。不旋转套筒旋转导向工具与井壁静态接触,其外套不随钻柱旋转。

Φ178旋转导向钻井工具机械结构设计说明书

Φ178旋转导向钻井工具机械结构设计 摘要:旋转导向钻井技术是石油工业工程技术领域的关键技术之一,得到了石油钻井工程界的极大关注,发挥着越来越重要的作用,主要应用于水平井、大位移井、超深井、三维多目标井等复杂结构的井作业。本文综述了旋转导向钻井工具的国内外现状,闸明了在我国发展旋转导向钻井技术的重要性和必要性,介绍了它的工作原理及结构组成,指出了研制该工具的主要技术特点。调制式旋转导向钻井工具的导向执行机构是靠内外泥浆液压力差驱动的原理来实现的,这是旋转导向钻井工具能否正常工作的关键。所以,对其液压盘阀分配系统进行分析计算,及其在井下不同工况下所受的力进行分析计算。分析了旋转导向钻井系统的井下钻井工具系的偏置方式和导向方式,完成了导向执行机构机械部分的设计。 关键词:旋转导向钻井工具;机械结构设计;压力差;

Φ178 Rotary Steerable Drilling Tool Mechanical Structure Design Abstract:In many oil industry engineering filed key technologies,rotary steerable drilling technology is one that has been paid much attention to in recent years and exhibits more and more importance in oil drilling industry, mainly used in horizontal well,extended reach well,ultra-deep well ,3D multi-target well the complex structure of multi-lateral wells in wells operating. This paper reviews the domestic and international drilling tool status, illustrates the development of rotary steerable drilling technology of the importance and necessity to introduce the working principle and its composition, that the development of the main technical features of the tool. Modulated rotary steerable drilling tool driven by the executing agency is the pressure difference between inside and outside the mud fluid-driven principles to achieve, which is whether the drilling tool to work the key. Therefore,its hydraulic disc distribution system analysis and calculation, and its different working conditions in underground analyzing and calculating the force. Analysis of downhole rotary steerable drilling tool drilling system orientation bias way. Complete guide the design of mechanical parts of the implementing agencies. Key words: Rotary steering drilling tool;Mechanical parts design;Pressure difference

旋转导向系统再深层页岩有水平井的应用

旋转导向系统再深层页岩有水平井的应用 摘要:在全世界范围之内,页岩油非常规油气资源开发的重要领域,水平井是页岩油勘探与开发采用的主要技术之一。为解决钻井过程中轨迹控制、高压、近距离防碰、托压以及目的层段无任何实钻和测试参考资料等问题,根据方位伽马探测原理,建立了三地层数学模型,结合随钻测井曲线提出了“标志层地层倾角计算方法”并推导出相关公式。采用了旋转导向钻井系统与地质导向技术相结合对井眼轨迹进行控制,现场应用结果表明,应用旋转导向钻井系统可实时监测井底环空压力、提高机械钻速、实现自动导向控制和地层评价、通过标志层地层倾角提前预测目的层“着陆”点井斜及钻头到边界的距离,使井眼轨迹光滑并精准中靶,优化了井身结构并完善了地质导向模型,对后期页岩油开发提供了新的参考资料和策略。 关键词:旋转导向系统;再深层页岩有水平井;应用 引言 旋转导向系统代表着石油钻井仪器的最高水平,尤其适用于高难度井,它对于提升钻井质量和钻井速度都有显著效果。目前成熟的产品有斯伦贝谢的PowerDrive,贝克休斯的AutoTrak,以及哈里伯顿的GeoPilot等系列产品。国内目前没有成熟产品,都属于研制阶段。旋转导向系统按导向方式可分为两大类:推靠式、指向式。国内对推靠式的研究居多。推靠式旋转导向系统的工作原理是调节钻井仪器上液压装置的推力,从而给钻头提供侧向力,控制钻头往设定的方向钻进,达到调整井斜角和方位角并控制井眼轨迹的目的。 1旋转导向钻井工具系统的信息传输原理 第一,在完成地面控制命令之后,进行数据资源的向下传输,保证井下信息接受的准确性;第二,信号下传系统不会影响钻井的正常工作;第三,系统在运用中具有较高的准确性、稳定性。在钻井作业的使用中,使用传统的通讯方法难以适用钻井环境。在钻井系统信号下传方法比较中,不同方法存在着优劣势的差异性,具体如下:在旋转导向钻井系统使用过程中,需要向地面发送控制指令,在以往信息传输的过程中,存在着数据量相对较小,而且,通讯速度要求不严格等问题。在旋转导向钻井系统使用中,需要考虑系统运用的可靠性、经济性等技术操作特点,实现钻井液脉冲信号下传方法的科学运用。 2旋转导向系统再深层页岩有水平井的应用 2.1地质环境特点与钻井工程 某井区夹持在小集断层与小集南断层之间,为西高东低的断块构造,地层东倾。目的层孔二段为深灰、黑灰色泥岩夹浅灰色粉细砂岩,细粒长英沉积岩及白云岩薄互层构成,烃源岩发育优质,是主要生油凹陷主体。利于孔二段自生自储形成页岩油。主体区,Ek21发育70~80m细粒沉积岩,分布稳定,具备较好的储集性能,储集空间以晶间孔、页理缝为主,其次为粒间(内)溶蚀孔、构造微裂缝、生物体腔孔等,脆性矿物含量高达90%以上,利于后期压裂改造。 2.2具体应用 为精确控制井眼轨迹,一开、二开使用MWD+马达组合,使得上直段井斜控制在2°以内,井深2950~3085m,井斜控制1.5°以内,从3085m开始造斜。基于上述施工难度,三开从3080~5465m使用旋转导向工具,见表1。轨迹控制分为造斜段和水平段。 表1 全井使用工具及参数

33.适用于旋转导向钻井工具的非接触式电能传输方法

万方数据

万方数据

第21卷第2期陈红新等:适用于旋转导向钻井工具的非接触式电能传输方法115 L面di十虿1,id£+i(£)R—Vo(6)求解得 i=皂sin(叫t)e-÷(7) 6U』一 由式(7)可知,减小回路的电感对提高发射电流有着特别重要的意义。在设计时,发射线圈采用扁带线,以减小电感【4J。 在理论分析和计算的基础上,采用罗果夫斯基线圈【4’5]对发射线圈中的电流进行了测量。罗果夫斯基线圈的结构如图7所示,传输被测电流的导体从线圈中心穿过,设电流传输导线与罗果夫斯基线圈每匝中心的距离为r,被测电流为i(£),则穿过线圈每匝的磁感应强度B,为 B,=/zi(£)/(2丌,.)(8) 图7用罗果夫斯墨线圈测量发射电流 感应电压乱(£)与B,的关系为 “(£)一,zS挚(9)根据式(8)可推出 础)=筹掣tit=M警(10) Z丁cra£ 式(10)中,2为线圈匝数;S为每匝线圈的面积;M=pnS/(2rtr)。 式(10)中,示波器测出的电压配(£)与被测电流i(£)的导数成正比,为了得到U(£)与i(£)的正比关系,在电路中设置了R、C积分电路。当电缆的波阻抗Z远远大于罗果夫斯基线圈的感抗∞L时,可略去测量线圈的内压降,认为U(£)全部降落在Z上。另外,通过对积分电路中R、C的选择可使R》1/(cJC,因而可认为通过C的电流ic(£)≈“(£)/R,故C上的电压“c(£)为 “t)一钟幽)一志弘m 一志『M警一拦m,…, 测量过程中需要消除强磁场在电缆外皮中产生的噪声电流而引起的共模干扰,这种噪声电流引起的电压降将耦合到被测信号上。干扰信号的大小与电缆的耦合阻抗有关,即 Z—VN/tN(12)式(12)中,V。为噪声电压,JN为噪声电流。为消除干扰,采取了如下措施:采用双屏蔽电缆,减小感生电流和耦合阻抗;缩短接地回路,消除地电位升高而造成的影响。采用以上措施后获得良好的效果,对比情况如图8和图9所示。 8 4 -4 -8 八八/\八 .V1V2V卜“I 图8采取抗干扰措施后的测试结果 图9未采取抗干扰措施的测试结果 4结束语 针对导向钻井工具的特点,设计了一种适合于旋转件与非旋转件之间的非接触式电能发射系统。采用单片机、驱动电路、脉冲变压器、脉冲电容器等小体积、高电压、大电流器件,制作了高能量密度的电能发射装置,通过慢充电、快放电方式在发射线圈上产生冲击大电流。在理论分析和计算的基础上,采用罗果夫斯基线圈对发射电流进行了测量,测量过程中采用了良好的屏蔽和接地等噪声抑制措施,得到了满意的结果,发射线圈上的实测电流峰值为8kA。研究结果表明,包括发射线圈在内的电能发射电路的R、L、C等参数对发射电流的影响 (下转第119页)  万方数据

OnTrak地质导向系统技术参数

6 3/4" OnTrak INTEQ的OnTrak TM是一个随钻测量的集成工具,它能通过一根短节提供实时方位、方位伽马、MPR?电阻率、环空压力和振动测量。OnTrak与地面系统Advantage SM同时使用,可以优化定向能力和地层评估能力,包括钻进时地质导向。这种创新设计提高了工 具可靠性,减少了连接点,并使井下钻具组合中传感器到钻头的 距离得到优化。该工具由集成传感器模块,双向通讯动力模块组成,具有以下特性: ■ OnTrak集成传感器模块 - 定向控制和测量 - 电磁波传播电阻率 - 方位伽马 - 环空和钻具内动/静压力 - 监控振动和粘滑振动 - 温度 - 存储和数据高速转储 ■ 双向通讯动力模块 - 系统电源及控制 - 向下发送指令 - 双向通讯 - 泥浆脉冲信号传输 - 实时及可调节的数据传输 为了实现地质导向,OnTrak MPR传感器使用四个发射器,两个接收器的双频补偿天线矩阵测量8条电阻率曲线。两个伽马射线探测器(以工具面标定)对靠近的岩层界面提供方位成像。通过对井 下环空压力和粘滑振动的监控,可以及时发现井筒清洁问题和井 壁漏失,避免卡钻,降低工具事故率。 “业界第一”的OnTrak随钻测量提供了无与伦比的“高质量井壁”,这项技术突破了当代大位移钻井、地层评价测井和地质导 向技术的极限。 ■ 实时地质导向和准确轨迹定位 ■ 通过方位伽马对油藏地质边界进行识别 ■ 钻进时泥浆双向通讯脉冲 ■ 完全集成和更小的传感器与钻头距离 ■ 控制井眼清洁和井壁稳定性 ■ 降低工具事故和卡钻 ■ 支持高端随钻测量工具 - SoundTrak TM - LithoTrak TM - CoPilot? ■ 与AutoTrak?G3组合可得到可靠测井数据

静态推靠式旋转导向钻井工具防自锁设计方法

收稿日期:2017-02-17 基金项目:国家自然科学基金项目(51674284);国家科技重大专项(2016ZX05022-002) 作者简介:史玉才(1972-),男,副教授,博士,研究方向为定向钻井理论与技术三E-mial:shiyucai2008@https://www.wendangku.net/doc/9e10592225.html,三 文章编号:1673-5005(2017)05-0080-07 doi:10.3969/j.issn.1673-5005.2017.05.009静态推靠式旋转导向钻井工具防自锁设计方法 史玉才1,孙海芳2,岳步江3,管志川1,王 恒1,苗在强1 (1.中国石油大学石油工程学院,山东青岛266580;2.中国石油川庆钻探钻采工程技术研究院,四川广汉618300;3.航天科工惯性技术有限公司,北京100074) 摘要:基于静态推靠式旋转导向(SRS)钻井工具的结构和工作原理,建立SRS 钻井工具受力分析模型,给出防止导向翼肋自锁的倒角优化设计方法三结合实例分析井底实际钻压随导向翼肋前倒角变化,以及前倒角上限随导向翼肋推靠力和名义钻压上限变化三结果表明:导向翼肋与井壁台阶是否自锁与导向翼肋倒角设计二钻井参数(推靠力二钻压)及井壁摩擦系数有关;井底实际钻压随导向翼肋前倒角增加而迅速减小;前倒角上限随推靠力之和增大而减小二随名义钻压上限增大而增大二随侧倒角增大而略有减小;对于Φ216mm 井眼中使用的SRS 钻井工具,推荐导向翼肋前倒角45?左右,侧倒角45?~60?,侧倒角较大时还应适当减小前倒角三 关键词:旋转导向钻井系统;静态推靠式;受力分析;自锁;倒角;优化设计 中图分类号:TE 122.14 文献标志码:A 引用格式:史玉才,孙海芳,岳步江,等.静态推靠式旋转导向钻井工具防自锁设计方法[J].中国石油大学学报(自然科学版),2017,41(5):80-86.SHI Yucai,SUN Haifang,YUE Bujiang,et al.A design method to prevent self-locking of a static push-the-bit rotary steer-able drilling tool[J].Journal of China University of Petroleum(Edition of Natural Science),2017,41(5):80-86. A design method to prevent self-locking of a static push-the-bit rotary steerable drilling tool SHI Yucai 1,SUN Haifang 2,YUE Bujiang 3,GUAN Zhichuan 1,WANG Heng 1,MIAO Zaiqing 1 (1.School of Petroleum Engineering in China University of Petroleum ,Qingdao 266580,China ;2.Drilling &Production Technology Research Institute of Chuanqing Drilling Company Limited ,PetroChina ,Guanghan 618300,China ; 3.Aerospace Science and Industry Inertial Technology Company Limited ,Beijing 100074,China )Abstract :In this study,according to the structure and working principle of a static push-the-bit rotary steerable (SRS)drilling tool,analytical models of the loading condition and force balance of the SRS drilling tool have been figured out,and a method to optimize the front chamfer design was established,which can prevent the self-locking risk of SRS system effec-tively.In a case study,the variations of the actual weight-on-bit (WOB)due to the front chamfer,the variations of the front chamfer due to the total pushing forces and the maximum nominal WOB were analyzed.The results show that whether the steerable pads run into a self-locking state against the ladders on wellbore wall is dependent on the front chamfers,the drill-ing parameters (i.e.the total pushing force and weight-on-bit)and the friction coefficient.The actual WOB decreases with the front chamfer quickly.The maximum front chamfer decreases with the total pushing force sharply,but it increases with the maximum nominal WOB rapidly,and decreases with the side chamfer slightly.For the SRS drilling tool in a Φ216mm wellbore,the recommended front chamfer is of 45?or so,and the recommended side chamfer is between 45?to 60?,and a larger side chamfer should be matched to a smaller front chamfer. Keywords :rotary steerable drilling system;static push-the-bit;force state analysis;self-locking;chamfer;optimization de-sign 2017年 第41卷 中国石油大学学报(自然科学版) Vol.41 No.5 第5期 Journal of China University of Petroleum Oct.2017 万方数据

φ178旋转导向钻井工具设计说明书

φ178旋转导向钻井工具设计及控制轴的动力学分析 摘要:旋转导向钻井技术是现代导向钻井技术的发展方向,主要应用于大位移井、多分支井等复杂结构的井作业。本文综述了旋转导向钻井工具的国外现状,阐明了在我国发展旋转导向钻井技术的重要性和必要性,介绍了它的工作原理及结构组成 ,指出了研制该工具的主要技术特点。调制式旋转导向钻井工具的导向执行机构是靠外泥浆液压力差驱动的原理来实现的,这是旋转导向钻井工具能否正常工作的关键。所以,对其液压盘阀分配系统和控制轴进行分析计算,及其在井下不同工况下所受的力进行分析计算。分析了旋转导向钻井系统的井下钻井工具系统的测控方式,偏置方式和导向方式。完成了导向执行机构机械部分的设计,最后,对控制轴进行了动力学分析,并对工具进行了经济型评价和总结。 关键词:旋转导向钻井;设计;动力学分析

Design and Control of the Dynamic Analysis of Shaft of 178 mm Diameter Rotary Steerable Drilling Tool Abstract Rotary steerable drilling technology is the development of modern drilling technology-oriented direction, mainly used in extended reach well, the complex structure of multi-lateral wells in wells operating. This paper reviews the domestic and international drilling tool status, illustrates the development of rotary steerable drilling technology of the importance and necessity to introduce the working principle and its composition, that the development of the main technical features of the tool. Modulated rotary steerable drilling tool driven by the executing agency is the pressure difference between inside and outside the mud fluid-driven principles to achieve, which is whether the drilling tool to work the key. Therefore,its hydraulic disc distribution system and control valve axis analysis and calculation, and its different working conditions in underground analyzing and calculating the force. Analysis of downhole rotary steerable drilling tool drilling system monitoring and control system mode, manner and orientation bias way. Complete guide the design of mechanical parts of the implementing agencies, and finally, axis of the dynamic analysis of the control, and the tools of the economic evaluation and summary. Keywords Rotary Steerable Drilling; Design; Dynamic Analysis

动态指向式旋转导向钻井工具设计探讨

万方数据

万方数据

第38卷第2期李俊.等:动态指向式旋转导『;J钻井Tn设汁探讨 并对方位和倾角进行测量等。 图l全旋转导向工具稳定平台结构 旋转导向钻井工具中稳定平台的作用足保证在钻进时不受钻柱旋转的影响。而能够实现导向作用的动态稳定系统。能够同步配合旋转导向钻井系统的指令系统对导向工具面角随钻井下实时调控。3.1.2偏置机构 偏置结构由l套由几个可控制的偏心圆环组合形成,如图2。偏置结构中装有CPU检测装置、电子马达等检测与驱动元件,偏置机构中串接了1根柔性钻具,通过稳定平台计算机检测到的井斜与方位变化的信号结果。将检测到的信号输送给偏置装置中的CPU,当需要调整角度时,装置中的CPU驱动控制系统中的动力模块电子马达,在旋转导向过程中,偏置工具的偏心导致其上、下2跨钻柱发生弯曲,使钻头处钻柱的轴线和井眼轴线之间出现夹角,由于钻头的转角而实现旋转导向。 图2井下偏置导向工具结构 3.1.3导向方式 本研究采取偏置内推指向方式,如图3。工作方式为外筒内有一靠机械力使之变形弯曲的内轴迫使钻头有角位移,以使钻头定向造斜,如图4。指向式系统不需爱翼叻推靠井擘来改变方向,因此其导向效果不受地层不完整或井眼扩径的影响。从而指向式系统在软地层或扩径的井眼中比推靠式效果好。指向式系统可钻出更规则的井眼,减少螺旋和突起。能够更好地对井斜和方位进行控制。具有更长寿命,与钻头选择无关,降低卡钻和失效等风险,提供了作业上的优势。 卜 ~沙一 钻头 图3旋转导向工具偏置内推指向方式示意 图4旋转导向钻井T具系统指向方式示意 3.2设计重点、难点及解决方案 在钻井过程中,由于钻井工具处在井下高温、高压的工作环境中。有钻井液及地层流体的腐蚀;有含碎屑的钻井液在高压、高速流动时带来的冲蚀;有钻柱在高速旋转、钻头切削地层和钻井液压力波动产生的严重振动等,其工作环境和工作条件异常恶劣,给井下工具的设计带来一定的难度。针对目前旋转导向钻井工具设计现状存在的不足,提出了今后的研究方向。 3.2.1旋转导向驱动稳定平台主轴扭矩系统优化拇10]稳定平台无论在导向或稳定状态下。均需靠扭矩发生器的电磁力矩来驱动控制轴从而控制:l=具面角的位置,由于工具结构的限制。不可能在井下设计大功率离扭矩的扭矩发生器,因此扭矩的供需应达到平衡设计。过大不可能.同时也会引起较大压力损失;过小,将无法驱动控制轴,整个稳定平台中驱动扭矩是扭矩发生器所产生的扭矩,而阻力矩包括:涡轮发电机产生的电磁力矩、稳定平台主支撑轴承的摩擦阻力扭矩、涡轮发电机和扭矩发生器上2个涡轮支撑轴承的摩擦阻力扭矩、控制主轴旋转时的惯性扭矩等。因此,要求扭矩发生器所提供的扭矩必须大于上述阻力矩总和。在扭矩发生器的功率、扭矩受限的条件下,降低控制轴的阻力矩则成为工具设计的一个主攻目标。 解决方案:①轴承优选;②主轴精确制造和安装优化;③全部旋转件的惯性矩合理化优化等方面研究。 3.2.2旋转导向稳定平台主轴整体刚度 稳定平台控制轴的结构比较复杂,由多段联接而成,轴上还有2个涡轮以600~1200r/min转速旋转,它自身还以20~120 r/min的速度旋转,加之万方数据

φ178旋转导向钻井工具设计开题报告材料

本科毕业设计(论文)开题报告 题目:φ178旋转导向钻井工具设计 及控制轴动力学分析 学生: 院(系):机械工程学院

专业班级: 指导教师: 完成时间:2011 年 3 月8 日

造斜率由工具本身确定,不受钻进地层岩性的影响,在软地层及不均质地层中效果明显,缺点是钻柱承受高强度的交变应力,钻柱容易发生疲劳破坏。另外,高精度加工是保证这种系统导向效果的关键。 2.1.2AutoTrak旋转导向钻井系统 AutoTrak系统是一套集钻进和随钻测量为一体的定向钻井系统,能够在旋转钻井过程向造斜钻进,主要是因为它有一个独特的非旋转可调扶正器滑套,此扶正器滑套并非真的不旋转,只是相对钻头驱动轴而言它几乎是不旋转,因此在旋转钻进过程中,此扶正器滑套可以保持一种相对静止的状态,从而保证钻头沿着某一特定的方向钻进.非旋转扶正器滑套有元件:近钻头井斜传感器、电子控制元件、液压控制阀和活塞,见图1.通过液压可推动活塞分别对3 个稳定块施加不同的压力,其合力就使钻具沿某一特定方向偏移,从而在钻进过程中使钻头产生1 个侧向力,保证钻头沿这一方向定向钻进. 图1 AutoTrak部结构 2.1.3 Power Drive旋转导向钻井系统 斯伦贝谢公司的旋转导向系统主要是指PowerDrive系统,包括PowerDrive X5110 、PowerDrive X5900 、PowerDrive X5 、PowerDrive X5675 、PowerDrive X5475 、PowerDrive Xceed 900、Power vorteX ,除了Power vorteX 是动力式旋转导向系统外,其他均为全旋转式旋转导向系统,PowerDrive X5 系列旋转导向工具可通过PowerPulse 和TeleScope工具实时测量井下数据,测量近钻头地层状态、钻头振动情况和钻头转速,利用近钻头伽马射线显示地质和井眼成像,自动纠斜。它适用的井眼尺寸为5.25~26 in ,可用常规钻井液,最高耐温150 ℃,流量围480 ~1900 gpm ,最高耐压20000 psi ,其中,PowerDrive X51100 型最大转速200 r/min ,最大造斜率3°/100 f t ,PowerDrive X5475 型最大转速250 r/min ,最大造斜率

相关文档