文档库 最新最全的文档下载
当前位置:文档库 › 基于FFT和频谱校正法的信号处理研究_张奕

基于FFT和频谱校正法的信号处理研究_张奕

基于FFT和频谱校正法的信号处理研究_张奕
基于FFT和频谱校正法的信号处理研究_张奕

相位噪声基础及测试原理和方法

相位噪声基础及测试原理和方法 相位噪声指标对于当前的射频微波系统、移动通信系统、雷达系统等电子系统影响非常明显,将直接影响系统指标的优劣。该项指标对于系统的研发、设计均具有指导意义。相位噪声指标的测试手段很多,如何能够精准的测量该指标是射频微波领域的一项重要任务。随着当前接收机相位噪声指标越来越高,相应的测试技术和测试手段也有了很大的进步。同时,与相位噪声测试相关的其他测试需求也越来越多,如何准确的进行这些指标的测试也愈发重要。 1、引言 随着电子技术的发展,器件的噪声系数越来越低,放大器的动态范围也越来越大,增益也大有提高,使得电路系统的灵敏度和选择性以及线性度等主要技术指标都得到较好的解决。同时,随着技术的不断提高,对电路系统又提出了更高的要求,这就要求电路系统必须具有较低的相位噪声,在现代技术中,相位噪声已成为限制电路系统的主要因素。低相位噪声对于提高电路系统性能起到重要作用。 相位噪声好坏对通讯系统有很大影响,尤其现代通讯系统中状态很多,频道又很密集,并且不断的变换,所以对相位噪声的要求也愈来愈高。如果本振信号的相位噪声较差,会增加通信中的误码率,影响载频跟踪精度。相位噪声不好,不仅增加误码率、影响载频跟踪精度,还影响通信接收机信道内、外性能测量,相位噪声对邻近频道选择性有影响。如果要求接收机选择性越高,则相位噪声就必须更好,要求接收机灵敏度越高,相位噪声也必须更好。 总之,对于现代通信的各种接收机,相位噪声指标尤为重要,对于该指标的精准测试要求也越来越高,相应的技术手段要求也越来越高。 2、相位噪声基础 2.1、什么是相位噪声 相位噪声是振荡器在短时间内频率稳定度的度量参数。它来源于振荡器输出信号由噪声引起的相位、频率的变化。频率稳定度分为两个方面:长期稳定度和短期稳定度,其中,短期稳定度在时域内用艾伦方差来表示,在频域内用相位噪声来表示。 2.2、相位噪声的定义

9种谱校正方法

9种谱校正方法及matlab 程序代码 采样间隔归一化成1T ?=,采样长度为N .这样FFT 离散谱线为0,1)i X i N =-(,相应的频率分辨率2/(1/)N f N ωπ?=?=. 设FFT 离散谱线局部极高谱线为m (为了数学上简洁,假定从0开始,注意在MA TLAB 环境下数组实际操作的是从1开始),记频偏量δωδω=?. 我们需要使用谱线m 和与之相邻一条次高谱线,记这连续两条谱线中左边一条序号为M (当次高谱线在m 左侧时1M m =-,反之M m =). 下面列出若干算法的δ计算公式 1. 加矩形窗的精确谱校正[1] i i i X U jV =+ 111()sin()()cos()M M M M opt M M V V M U U M K U U ωω+++-?+-?=- 1211cos()sin()cos()sin()opt M M opt M M K M Z V U M K M Z V U M ωωωωωω++-???=+?????-?+???=+???+??? 2121 cos()cos()()Z M Z M M m Z Z ωωωδ?+?-?=+-- 2. 加矩形窗情形,采用解析单频模型的幅值比校正[1, 2] 11||()|||| M M M X M m X X δ++=+-+ 3. 加汉宁窗情形,采用解析单频模型的幅值比校正[1, 2] 112||||()|||| M M M M X X M m X X δ++-=+-+ 4. 加矩形窗情形,采用解析单频模型的复比值校正[3] 1 1Re ()M M M X M m X X δ++??=+- ?-?? 5. 加汉宁窗情形,采用解析单频模型的复比值校正[3] 112()M M M M X X M m X X δ+++=+-- 6. 加矩形窗情形,采用解析单频模型的复合复比值校正[3]

用MATLAB进行FFT频谱分析

用MATLAB 进行FFT 频谱分析 假设一信号: ()()292.7/2cos 1.0996.2/2sin 1.06.0+++=t t R ππ 画出其频谱图。 分析: 首先,连续周期信号截断对频谱的影响。 DFT 变换频谱泄漏的根本原因是信号的截断。即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。 实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT 变换可以得到精确的模拟信号频谱。举一个简单的例子: ()ππ2.0100cos +=t Y 其周期为0.02。截断时不同的持续时间影响如图一.1:(对应程序shiyan1ex1.m ) 图 错误!文档中没有指定样式的文字。.1 140.0160.0180.02 截断时,时间间期为周期整数倍,频谱图 0.0250.03 0100200300400500600 7008009001000 20 40 60 80 100 截断时,时间间期不为周期整数倍,频谱图

其次,采样频率的确定。 根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/7.92,取16。 再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。 实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。 实验结果如图一.2:其中,0点位置的冲激项为直流分量0.6造成(对应程序为shiyan1.m ) 图 错误!文档中没有指定样式的文字。.2 ?ARMA (Auto Recursive Moving Average )模型: 将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为 020406080100120140160180200 0.4 0.50.60.7 0.800.050.10.150.20.250.30.350.40.450.5 50100 150

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

MATLAB关于FFT频谱分析的程序

MATLAB关于FFT频谱分析的程序 %***************1.正弦波****************% fs=100;%设定采样频率 N=128; n=0:N-1; t=n/fs; f0=10;%设定正弦信号频率 %生成正弦信号 x=sin(2*pi*f0*t); figure(1); subplot(231); plot(t,x);%作正弦信号的时域波形 xlabel('t'); ylabel('y'); title('正弦信号y=2*pi*10t时域波形'); grid; %进行FFT变换并做频谱图 y=fft(x,N);%进行fft变换 mag=abs(y);%求幅值 f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换 figure(1); subplot(232); plot(f,mag);%做频谱图 axis([0,100,0,80]); xlabel('频率(Hz)'); ylabel('幅值');

title('正弦信号y=2*pi*10t幅频谱图N=128'); grid; %求均方根谱 sq=abs(y); figure(1); subplot(233); plot(f,sq); xlabel('频率(Hz)'); ylabel('均方根谱'); title('正弦信号y=2*pi*10t均方根谱'); grid; %求功率谱 power=sq.^2; figure(1); subplot(234); plot(f,power); xlabel('频率(Hz)'); ylabel('功率谱'); title('正弦信号y=2*pi*10t功率谱'); grid; %求对数谱 ln=log(sq); figure(1); subplot(235); plot(f,ln);

基于频域的校正方法及实验设计

2016届毕业(设计)论文 题目基于频域的校正方法及实验设计 专业班级过程自动化 学号 1204160134 学生姓名于春明 第一指导教师陈杰 指导教师职称 学院名称电气信息院 完成日期: 2016年 5月 20日

基于频域的校正方法及实验设计 Correction Method and Experimental Design based on Frequency Domain 学生姓名于春明 第一指导教师陈杰

摘要 在经典控制理论中,系统校正设计,就是在给定的性能指标下,对于给定的对象模型,确定一个能够完成系统满足的静态与动态性能指标要求的控制器,即确定校正器的结构与参数。串联校正控制器的频域设计方法中,使用的校正器有超前校正器、滞后校正器、滞后-超前校正器等。超前校正设计方法的特点是校正后系统的截止频率比校正前的大,系统的快速性能得到提高,这种校正设计方法对于要求稳定性好、超调量小以及动态过程响应快的系统被经常采用。滞后校正设计方法的特点是校正后系统的截止频率比校正前的小,系统的快速性能变差,但系统的稳定性能却得到提高,因此,在系统快速性要求不是很高,而稳定性与稳态精度要求很高的场合,滞后校正设计方法比较适合。滞后-超前校正设计是指既有滞后校正作用又有超前校正作用的校正器设计。它既具有了滞后校正高稳定性能、高精确度的好处,又具有超前校正响应快、超调小的优点,这种设计方法在要求较高的场合经常被采用。 关键词:

ABSTRACT In classical control theory, system design correction, that is, given the performance for a given object model to determine a controller to complete the system meets the static and dynamic performance requirements, namely to determine the structure and corrector parameter. Frequency Domain controller series corrected using correction has lead corrector corrector lag lag - lead Corrector like. Features advanced design correction method is to correct the system cut-off frequency than the fast performance is improved before the correction is large, the system, this correction method for design requires good stability, small overshoot and dynamic process of rapid response systems are often use. Lag compensation design approach is characterized by system after correcting the cutoff frequency than the fast performance before correction is small, the system is deteriorated but stable performance of the system has improved, therefore, the system speed requirements are not high, and the stability and steady-state high precision of the occasion, lag compensation design method is more suitable. Lag - lead Corrector design means there are both lagging corrective action ahead of corrective action calibration designs. It has a lag correction high stability, high accuracy advantages, but also has the leading correction fast response, small overshoot of the advantages of this design approach in demanding situations are often used. Keywords:

实验五 用FFT对信号做频谱分析(数字信号实验)

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按要求格式改名,由实验教师批阅记录后;实验室 统一刻盘留档。 实验五 用FFT 对信号做频谱分析 一、实验目的 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、实验原理 用FFT 对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是 ,因此要求 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 三、实验内容(包括代码与产生的图形及分析讨论) 1. 对以下序列进行谱分析: 1423()() 1,03 ()8,47 0, 4,03()3, 470, x n R n n n x n n n n n n x n n n n =+≤≤?? =-≤≤???-≤≤?? =-≤≤???

选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。分别打印其幅频特性曲线, 并进行对比、分析和讨论。 解:(1))(1n x 代码如下: x1n=[ones(1,4)]; X1k8=fft(x1n,8); X1k16=fft(x1n,16); subplot(2,1,1);mstem(X1k8); title('(1a) 8μ?DFT[x_1(n)]');xlabel('|?/|D');ylabel('·ù?è'); axis([0,2,0,1.2*max(abs(X1k8))]) subplot(2,1,2);mstem(X1k16); title('(1b)16μ?DFT[x_1(n)]');xlabel('|?/|D');ylabel('·ù?è'); axis([0,2,0,1.2*max(abs(X1k16))]) 图形如下: ω/π 幅度 (1a) 8点DFT[x 1(n)] ω/π 幅度 (1b)16点DFT[x 1(n)] (2))(2n x 代码如下: M=8;xa=1:(M/2); xb=(M/2):-1:1; x2n=[xa,xb];

FFT详细分析

MATLAB中FFT的使用方法 2009-08-22 11:00 说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk = 39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128; %采样频率和数据点数 n=0:N-1;t=n/fs; %时间序列

x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求得Fourier变换后的振幅 f=n*fs/N; %频率序列 subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; 运行结果:

多种频谱校正方法及matlab代码

多种频谱校正方法 采样间隔归一化成1T ?=,采样长度为N .这样FFT 离散谱线为0,1)i X i N =-(,相应的 频率分辨率2/(1/)N f N ωπ?=?=.设FFT 离散谱线局部极高谱线为m (为了数学上简洁,假定从0开始,注意在MATLAB 环境下数组实际操作的是从1开始),记频偏量δωδω=?.我们需要使用谱线m 和与之相邻一条次高谱线,记这连续两条谱线中左边一条序号为M (当次高谱线在m 左侧时1M m =-,反之M m =). 下面列出若干算法的δ计算公式 1.加矩形窗的精确谱校正[1] i i i X U jV =+111()sin()()cos() M M M M opt M M V V M U U M K U U ωω+++-?+-?=-1211cos()sin()cos()sin()opt M M opt M M K M Z V U M K M Z V U M ωωωωωω++-???=+???? -?+???=+???+??? 2121 cos()cos()()Z M Z M M m Z Z ωωωδ?+?-?=+--2.加矩形窗情形,采用解析单频模型的幅值比校正[1,2]11||()||||M M M X M m X X δ++= +-+3.加汉宁窗情形,采用解析单频模型的幅值比校正[1,2] 112||||()|||| M M M M X X M m X X δ++-=+-+4.加矩形窗情形,采用解析单频模型的复比值校正[3] 11Re ()M M M X M m X X δ++??=+- ?-?? 5.加汉宁窗情形,采用解析单频模型的复比值校正[3] 112()M M M M X X M m X X δ+++=+--6.加矩形窗情形,采用解析单频模型的复合复比值校正[3]

用FFT对信号作频谱分析Matlab程序.doc

对以下序列进行FFT 分析 x 1(n)=R 4(n) x 2(n)= x 3(n)= x1n=[ones(1,4)]; %产生R4(n)序列向量 X1k8=fft(x1n,8); %计算x1n 的8点DFT X1k16=fft(x1n,16); %计算x1n 的16点DFT %以下绘制幅频特性曲线 N=8; f=2/N*(0:N-1); (不懂) figure(1); subplot(1,2,1);stem(f,abs(X1k8),'r','.'); %绘制8点DFT 的幅频特性图,abs 求得Fourier 变换后的振幅 title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); N=16; f=2/N*(0:N-1); subplot(1,2,2);stem(f,abs(X1k16),'.'); %绘制8点DFT 的幅频特性图 title('(1b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度'); %x2n 和 x3n M=8;xa=1:(M/2); xb=(M/2):-1:1; %从M/2到1每次递减1 x2n=[xa,xb]; %产生长度为8的三角波序列x2(n) x3n=[xb,xa]; n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

X2k8=fft(x2n,8); X2k16=fft(x2n,16); X3k8=fft(x3n,8); X3k16=fft(x3n,16); figure(2); N=8; f=2/N*(0:N-1); subplot(2,2,1);stem(f,abs(X2k8),'r','.'); %绘制8点DFT的幅频特性图title('(2a) 8点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X3k8),'r','.'); %绘制8点DFT的幅频特性图title('(3a) 8点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); N=16; f=2/N*(0:N-1); subplot(2,2,2);stem(f,abs(X2k16),'.'); %绘制8点DFT的幅频特性图title('(2b) 16点DFT[x_2(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X3k16),'.'); %绘制8点DFT的幅频特性图title('(3b) 16点DFT[x_3(n)]');xlabel('ω/π');ylabel('幅度'); %x4n 和 x5n N=8;n=0:N-1; x4n=cos(pi*n/4); x5n=cos(pi*n/4)+cos(pi*n/8); X4k8=fft(x4n,8); X4k16=fft(x4n,16); X5k8=fft(x5n,8); X5k16=fft(x5n,16); figure(3); N=8; f=2/N*(0:N-1); subplot(2,2,1);stem(f,abs(X4k8),'r','.'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,3);stem(f,abs(X5k8),'r','.'); %绘制8点DFT的幅频特性图title('(5a) 8点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度'); N=16; f=2/N*(0:N-1); subplot(2,2,2);stem(f,abs(X4k16),'.'); %绘制8点DFT的幅频特性图title('(4b) 16点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度'); subplot(2,2,4);stem(f,abs(X5k16),'.'); %绘制8点DFT的幅频特性图title('(5b) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度'); %x8n Fs=64; T=1/Fs;

讲座1-3 离散频谱校正技术(DOC)

图3.1.1 窗函数的频谱函数 讲座1-3 三、离散频谱校正技术 经FFT 得到的离散频谱其幅值、相位和频率都可能产生较大的误差。从理论上分析,加矩形窗时单谐波频率的最大误差可达36.4%,即使加其它窗时,也不能完全消除此影响,如加Hanning 窗时,只进行幅值恢复时的最大误差仍高达15.3%,相位误差更大,高达90度。 目前国内外有四种对幅值谱或功率谱进行校正的方法:第一种方法是离散频谱能量重心校正法,第二种方法是对幅值谱进行校正的比值法,第三种方法是FFT+DFT 谱连续细化分析傅立叶变换法,第四种方法是相位差法,这些方法各有其特点。在相位差校正法中,有时移法、缩短窗长法和综合法。 1.比值校正法 这种方法利用频率归一化后差值为1的主瓣峰顶附近二条谱线的窗谱函数比值,建立一个以校正频率为变量的方程,解出校正频率,进而进行幅值和相位校正。解方程求校正频率的方法是多样化的,直接导出公式的方法称比值公式法,利用迭代求解的方法称为比值迭代公式法,用搜索求解的方法称比值峰值搜索法。研究表明,加Hanning 窗的比例校正法精度非常高,频率误差小于0.0001f ?,幅值误差小于万分之一,相位误差小于1度。 (1)频率校正 频率校正即求出主瓣中心的横坐标。设窗函数的频谱函数为 ()x f ,()x f 对称于y 轴,见图3.1.1。对于任一x ,窗谱函数为()x f , 离散频谱为y x ;对于任一()1+x ,窗谱函数为()1+x f ,离散频谱为y x +1,构造v 为间隔为1的两点()x f 、()1+x f 的比值函数,由()x f 、 ()1+x f 、y x 和y x +1就能求出x 。由于f(x)的函数表达式为已知,故 可构造一函数 v F x f x f x y y x x == +=+()() ()11 (3.1.1) v 是间隔为1的两点的比值,是x 的函数,对上式解出其反函数: x g v =() (3.1.2) 即求解谱线校正量x k x -=?=?,这种方法称为比值公式法。 校正频率为: N f k k f s x ) (?+= (3.1.3) 式中,()12/,,2,1,0-=N k k 为谱线号,N 为分析点数,s f 为采样频率。 (2)幅值校正 设窗函数的频谱模函数为()x f ,主瓣函数为: )(0x x Af y -= (3.1.4) 这就是信号频谱与窗函数卷积的结果,式中,A 为真实幅值,对应主瓣中心0x ,现将k y y =,k x =代 入式(3.1.4)得:

谱校正方法

谱校正方法 采样间隔归一化成1T ?=,采样长度为N .这样FFT 离散谱线为0,1)i X i N =-(,相应的频率分辨率2/(1/)N f N ωπ?=?=. 设FFT 离散谱线局部极高谱线为m (为了数学上简洁,假定从0开始,注意在MATLAB 环境下数组实际操作的是从1开始),记频偏量δωδω=?. 我们需要使用谱线m 和与之相邻一条次高谱线,记这连续两条谱线中左边一条序号为M (当次高谱线在m 左侧时1M m =-,反之M m =). 下面列出若干算法的δ计算公式 1. 加矩形窗的精确谱校正[1] i i i X U jV =+ 111()sin()()cos()M M M M opt M M V V M U U M K U U ωω+++-?+-?=- 1211cos()sin()cos()sin()opt M M opt M M K M Z V U M K M Z V U M ωωωωωω++-???=+?????-?+???=+???+??? 2121 cos()cos()()Z M Z M M m Z Z ωωωδ?+?-?=+-- 2. 加矩形窗情形,采用解析单频模型的幅值比校正[1, 2] 11||()|||| M M M X M m X X δ++=+-+ 3. 加汉宁窗情形,采用解析单频模型的幅值比校正[1, 2] 112||||()|||| M M M M X X M m X X δ++-=+-+ 4. 加矩形窗情形,采用解析单频模型的复比值校正[3] 1 1Re ()M M M X M m X X δ++??=+- ?-?? 5. 加汉宁窗情形,采用解析单频模型的复比值校正[3] 112()M M M M X X M m X X δ+++=+-- 6. 加矩形窗情形,采用解析单频模型的复合复比值校正[3]

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三 用FFT 对信号进行频谱分析 一 实验目的 1 能够熟练掌握快速离散傅立叶变换的原理及应用FFT 进行频谱分析的基本方法; 2了解用FFT 进行频谱分析可能出现的分析误差及其原因; 二 实验原理 1.用DFT 对非周期序列进行谱分析 单位圆上的Z 变换就是序列的傅里叶变换,即 ()()j j z e X e X z ωω== (3-1) ()j X e ω是ω的连续周期函数。对序列()x n 进行N 点DFT 得到()X k ,则()X k 是在区间[]0,2π上对()j X e ω的N 点等间隔采样,频谱分辨率就是采样间隔 2N π。因此序列的傅里叶变换可利用DFT (即FFT )来计算。 用FFT 对序列进行谱分析的误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而非周期序列的频谱是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 2.用DFT 对周期序列进行谱分析 已知周期为N 的离散序列)(n x ,它的离散傅里叶级数DFS 分别由式(3-2)和(3-3) 给出: DFS : ∑-=-=1 2)(1N n kn N j k e n x N a π , n =0,1,2,…,N -1 (3-2) IDFS : ∑-==1 02)(N k kn N j k e a n x π , n =0,1,2,…,N -1 (3-3) 对于长度为N 的有限长序列x (n )的DFT 对表达式分别由式(3-4)和(3-5)给出: DFT : ∑-=-=1 02)()(N n kn N j e n x k X π , n =0,1,2,…,N -1 (3-4) IDFT : ∑-==1 02)(1)(N k kn N j e k X N n x π , n =0,1,2,…,N -1 (3-5) FFT 为离散傅里叶变换DFT 的快速算法,对于周期为N 的离散序列x (n )的频谱分析便可由式(3-6)和(3-7)给出:

频谱分析

频谱分析 利用傅里叶变换的方法对振动的信号进行分解,并按频率顺序展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析。 怎样进行频谱分析: 利用频谱分析仪进行测量,输入信号不能有失真,因此要按特定应用的要求设置频谱分析仪和优化测量步骤,以达到最好的技术指标。下面的测量提示对这些步骤有详细的说明。 1. 选择最好的分辨率带宽 (RBW) 必须认真考虑分辨率带宽 (RBW)的设置,因为他关系到频谱成分的分离,适宜的噪声基底的设置和信号的解调。 通过低电平信号的测量,可以看到使用窄RBW的优点。在使用窄RBW时,频谱分析仪显示出较低的平均噪声级 (DANL),且动态范围增加,灵敏度有所改进。在图3中,把RBW从100kHz改变到10kHz 将能更好地分辨-95dBm的信号。 但并非任何情况都是最窄的RBW最好。对于调制信号,RBW一定要设置得足够宽,使它能将信号边带包括在内。如果忽略这一点,测量将是极不精确的。窄RBW设置的一项重要缺点是扫频速度。更宽的RBW设置在给定频率范围内允许更快的扫频。图4和图5比较了在200MHz频率范围内,10kHz和 3kHzRBW的扫频时间。 一定要知道RBW 选择时所必须的基本权衡因素,使得用户在明白哪些参数最为重要的时候,给以适当的优化。但在权衡不可避免时,

现代频谱分析仪可为您提供弱化,甚至消除这些因素的方法。通过使用数字信号处理,频谱分析仪在实现更精确的测量的同时还提供更高的速度,即使是使用窄RBW。 2. 改进测量精度 在进行任何测量前,必须了解有哪些可以改进幅度和频率测量精度的技术。 自校准功能可用来产生误差校正系数 (例如幅度改变—分辨率带宽),分析仪随后用它校正测量数据,得到更好的幅度测量结果,并使您能在测量过程中更灵活地改变控制。 当被测装置接到经校准的分析仪时,信号传输网络可能会使感兴趣信号减弱或变形,必须在测量中排除这一影响,见图6。一种方法是使用分析仪的内置幅度校正功能,一个信号源以及一个功率表。图7给出了一个对DUT信号产生衰减的信号传输网络的频率响应。为消除这一有害效应,可在测量范围内若干存在问题的频率点上测量信号传输网络的衰减或增益。幅度校正给出频率—幅度表,用直线连接这些点得到“校正”波形,然后按这些校正值对输入信号进行偏置。在图8 中,信号传输网络不需要的衰减和增益已从测量中消除,

MATLAB中FFT的使用方法(频谱分析)

说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[4 3 2 6 7 8 9 0]; Xk=fft(xn) → Xk = 39.0000 -10.7782 + 6.2929i 0 - 5.0000i 4.7782 - 7.7071i 5.0000 4.7782 + 7.7071i 0 + 5.0000i -10.7782 - 6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。 clf; fs=100;N=128; %采样频率和数据点数

n=0:N-1;t=n/fs; %时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求得Fourier变换后的振幅 f=n*fs/N; %频率序列 subplot(2,2,1),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t); %信号 y=fft(x,N); %对信号进行快速Fourier变换 mag=abs(y); %求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag); %绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2)); %绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on;

FFT频谱分析实验报告

实验二:用FFT作谱分析 一、实验目的 (1) 进一步加深DFT算法原理和基本性质的理解(因为FFT只是DFT的一种快速算法,所以FFT的运算结果必然满足DFT的基本性质)。 (2) 熟悉FFT算法原理和FFT子程序的应用。 (3) 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT。 二、实验原理

三、实验内容 (1) 对2 中所给出的信号逐个进行谱分析。解:(1) n=0:3; xn1=[1 1 1 1]; XK18=fft(xn1,8); XK116=fft(xn1,16); n1=0:7; n2=0:15; subplot(131); stem(n,xn1); xlabel('n'); ylabel('xn1'); subplot(132); stem(n1,abs(XK18)); xlabel('n1'); ylabel('XK18'); title('xn的8点'); subplot(133); stem(n2,abs(XK116)); xlabel('n2'); ylabel('XK116'); title('xn的16点');

(2) n1=0:7; n2=0:15; xn2=[1 2 3 4 4 3 2 1]; XK28=fft(xn2,8); XK216=fft(xn2,16); subplot(131); stem(n1,xn2); xlabel('n1'); ylabel('xn2'); subplot(132); stem(n1,abs(XK28)); xlabel('n1'); ylabel('XK28'); title('xn2的8点'); subplot(133); stem(n2,abs(XK216)); xlabel('n2'); ylabel('XK216'); title('xn2的16点'); (3) n1=0:7; n2=0:15; xn3=[4 3 2 1 1 2 3 4]; XK38=fft(xn3,8);

相关文档