文档库 最新最全的文档下载
当前位置:文档库 › 大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验报告——碰撞与动量守恒
大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告

碰撞和动量守恒

班级:信息1401 姓名:龚顺学号: 0127

【实验目的】:

1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。

2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。

【实验原理】

当一个系统所受和外力为零时,系统的总动量守恒,即有

若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。

1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有:

取V20=0,联立以上两式有:

动量损失率:

动能损失率:

2,完全非弹性碰撞

碰撞后两物体粘在一起,具有相同的速度,即有:

仍然取V20=0,则有:

动能损失率:

动量损失率:

3,一般非弹性碰撞中

一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数:

两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有:

e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。

当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

动能损失:

【实验仪器】

本实验主要仪器有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等

【实验内容】

一、气垫导轨调平及数字毫秒计的使用

1、气垫导轨调平

打开气源,放上滑块,观察滑块与轨面两侧的间隙纵向水平调节双支脚螺丝,横向水平调节单支脚,直到滑块在任何位置均保持不动,或做极缓慢的来回滑动为止。动态法调平,滑块上装挡光片,使滑块以缓慢速度先后通过两个相距60cm的光电门,如果滑块通过两光电门的时间差小于1ms,便可认为轨道已经调平。本实验采用动态调节。

2、数字毫秒计的使用

使用U型挡光片,计算方式选择B档。

二滑块上分别装上弹簧圈碰撞器。将小滑块m2置于两个相距40cm的光电门之间,使其静止,使大滑块m1以速度V10去碰撞m2,从计时器上读出碰撞前后通过S距离所用的时间t10,t1,t2.记录数据。

二、重复5次测量,计算动量和动能损失。损失率小于5%即可认为是动量守恒的。

三、将两个钢圈换成两个尼龙搭扣,重复上述实验。

四、将尼龙搭扣换成非弹性碰撞器,重复上述实验。

【数据处理】

一、完全弹性碰撞实验数据

二一般非弹性碰撞实验数据

三完全非弹性碰撞实验数据

【实验结论】

1 完全弹性碰撞

由实验数据可知,在完全弹性碰撞下系统内无机械能的损失,只产生机械能的转移,系统动量和机械能同时守恒。

2 一般非弹性碰撞

由实验数据知,在非弹性力的作用下,系统的一部分机械能转化为物体的内能机械能存在损失,机械能不守恒。但在允许误差范围内动量守恒。

3 完全非弹性碰撞

由实验数据可知,当相互作用力是完全非弹性力,此时机械能向内能的转化最大,机械能的损失最大,机械能不守恒,但此过程中动量守恒。

【思考题】

1、碰撞前后系统总动量不相等,试分析其原因。

答:粘滞阻力,阻尼系数大小,系统恢复速度,气流速度,系统负载大小,都会影响实验结果。

2、恢复系数e的大小取决于哪些因素?

答:碰撞物体的材料,系统环境等。

3、你还能想出验证机械能守恒的其他方法吗?

答:通过研究自由落体运动,单摆运动等方法可以验证。

高中物理第一章碰撞与动量守恒第1节碰撞教学案教科版

第1节碰__撞 (对应学生用书页码P1) 一、碰撞现象 1.碰撞 做相对运动的两个(或几个)物体相遇而发生相互作用,运动状态发生改变的过程。 2.碰撞特点 (1)时间特点:在碰撞过程中,相互作用时间很短。 (2)相互作用力特点:在碰撞过程中,相互作用力远远大于外力。 (3)位移特点:在碰撞过程中,物体发生速度突变时,位移极小,可认为物体在碰撞前后仍在同一位置。 试列举几种常见的碰撞过程。 提示:棒球运动中,击球过程;子弹射中靶子的过程;重物坠地过程等。 二、用气垫导轨探究碰撞中动能的变化 1.实验器材 气垫导轨,数字计时器、滑块和光电门,挡光条和弹簧片等。 2.探究过程 (1)滑块质量的测量仪器:天平。 (2)滑块速度的测量仪器:挡光条及光电门。 (3)数据记录及分析,碰撞前、后动能的计算。 三、碰撞的分类 1.按碰撞过程中机械能是否损失分为: (1)弹性碰撞:碰撞过程中动能不变,即碰撞前后系统的总动能相等,E k1+E k2=E k1′+ E k2′。 (2)非弹性碰撞:碰撞过程中有动能损失,即动能不守恒,碰撞后系统的总动能小于碰撞前系统的总动能。 E k1′+E k2′<E k1+E k2。 (3)完全非弹性碰撞:碰撞后两物体黏合在一起,具有相同的速度,这种碰撞动能损失最大。 2.按碰撞前后,物体的运动方向是否沿同一条直线可分为: (1)对心碰撞(正碰):碰撞前后,物体的运动方向沿同一条直线。 (2)非对心碰撞(斜碰):碰撞前后,物体的运动方向不在同一直线上。(高中阶段只研究

正碰)。 (对应学生用书页码P1) 探究一维碰撞中的不变量 1.探究方案方案一:利用气垫导轨实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为数字计时器显示的 滑块(挡光片)经过光电门的时间。 (3)各种碰撞情景的实现:利用弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥设计各种类型的碰撞,利用滑块上加重物的方法改变碰撞物体的质量。 方案二:利用等长悬线悬挂等大小球实现一维碰撞 (1)质量的测量:用天平测量。 (2)速度的测量:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度。 (3)不同碰撞情况的实现:用贴胶布的方法增大两球碰撞时的能量损失。 方案三:利用小车在光滑桌面上碰撞另一静止小车实现一维碰撞。 (1)质量的测量:用天平测量。 (2)速度的测量:v =Δx Δt ,Δx 是纸带上两计数点间的距离,可用刻度尺测量。Δt 为小 车经过Δx 所用的时间,可由打点间隔算出。 2.实验器材 方案一:气垫导轨、光电计时器、天平、滑块(两个)、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。 方案二:带细线的摆球(两套)、铁架台、天平、量角器、坐标纸、胶布等。 方案三:光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。 3.实验步骤 不论采用哪种方案,实验过程均可按实验方案合理安排,参考步骤如下: (1)用天平测相关质量。 (2)安装实验装置。 (3)使物体发生碰撞。 (4)测量或读出相关物理量,计算有关速度。 (5)改变碰撞条件,重复步骤(3)、(4)。

大学物理仿真实验报告

实验名称:碰撞过程中守恒定律的研究 实验日期: 实验人: 1. 实验目的: 利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 2. 实验仪器和使用: 实验仪器:主要有气轨、气源、滑块、挡光片、光电门、游标卡尺、米尺和光电计时装置等。 1.气垫导轨是以空气作为润滑剂,近似无摩擦的力学实验装置。导轨由优质三角铝合金管制成,长约 2m ,斜面宽度约7cm ,管腔约18.25cm ,一端密封,一端通入压缩空气。铝管向上的两个外表面钻有许多喷气小孔,压缩空气进入管腔后,从小孔喷出。导轨的一端装有滑轮,导轨的二端装有缓冲弹簧,整个导轨安装在工字梁上,梁下有三个支脚,调节支脚螺丝使气垫保持水平。 2.光电计时系统由光电门和数字毫秒计或电脑计时器构成。光电门安装在气轨上,时间由数字毫秒计或电脑计时器测量。 3.气源是向气垫导轨管腔内输送压缩空气的设备。要求气源有气流量大、供气稳定、噪音小、能连续工作的特点,一般实验室采用小型气源,气垫导轨的进气口用橡皮管和气源相连,进入导轨内的压缩空气,由导轨表面上的小孔喷出,从而托浮起滑块,托起的高度一般在0.1mm 以上。 3.实验原理: 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 i i v m ∑=恒量 (1) 实验中用两个质量分别为m 1、m 2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 2211202101v m v m v m v m +=+ (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v 可改成标量 , 的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

大学物理仿真实验报告

大学物理仿真实验报告 姓名: 学号: 班级:

实验-----利用单摆测量重力加速度 实验目的 利用单摆来测量重力加速度 实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度 实验仪器 单摆仪、摆幅测量标尺、钢球、游标卡尺 实验内容 一.用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤.

(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计 要求. 三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素 的关系,试分析各项误差的大小. 四.自拟试验步骤用单摆实验验证机械能守恒定律. 实验数据 摆线长+小球直径L=91.50cm

D(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s 所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以: g=(9.751±0.026) 实验结论与误差分析: 结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。 误差分析: 1.若θ>5°(即角度过大)因为T 与θ相关,当θ越大时T也越大,所以θ偏大,测量 值比值偏小。

1 实验:验证动量守恒定律

一、多选题 二、实验题【优教学】专题1 实验:验证动量守恒定律 相似题纠错收藏详情加入试卷 1. 在“碰撞中的动量守恒实验”中,实验必须满足的条件是() A.斜槽轨道必须光滑 B.斜槽轨道末端的切线必须水平 C.入射小球每次都要从同一高度由静止滚下 D.碰撞的瞬间,入射小球和被碰小球的球心连线与轨道末端的切线平行 2. 某同学用如图所示的装置,利用两个大小相同的小球做对心碰撞来验证动量守恒定律,图中AB是斜槽,BC是水平槽,它们平滑连接,O点为铅垂线所指的位置.实验时先不放置被碰球2,让球1从斜槽上的某一固定位置G由静止开始滚下,落到位于水平地面上的记录纸上,留下痕迹,重复10次,然后将球2置于水平槽末端,让球1仍从位置G由静止滚下,和球2碰撞,碰后两球分别在记录纸上留下各自的痕迹,重复10次。实验得到小球的落点的平均位置分别为M、N、P . (1)在此实验中,球1的质量为m1,球2的质量为m,需满足m1__________m2(填“大于”“小于”或“等于”). (2)在该实验中,应选用的器材是下列器材中的__________. A.天平B. 游 标

卡尺多 C.刻度尺D.两个大小相同的钢球 E.大小相同的钢球和硬橡胶球各1个 (3)被碰球2飞行的水平距离由图中线段表_____________表示. (4)若实验结果满足________,就可以验证碰撞过程中动量守恒. 3. 在“探究碰撞中的不变量”实验中常会用到气垫导轨,导轨与滑块之间形成空气垫,使滑块在导轨上运动时几乎没有摩擦.现在有滑块A、B和带竖直挡板C、D的气垫导轨,用它们探究碰撞中的不变量,实验装置如图所示(弹簧的长度忽略不计).采用的实验步骤如下: a.用天平分别测出滑块A、B 的质量、; b.调整气垫导轨使之水平; c.在A、B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上; d.用刻度尺测出A的左端至挡板C 的距离; e.按下电钮放开卡销,同时开始计时,当A、B滑块分别碰撞挡板C、D时结束计时,记下A、B分别到达C、D 的运动时间和. (1)实验中还应测量的物理量及其符号是____________. (2)若取A滑块的运动方向为正方向,则放开卡销前,A、B两滑块质量与速度乘积之和为________;A、B两滑块与弹簧分离后,质量与速度乘积之和为________.若这两个和相等,则表示探究到了“碰撞中的不变量”. (3)实际实验中,弹簧作用前后A、B两滑块质量与速度乘积之和并不完全相等,可能产生误差的原因有_______. A.气垫导轨不完全水平 B.滑块A、B的质量不完全相等 C.滑块与导轨间的摩擦力不真正为零 D.质量、距离、时间等数据的测量有误差

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

大学物理仿真实验报告-碰撞与动量守恒

大学物理仿真实验报告 实验名称 碰撞与动量守恒 班级: 姓名: 学号: 日期:

碰撞和动量守恒 实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥

或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有 (7) (8) 动量损失率为 (9) 能量损失率为 (10)

大学物理仿真实验报告牛顿环分析

大学物理仿真实验报告 实验名称:牛顿环法测曲率半径实验日期: 专业班级: 姓名:学号: 教师签字:________________ 一、实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 二、实验仪器 牛顿环仪,读数显微镜,钠光灯,入射光调节架。 三、实验原理 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平 凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形 成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到 透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜 的上下表面反射的两条光线来自同一条入射光线,它们满 足相干条件并在膜的上表面相遇而产生干涉,干涉后的强 度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1) 当?满足条件(2)时,发生相长干涉,出现第K级亮纹,而当(k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。

如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出(10)由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

经典验证动量守恒定律实验练习题(附答案)

· 验证动量守恒定律由于v 1、v1/、v2/均为水平方向,且它们的竖直下落高 度都相等,所以它们飞行时间相等,若以该时间为时间单位,那么小球的水平射程的数值就等于它们的水平速度。在右图中分别用OP、OM和O/N表示。因此只需验证: m 1OP=m 1 OM+m 2 (O/N-2r)即可。 注意事项: ⑴必须以质量较大的小球作为入射小球(保证碰撞后两小球都向前运动)。 ⑵小球落地点的平均位置要用圆规来确定:用尽可能小的圆把所有落点都圈 在里面,圆心就是落点的平均位置。 ⑶所用的仪器有:天平、刻度尺、游标卡尺(测小球直径)、碰撞实验器、复写纸、白纸、重锤、两个直径相同质量不同的小球、圆规。 ⑷若被碰小球放在斜槽末端,而不用支柱,那么两小球将不再同时落地,但两个小球都将从斜槽末端开始做平抛运动,于是验证式就变为: m 1OP=m 1 OM+m 2 ON,两个小球的直径也不需测量 《 实验练习题 1. 某同学设计了一个用打点计时器验证动量守恒定律的实验:在小车A的前m 端粘有橡皮泥,推动小车A使之作匀速运动。然后与原来静止在前方的小车B 相碰并粘合成一体,继续作匀速运动,他设计的具体装置如图所示。在小车A 后连着纸带,电磁打点计时器电源频率为50Hz,长木板垫着小木片用以平衡摩擦力。 若已得到打点纸带如上图,并测得各计数点间距标在间上,A为运动起始的第一点,则应选____________段起计算A的碰前速度,应选___________段来计算A 和B碰后的共同速度。(以上两格填“AB”或“BC”或“CD”或“DE”)。已测得 小l车A的质量m 1=0.40kg,小车B的质量m 2 =0.20kg,由以上测量结果可得:碰 前总动量=__________kg·m/s. 碰后总动量=_______kg·m/s 2.某同学用图1所示装置通过半径相同的A. B两球的碰撞来验证动量守恒定律。图中PQ是斜槽,QR为水平槽,实验时先使A球从斜槽上某一固定位置G由静止开始滚下,落到位于水平地面的记录纸上,留下痕迹。重复上述操作10次,得到10个落点痕迹再把B球放在水平槽上靠近槽末端的地方,让A球仍从位置G

大学物理仿真实验实验报告 超声波测声速

大学物理仿真实验实验报告 试验日期: 实验者: 班级: 学号: 超声波测声速 一实验原理 由波动理论可知,波速与波长、频率有如下关系:v = f λ,只要知道频率和波长就可以求出波速。本实验通过低频信号发生器控制换能器,信号发生器的输出频率就是声波频率。声波的波长用驻波法(共振干涉法)和行波法(相位比较法)测量。下图是超声波测声速实验装置图。 驻波法测波长 由声源发出的平面波经前方的平面反射后,入射波与发射波叠加,它们波动方程分 别是:

叠加后合成波为: 的各点振幅最大,称为波腹,对应的位置: ( n =0,1,2,3……) 的各点振幅最小,称为波节,对应的位置: ( n =0,1,2,3……) 二实验仪器 1)声速的测量实验仪器 包括超声声速测定仪、函数信号发生器和示波器 2)超声声速测定仪 主要部件是两个压电陶瓷换能器和一个游标卡尺。 3)函数信号发生器 提供一定频率的信号,使之等于系统的谐振频率。 4)示波器 示波器的x, y轴输入各接一个换能器,改变两个换能器之间的距离会影响示波器上的图形。并由此可测得当前频率下声波的波长,结合频率,可以求得空气中的声速。 三实验内容 1.调整仪器使系统处于最佳工作状态。 2.用驻波法(共振干涉法)测波长和声速。 3.用相位比较法测波长和声速。

*注意事项 1.确保换能器S1和S2端面的平行。 2.信号发生器输出信号频率与压电换能器谐振频率f 0保持一致。 三 数据记录与处理 1. 基础数据记录 谐振频率=33.5kHz 2. 驻波法测量声速 λ的平均值:==∑=1 6i i λλ 1.0585(cm ) λ的不确定度: ) 1()(6 1 2 --= ∑=i i S i i λλ λ=0.002(cm ) 因为,λi = (1i+6-1i ) /3,Δ仪=0.02mm 所以,=仪?= 3 32λu 0.000544(cm ) =+=22λ λλσu S 0.021(mm ) 计算声速: 50.354==λυf (m/s ) 计算不确定度: (m/s) 3)()((kHz) 2.03 %122=+==?= f f f f λσσσσλυ 实验结果表示:υ=(354±3)m/s ,=0.8% 3. 相位比较法测量声速

动量守恒定律及应用(包括验证动量守恒的实验)

动量守恒定律及其应用复习教案 (实验:验证动量守恒定律) 一、动量 1.定义:物体的质量与速度的乘积. 2.表达式:p=□01____,单位kg·m/s. 3.动量的性质 (1)矢量性:方向与□02______速度方向相同. (2)瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的. (3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量.4.动量、动能、动量的变化量的关系 (1)动量的变化量:Δp=p′-p. (2)动能和动量的关系:E k=p2 2m . 二、动量守恒定律 1.守恒条件 (1)理想守恒:系统□03______________外力或所受外力的合力为□04______,则系统动量守恒. (2)近似守恒:系统受到的合力不为零,但当□05______远大于外力时,系统的动量可近似看成守恒. (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.动量守恒定律的表达式: m1v1+m2v2=□06__________或Δp1=-Δp2. 三、碰撞 1.碰撞

物体间的相互作用持续时间□07________,而物体间相互作用力□08______的现象. 2.特点 在碰撞现象中,一般都满足内力□09________外力,可认为相互碰撞的系统动量守恒.3.分类 ,1-1.下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量也保持不变 D.物体的动量变化越大则该物体的速度变化一定越大 1-2.(2014·广州调研)两个质量不同的物体,如果它们的( ) A.动能相等,则质量大的动量大 B.动能相等,则动量大小也相等 C.动量大小相等,则质量大的动能小 D.动量大小相等,则动能也相等 2-1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是( ) A.枪和弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒 2-2.如图所示,放在光滑水平面上的两物体,它们之间有一个被压缩的轻质弹簧,用细线把它们拴住.已知两物体质量之比为m1∶m2=2∶1,把细线烧断后,两物体被弹开,速

大学物理仿真实验报告 碰撞与动量守恒

大学物理仿真实验报告 实验目的 利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律, 定量研究动量损失和能量损失在工程技术中有重要意义。 同时通过实验还可提高误差分析的能力。 实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 实验中用两个质量分别为m1、m2的滑块来碰撞(图1),若忽略气流阻力,根据动量守恒有 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可 改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取 负号。 完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 由(3)、(4)两式可解得碰撞后的速度为

如果v20=0,则有 动量损失率为 能量损失率为 理论上,动量损失和能量损失都为零,但在实验中,由于空气阻力和气垫导轨本身的原因,不可能完全为零,但在一定误差范围内可认为是守恒的。 完全非弹性碰撞 碰撞后,二滑块粘在一起以10同一速度运动,即为完全非弹性碰撞。在完全非弹性碰撞中,系统动量守恒,动能不守恒。 在实验中,让v20=0,则有 动量损失率 动能损失率

一般非弹性碰撞 一般情况下,碰撞后,一部分机械能将转变为其他形式的能量,机械能守恒在此情况已不适用。牛顿总结实验结果并提出碰撞定律:碰撞后两物体的分离速度与碰撞前两物体的接近速度成正比,比值称为恢复系数,即 恢复系数e由碰撞物体的质料决定。E值由实验测定,一般情况下0m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个 光电门的时间Δt2,重复五次,记录所测数据,数据表格自拟,计算

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

实验1 动量守恒定律的研究

实验1 动量守恒定律的研究 ――气垫导轨实验(一) 气垫技术是20世纪60年代发展起来的一种新技术,这一新技术克服了物体与运动表面之间的摩擦阻力,减少了磨损,延长了仪器寿命,提高了机械效率。因此,在机械、电子、纺织、运输等领域中得到了广泛的应用,如激光全息实验台、气垫船、空气轴承、气垫输送带等。 气垫导轨(Air track )是采用气垫技术的一种阻力极小的力学实验装置。利用气源将压缩空气打入导轨腔内,再由导轨表面上的小孔喷出气流,在导轨与滑行器(滑块)之间形成很薄的空气薄膜,浮起滑块,使滑块可以在导轨上作近似无阻力的直线运动,为力学实验创造了较为理想的测量条件。在力学实验中,利用气垫导轨可以观察和研究在近似无阻力情况下物体的各种运动规律,极大地减少了由于摩擦力的存在而出现的较大误差,大大提高了实验的精确度。利用气垫导轨和光电计时系统,许多力学实验可以进行准确的定量分析和研究,使实验结果接近理论值,实验现象更加真实、直观。如速度和加速度的测量,重力加速度的测定,牛顿运动定律的验证,动量守恒定律的研究,谐振运动的研究,等等。 动量守恒定律是自然界的一个普遍规律,不仅适用于宏观物体,也适用于微观粒子,在科学研究和生产技术方面都被广泛应用。本实验通过两个滑块在水平气垫导轨上的完全弹性碰撞和完全非弹性碰撞过程来研究动量守恒定律。 【实验目的】 1.了解气垫导轨的基本构造和功能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本组成和原理,掌握电脑通用计数器的使用方法。 3.用观察法研究完全弹性碰撞和完全非弹性碰撞的特点。 4.验证动量守恒定律,学会判断实验是否能够验证理论的基本方法。 【实验原理】 1.碰撞与动量守恒定律 如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。 在一直线上运动的两个物体,质量分别为1m 和2m ,在水平方向不受外力的情况下发生碰撞,碰撞前的运动速度为10v 和20v ,碰撞后的运动速度为1v 和2v ,则由动量守恒定律可得 2211202101v m v m v m v m +=+ (1) 实验中利用气垫导轨上两个滑块的碰撞来研究动量守恒定律。 2.完全弹性碰撞 完全弹性碰撞的特点是碰撞前后系统的动量守恒,机械能也守恒。如图1所示,如果在两个滑

碰撞和动量守恒_大物仿真实验

大学物理仿真实验 实验名称碰撞和动量守恒实验日期2012年11月21日 姓名班级学号 一、实验简介 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 二、实验目的 1.利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律; 2.通过实验提高误差分析的能力。 三、实验原理 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2)

对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3) (4) 由(3)、(4)两式可解得碰撞后的速度为 (5) (6) 如果v20=0,则有

大学物理仿真实验报告

大学物理仿真实验报告

单摆测量重力加速度 一、实验目的 本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。 二、实验原理 单摆的结构如实验仪器中所示,其一级近似周期公式为: 由此公式可知,测量周期与摆长就可以计算得到重力加速度g 三、实验内容 一用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤. (3) 用自制的单摆装臵测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求. 三. 自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,

空气阻力等因素的关系,试分析各项误差的大小. 四. 自拟试验步骤用单摆实验验证机械能守恒定律. 四、实验仪器实验仪器 单摆仪,摆幅测量标尺,钢球,游标卡尺

碰撞与动量守恒实验报告

大学物理仿真实验 ——碰撞与动量守恒 实 验 报 告

一、实验简介: 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 二、实验容: 1.研究三种碰撞状态下的守恒定律 (1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个光电门的时间Δt2,重复五次,记录所测数据,数据表格自 拟,计算、。 (2)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。 (3)分别在两滑块上换上金属碰撞器,重复上述测量和计算。 2.验证机械能守恒定律 (1)a=0时,测量m、m’、m e、s、v1、v2,计算势能增量mgs和动能增量 ,重复五次测量,数据表格自拟。 (2)时,(即将导轨一端垫起一固定高度h,),重复以上测量。

三、实验原理: 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3)

动量守恒定律实验复习题

m1 m2 P M N 0` 姓名 动量守恒实验期末复习 一、实验目的:1、研究碰撞(对心正碰)中的动量守恒;2、培养学生的动手实验能力和探索精神 二、实验器材 斜槽轨道(或J2135-1型碰撞实验器)、入射小球m 1和被碰小球m 2、天平(附砝码一套)、游标卡尺、毫米刻度尺、白纸、复写纸、圆规、小铅锤 注意: ①选球时应保证入射球质量m 1大于被碰小球质量m 2,即m 1>m 2,避免两球落点太近而难找落地点; ②避免入射球反弹的可能,通常入射球选钢球,被碰小球选有机玻璃球或硬胶木球。 ③球的半径要保证r 1=r 2(r 1、r 2为入射球、被碰小球半径),因两球重心等高,使碰撞前后入射钢球能恰好由螺钉支柱顶部掠过而不相碰,以免影响球的运动。 三、实验原理 测质量的工具: 测速度的方案: 由于入射球和被碰小球碰撞前后均由同一高度飞出做平抛运动,飞行时 间相等,若取飞行时间为单位时间,则可用相等时间内的水平位移之比代替 水平速度之比。 注意:如图所示,根据平抛运动性质,入射球碰撞前后的速度分别为 v 1=t OP ,v 1`=t OM ,被碰小球碰后速度为v2`=t N O t OO ON ``=- 被碰小球碰撞前后的时间仅由下落高度决定,两球下落高度相同,时间 相同,所以水平速度可以用水平位移数值表示,如图所示;v 1用OP 表示;v′1 用OM 表示,v′2用O`N 表示,其中O 为入射球抛射点在水平纸面上的投影, (由槽口吊铅锤线确定)O′为被碰小球抛射点在水平纸面上的投影,显然明确上述表示方法是实验成功的关键。 于是,上述动量关系可表示为:m 1·OP= m 1·OM+m 2·(ON-2r),通过实验验证该结论是否成立。 三、实验步骤 (1)将斜槽固定在桌边使末端点的切线水平。 (2)让入射球落地后在地板上合适的位置铺上白纸并在相应的位置铺上复写纸。 (3)用小铅锤把斜槽末端即入射球的重心投影到白纸上O 点。 (4)不放被碰小球时,让入射小球10次都从斜槽同一高度由阻止开始滚下落在复写纸上,用圆规找出 落点的平均位置P 点。 (5)把入射球放在槽口末端露出一半,调节支柱螺柱,使被碰小球与入射球重心等高且接触好,然后 让入射球在同一高度滚下与被碰小球碰10次,用圆规找出入射球和碰小球的平均位置M 、N 。 (6)用天平测出两个球的质量记入下表,游标卡尺测出入射球和被碰小球的半径r 1和r 2,在ON 上取 OO`=2 r ,即为被碰小球抛出点投影,用刻度尺测出其长度,记录入表内。 (7)改变入射球的高度,重复上述实验步骤,再做一次。 注意:①重做实验时,斜槽、地板上白纸的位置要始终保持不变; ②入射球的高度要适宜,过高会使水平速度偏大,致使落地点超越原地白纸;过低会使碰撞前后速度偏小,使落地点彼此靠近分不清,测量两球的水平位移分度不大。

相关文档
相关文档 最新文档