文档库 最新最全的文档下载
当前位置:文档库 › 三角函数的和差化积与积化和差同步练习(含答案)

三角函数的和差化积与积化和差同步练习(含答案)

三角函数的和差化积与积化和差同步练习(含答案)
三角函数的和差化积与积化和差同步练习(含答案)

三角函数的和差化积与积化和差 同步练习 y

1、函数 sin( 3) cos

的最大值是( ) 23

1

23 A .1 B . 4

C . 4

D . 4 sin7 cos15 sin8

2. cos7 sin15 sin8 的值是( )

3、 cos37.5 cos22.5

的值为( ) 362 62

A 、 2 4 B

、4 1 3 6 2 1 1 6 2

2 3 2 3

B . 2

C . 2

D . 2 3 4、 sin

4 cos

化和差的结果是

A 、 1 sin( 2

1 cos(

2 1 cos( 1 sin( 2 C 、

1sin( 2 1 sin( 2 D 、 1cos( 2 1cos( 2

2 2 4

C 、

D 2 2 4 、

5、求下列各式的值。

cos20 cos40 cos80 。

1) sin20 sin40 sin80 ;(2)

6、不查表求值。

sin117 cos70 cos129 sin 44 cos246 cos109 。

y sin x cos x

7、求函数6的最小值。

31

sin80 cos40 sin 40

8、求证:

4 2

tan tan 9、已知3

2 ,求证:

cos( ) 5 cos( ) 0

1 1 43

10、若sin(120 x) sin(120 x) 3,求cos x的值。

sin3xsin3x cos3x cos3 x

y 2sin 2 x

11、求函数cos2 2 x 的最小值。

5

cos cos

12、3.8 8 =

y cosx cos(x )

13.函数3的最大值是__________ _

22

14.求sin 10 cos 40 sin 10 cos40 的值

4

cos

5 ,求 2 的值.

16、在直角坐标系中,已知A(cos , sin ), B(cos , sin

cos( 15.已知) coa cos , cos

2

),C(433,2 2),

且△ ABC的重心

23

在( 3 ,2)处,求cos( )及tan tan

的值

答案:

1 、 D

2 、 D

3 、D

4 、 D

12、

三角函数诱导公式、万能公式、和差化积公式、倍角公式等公式总结及其推导

三角函数诱导公式: 诱导公式记忆口诀:“奇变偶不变,符号看象限”。 “奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n?(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。 符号判断口诀: “一全正;二正弦;三两切;四余弦”。这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。 “ASCT”反Z。意即为“all(全部)”、“sin”、“cos”、“tan”按照将字母Z反过来写所占的象限对应的三角函数为正值。 三角函数诱导公式- 其他三角函数知识 同角三角函数的基本关系式 倒数关系 tanα?cotα=1 sinα?cscα=1 cosα?secα=1 商的关系 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系 sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 同角三角函数关系六角形记忆法 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 倒数关系 对角线上两个函数互为倒数; 商数关系 六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积,下面4个也存在这种关系。)。由此,可得商数关系式。 平方关系 在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ )/(1-tanα ?tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ?tanβ) 二倍角的正弦、余弦和正切公式 sin2α=2sinαcosα

三角函数公式的推导及公式大全

诱导公式 目录·诱导公式 ·诱导公式记忆口诀 ·同角三角函数基本关系 ·同角三角函数关系六角形记忆法 ·两角和差公式 ·倍角公式 ·半角公式 ·万能公式 ·万能公式推导 ·三倍角公式 ·三倍角公式推导 ·三倍角公式联想记忆 ·和差化积公式 ·积化和差公式 ·和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα

tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※

三角函数和差公式练习题

第12课时 三角函数和差公式及辅助角公式 1.函数y=sin (2x+6π)+cos (2x+3 π)的最小正周期和最大值分别为( ) A π,1 B π,2 C 2π,1 D 2π,2 2、)4sin(2cos παα -=-22,则cos α+sin α的值为( ) 3.函数y=sin (x+3π)sin (x+2 π)的最小正周期T 是( ) 4、函数的最小正周期是________ . 5.函数的最大值为 _________________-。 6.已知函数()cos(2)2sin()sin()344 f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ -上的值域 7.已知函数f (x )=)0,0)(cos()sin(3><<+-+ω??ω?ωπx x 本小题满分12分)为偶函数,且函数y =f (x )图象的两相邻对称轴间的距离为 .2π (Ⅰ)美洲f (8 π)的值; (Ⅱ)将函数y =f (x )的图象向右平移 6π个单位后,再将得到的图象上各点的横坐标舒畅长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 8.已知函数。 (Ⅰ)求 的最小正周期: (Ⅱ)求在区间上的最大值和最小值。 2()sin(2)4f x x x π =--sin()cos()26y x x ππ=+-()4cos sin()16f x x x π=+-()f x ()f x ,64ππ??-????

9.已知函数 (1)求 的值; (2)设求的值. 10、已知函数 (1)求的最小正周期和最小值; 11.已知函数f (x )=2cos (x+ 4π)cos (x-4 π)+3sin2x ,求它的值域和最小正周期 12.已知cos ? ???α- π4=14,则sin2α的值为 ( ) A.78 B .-78 C.34 D .-34 13.已知sin ????α-π3=13,则cos ????π6+α的值为 ( ) A.13 B .-13 C.233 D .-233 14.函数f (x )=sin ? ???2x -π4-22sin 2x 的最小正周期是________. 15.y =sin(2x -π3 )-sin2x 的一个单调递增区间是( ) A .[-π6,π3]B .[π12,712π]C .[512π,1312 π] D .[π3,5π6 ] 16.设函数f (x )=22cos(2x +π4)+sin 2x (Ⅰ)求函数f (x )的最小正周期; (2)写出函数f (x )的单调递增区间. 18.已知函数 ()cos cos()3f x x x π=?-. (1)求2()3f π的值; (2) 求对称轴和对称中心; (3) 求使1()4f x <成立的x 的取值集合. 1()2sin(),.36f x x x R π=-∈5()4f π106,0,,(3),(32),22135f a f ππαββπ??∈+=+=???? cos()αβ+73()sin()cos(),44f x x x x R ππ=++-∈()f x

三角函数的和差公式推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数的和差公式推导过程。 三角函数的和差公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cossinb cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 三角函数的和差公式推导过程 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb 两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)] (1) 两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)] (2) cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb 两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)] (3) 两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)] (4) 用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。如:(1)式可变为: sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。 三角函数积化和差公式 sinasinb=-[cos(a+b)-cos(a-b)]/2 cosacosb=[cos(a+b)+cos(a-b)]/2

三角函数的积化和差与和差化积

一、教学目的: 1. 了解三角函数的积化和差与和差化积公式的推导过程,了解此组公式与两角和差的正弦、余弦公式的联系,从而培养逻辑推理能力。 2. 掌握三角函数的积化和差与和差化积公式,能正确运用此公式进行简单的三角函数式的化简、求值和恒等式的证明。 二、重点、难点: 掌握三角函数的积化和差与和差化积公式,能正确运用此公式进行简单的三角函数式的化简、求值和恒等式的证明。 三、新课讲解: (一)三角函数的积化和差与和差化积公式 1、公式的推导 ())(sin cos cos sin sin βαβαβαβα++=+S , ()sin sin cos cos sin ()αβαβαβαβ-=--,S ()cos cos cos sin sin ()αβαβαβαβ+=-+,C ()cos cos cos sin sin ()αβαβαβαβ-=+-,C ()()()()S S S S αβαβαβαβ+-+-+-, ()()()()C C C C αβαβαβαβ +-+-+-,,得 ()()()()()()()()sin sin sin cos sin sin cos sin cos cos cos cos cos cos sin sin αβαβαβ αβαβαβ αβαβαβ αβαβαβ++-=+--=++-=+--=-2222 即()()[]sin cos sin sin αβαβαβ= ++-<>12 1 ()()[]cos sin sin sin αβαβαβ=+--<>12 2 ()()[]cos cos cos cos αβαβαβ=++-<>12 3 ()()[]sin sin cos cos αβαβαβ=-+--<>12 4 公式<1><2><3><4>叫做积化和差公式。 其特点为:同名函数之积化为两角和与差余弦的和(差)的一半,异名函数之积化为两角和与差正弦的和(差)的一半,等式左边为单角α、β,等式右边为它们的和差角。 在积化和差的公式中,如果“从右往左”看,实质上就是和差化积。为了用

三角函数公式大全(很详细)

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 r ?正切函数 ?余切函数 ?正割函数 ?余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3.1 倍角公式

3.3 万能公式 4 积化和差、和差化积 4.1 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是

三角函数基础,两角和与差、倍角公式

练习: 一、填空题 1. α是第二象限角,则2 α 是第 象限角. 2.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为 . 同角三角函数的基本关系公式: αααtan cos sin = ααα cot sin cos = 1cot tan =?αα 1cos sin 22=+αα 1?“同角”的概念与角的表达形式无关,如: 13cos 3sin 2 2 =+αα 2tan 2 cos 2sin ααα = 2?上述关系(公式)都必须在定义域允许的围成立。 3?由一个角的任一三角函数值可求出这个角的其余各三角函数值,且因为利用“平方关系”公式,最终需求平方根,会出现两解,因此应尽可能少用,若使用时,要注意讨论符号. 这些关系式还可以如图样加强形象记忆: ①对角线上两个函数的乘积为1(倒数关系). ②任一角的函数等于与其相邻的两个函数的积(商数关系). ③阴影部分,顶角两个函数的平方和等于底角函数的平方(平方关系). 二、讲解例: 例1化简:ο440sin 12- 解:原式οοο ο ο 80cos 80cos 80sin 1)80360(sin 122 2 ==-=+-= 例2 已知α α αααsin 1sin 1sin 1sin 1+---+是第三象限角,化简 解:) sin 1)(sin 1() sin 1)(sin 1()sin 1)(sin 1()sin 1)(sin 1(αααααααα-+--- -+++= 原式 |cos |sin 1|cos |sin 1sin 1)sin 1(sin 1)sin 1(2 222ααααα ααα--+=----+= 0cos <∴αα是第三象限角,Θ αα α ααtan 2cos sin 1cos sin 1-=----+= ∴原式 (注意象限、符号) 例3求证: α α ααcos sin 1sin 1cos +=- 分析:思路1.把左边分子分母同乘以x cos ,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx )先满足

三角函数和差公式

1、同角三角函数基本关系 ⒈同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) ⒉两角与与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanα ·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ) 倍角公式 ⒊二倍角的正弦、余弦与正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 2tanα tan2α=————— 1-tan^2(α) 半角公式 ⒋半角的正弦、余弦与正切公式(降幂扩角公式) 1-cosα sin^2(α/2)=————— 2 1+cosα cos^2(α/2)=————— 2 1-cosα tan^2(α/2)=————— 1+cosα 万能公式 ⒌万能公式 2tan(α/2)

sinα=—————— 1+tan^2(α/2) 1-tan^2(α/2) cosα=—————— 1+tan^2(α/2) 2tan(α/2) tanα=—————— 1-tan^2(α/2) 万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))、、、、、、*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式 ⒍三倍角的正弦、余弦与正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 3tanα-tan^3(α) tan3α=—————— 1-3tan^2(α) 三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^2(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 三倍角公式联想记忆

两角和与差的三角函数练习含答案

一、选择题(共9小题,每小题4分,满分36分) 1.(4分)(2009?陕西)若3sinα+cosα=0,则的值为() A.B.C.D.﹣2 2.(4分)已知,则=() A.B.C.D. 3.(4分)如果α∈(,π),且sinα=,那么sin(α+)+cos(α+)=() A.B.﹣C.D.﹣ 7.(4分)(2008?海南)=() A.B.C.2D. 8.(4分)已知sinθ=﹣,θ∈(﹣,),则sin(θ﹣5π)sin(π﹣θ)的值是() A.B.﹣C.﹣D. 9.(4分)(2007?海南)若,则cosα+sinα的值为() A.B.C.D. 10.(4分)设α,β都是锐角,那么下列各式中成立的是() A.s in(α+β)>sinα+sinβB.c os(α+β)>cosαcosβ C.s in(α+β)>sin(α﹣β)D.c os(α+β)>cos(α﹣β) 11.(4分)(2009?杭州二模)在直角坐标系xOy中,直线y=2x﹣与圆x2+y2=1交于A,B两点,记∠xOA=α(0<α<),∠xOB=β(π<β<),则sin(α+β)的值为() A.B.C.﹣D.﹣ 12.(4分)(2008?山东)已知,则的值是() A.B.C.D. 二、填空题(共5小题,每小题5分,满分25分) 4.(5分)(2008?宁波模拟)已知cos(α+)=sin(α﹣),则tanα=_________ . 5.(5分)已知sin(30°+α)=,60°<α<150°,则c osα的值为 _________ . 13.(5分)?的值为_________ . 14.(5分)(2012?桂林一模)若点P(cosα,sinα)在直线y=﹣2x上,则sin2α+2cos2α=_________ .15.(5分)的值为 _________ . 三、解答题(共4小题,满分0分) 6.化简: (1); (2)﹣. 16.(2006?上海)已知α是第一象限的角,且,求的值. 17.求值:(1);

三角函数公式总结)

高中三角函数公式大全 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2 cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

三角函数的和差公式

1 / 2 第四~五课时 三角函数的和角公式、差角公式 [教学目标] 1、通过两角差的正弦公式的推导和证明,继而导出三角函数的和角公式、差角公 式,学生进一步理解与运用函数的思想,进一步渗透基本量的数学思想方法(基本量思想就是一种函数的思想)。 2、使学生掌握三角函数的和角公式、差角公式,并会应用这组公式解决一些有关三 角函数的求值问题。 3、在公式的推导过程中,使学生注意并学习严密而准确的数学思维方法及其数学表 达方式。 [教学重点与难点] 本节课的重点是使学生掌握三角函数的和角公式、差角公式。 难点是应用三角函数的和角公式、差角公式求三角函数值。 [教学过程设计] 一、三角函数的和角公式的推导与证明。 1、推导两角和的正弦公式。(参阅课本第75~76页)。 2、给出两角和的余弦公式。 3、利用同角三角函数恒等式,对正切函数可得两角和的正切公式。 (板书) 三角函数的和角公式 sin(α+β)=sin αcos β+ cos αsin β cos(α+β)= cos αcos β-sin αsin β tan(α+β)=β αβαtan tan -1tan tan + 二、三角函数的差角公式的推导。 直接用和角公式结合负角公式,导出三角函数的差角公式:(参阅课本第76页) (板书) 三角函数的差角公式 sin(α-β)=sin αcos β- cos αsin β cos(α-β)= cos αcos β+sin αsin β tan(α-β)=β αβαtan tan 1tan tan +- 三、和角、差角三角函数公式在计算三角函数式值中的应用。 1、求三角函数的值 例4:不使用计算器,求下列各式的值:(略——参阅课本第76页) 练习4:课本第76页,课内练习4) 2、已知角α、β的(部分)三角函数值,求和角、差角的三角函数值。 )tan(),cos(),sin(),23,(,43cos ),,2(,32sin 5βαβαβαππββππαα+++∈-=∈= 求已知例: (解略——参阅课本第78页) 练习5:课本第79页,课内练习5~1、2、3

三角函数和差化积与积化和差公式

2 和差化积和积化和差公式 1、正弦、余弦的和差化积 cos cos 2 si n sin 【注意右式前的负号】 2 2 sin( a + B )=sin a cos B +cos a sin B , sin( a - B )=sin a cos B - cos a sin B , 将以上两式的左右两边分别相加,得 sin( a + B )+sin( a - B )=2sin a cos B, 设 a + B = 9 , a - B =? 那么 -------- , — 2 2 把a,B 的值代入,即得 sin 9 + sin ? =2 sin ------ cos -------- 2 2 2、正切和差化积 cot a± cot B= -sin( ---- — sin ?si n tan a +cot B= cos ?sin 在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用 若是高次函数,必须用 降幕公式 降为一次 3、积化和差公式 证 明: 左边=tan a± tan B= — sin cos cos =sin ?cos cos ?sin cos ?cos cos( ) cos ?sin =sin()=右边 cos ? cos sin ?sin cos cos (注意:此时 差的余弦 在和的余弦 前面) 证明过程 sin a +sin B =2sin[( a +B )/2] -cos[( a -B )/2]的证明过程 tan a± tan B = si n( ) cos ? cos tan a -co t B = 诱导公式化为同名;

和差化积、积化和差、万能公式

正、余弦和差化积公式 指高中数学三角函数部分的一组恒等式 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·si n[(α-β)/2] 【注意右式前的负号】 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2, β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±si nβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立 注意事项 在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

三角函数两角和与差,以及万能公式的推导

三角函数两角和与差, 以及万能公式的推导-CAL-FENGHAI.-(YICAI)-Company One1

向量法: 取直角坐标系,作单位圆 取一点A,连接OA,与X轴的夹角为A 取一点B,连接OB,与X轴的夹角为B OA与OB的夹角即为A-B A(cosA,sinA),B(cosB,sinB) OA=(cosA,sinA) OB=(cosB,sinB) OA*OB =|OA||OB|cos(A-B) =cosAcosB+sinAsinB |OA|=|OB|=1 cos(A-B)=cosAcosB+sinAsinB 在直角坐标系xoy中,作单位圆O,并作角α,β,-β,使角α的始边为Ox交⊙O于P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.依三角函数的定义,得P1、P2、P3、P4的坐标分别为P1(1,0),P2(cosα,sinα)、P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)).连接P1P3,P2P4. 则∣P1P3∣=∣P2P4∣.依两点间距离公式,得 ∣P1P3|2=〔cos(α+β)-1〕2+〔sin(α+β)-0〕2, ∣P2P4|2=〔cos(-β)-cosα〕2+〔sin(-β)-sinα〕2 ∴〔cos(α+β)-1〕2+sin2(α+β)=〔cos(-β)-cosα〕2+〔sin(-β)-sinα〕2 展开整理,得2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ) ∴cos(α+β)=cosαcosβ-sinαsinβ ……Cα+β.该公式对任意角α,β均成立 在公式Cα+β中,用-β替代β. cos(α-β)=cos〔α+(-β)〕=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ. ∴cos(α-β)=cosαcosβ+sinαsinβ ……Cα-β.该公式对任意角α,β均成立.

三角函数和差化积与积化和差公式

和差化积和积化和差公式 1、正弦、余弦的和差化积 2 cos 2sin 2sin sin βαβ αβα-?+=+ 2sin 2cos 2sin sin βαβαβα-?+=- 2cos 2cos 2cos cos β αβ αβα-?+=+ 2sin 2sin 2cos cos β αβ αβα-?+-=- 【注意右式前的负号】 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设 α+β=θ,α-β=φ 那么2φθα+= ,2 φθβ-= 把α,β的值代入,即得 sin θ+sin φ=2sin ?+2φθcos 2 φθ- 2、正切和差化积 tan α±tan β=β αβαcos cos )sin(?± cot α±cot β= βαβαsin sin )sin(?± tan α+cot β=β αβαsin cos )cos(?- tan α-cot β=β αβαsin cos )cos(?+- 证明:左边=tan α±tan β= ββααcos sin cos sin ± =β αβαβαcos cos sin cos cos sin ??±? = βαβαcos cos )sin(?±=右边

在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次 3、积化和差公式 ))((][2cos cos sin sin βαβαβα+--=?(注意:此时差的余弦在和的余弦前面) 或写作: ))((][2cos cos sin sin βαβαβα--+-=?(注意:此时公式前有负号) ()()[]2cos cos cos cos βαβαβα++-=? ()()[]2sin sin cos sin βαβαβα-++=? ()()[]2 sin sin sin cos βαβαβα--+=? 证明 积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 即只需要把等式右边用两角和差公式拆开就能证明: ()βαβαs i n s i n 221s i n s i n ?-?- =? ()()[]2 sin sin cos cos sin sin cos cos βαβαβαβα+---= ()()[]βαβα--+-=cos cos 21 其他的3个式子也是相同的证明方法。 结果除以2 这一点最简单的记忆方法是通过三角函数的值域判断。sin 和cos 的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域确是[-1,1],因此除以2是必须的。 也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如: cos(α-β)-cos(α+β) =1/2[(cos α·cos β+sin α·sin β)-(cos α·cos β-sin α·sin β)] =2sin α·sin β 故最后需要除以2。

三角函数和差公式大全及推导过程

三角函数的和差公式包括正弦函数的和差公式、余弦函数的和差公式、正切函数的和 差公式等等,接下来分享三角函数和差公式大全及推导过程。 三角函数的和差化积公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cossinb cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) 三角函数的和差公式推导过程 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb 两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)] (1) 两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)] (2) cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb 两式相加得:cosacosb=1/2[cos(a+b)+cos(a-b)] (3) 两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)] (4) 用(a+b)/2、(a-b)/2分别代替上面四式中的a,b就可得到和差化积的四个式子。如:(1)式可变为: sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2]其它依次类推即可。 三角函数关系公式 三角函数平方关系公式 sin2α+cos2α=1

cos2a=(1+cos2a)/2 tan2α+1=sec2α 三角函数倒数关系公式tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数商数关系公式tana=sina/cosa cota=cosa/sina

(完整版)三角函数和差角公式练习题

第三章 三角恒等变换 § 3.1.1-2 两角和与差的正弦、余弦、正切公式 班级_________ 姓名_______学号________得分_________ 一.选择题 1、sin750= ( ) A、14 2、tan170+tan280+tan170tan280= ( ) A、-1 B、1 D、 3、若12sin x x =cos(x +φ),则φ的一个可能值为 ( ) A、6π - B、3π - C、6π D、3 π 4、设α、β为钝角,且sin α,cos β=α+β的值为 ( ) A、34π B、54π C、74π D、54π或74π 5、1tan 751tan 75+-o o = ( ) C、 D、*6、在△ABC 中,若0

12、化简2cos10sin 20cos 20-o o o 13、已知 4π<α<34π,0<β<4π,且cos(4π-α)=35,sin(34π+β)=513,求sin (α+β)的值。 *14、已知α、β为锐角,sin α=8,17cos(α-β)=2129,求cos β.

三角函数和差化积与积化和差公式

和差化积和积化和差公式 正弦、xx的和差化积 【注意右式前的负号】 证明过程sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设α+β=θ,α-β=φ 那么, 把α,β的值代入,即得 sin θ+sin φ=2sincos 正切和差化积 tanα±tanβ= cotα±cotβ= tanα+cotβ= tanα-cotβ= 证明:左边=tanα±tanβ= = ==右边

在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用化为同名;若是高次函数,必须用降为一次 记忆口诀(正弦xx) 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 生动的口诀: xx+xx=xx哥 xx-xx=哥xx 咕+咕=咕咕 哥-哥=负嫂嫂 积化和差公式 (注意:此时差的xx在和的xx前面) 或写作:(注意:此时公式前有负号) 证明 积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 即只需要把等式右边用两角和差公式拆开就能证明:

其他的3个式子也是相同的证明方法。 结果除以2 这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域确是[-1,1],因此除以2是必须的。 也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如: cos(α-β)-cos(α+β) =1/2[(cosα·cosβ+sinα·sinβ)-(cosα·cosβ-sinα·sinβ)] =2sinα·sinβ 故最后需要除 2。 使用同名三角函数的和差 无论乘积项中的三角函数是否同名,化为和差形式时,都应是同名三角函数的和差。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。 使用哪种三角函数的和差 仍然要根据证明记忆。注意两角和差公式中,xx的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以反过来,同名三角函数的乘积,化作xx的和差;异名三角函数的乘积,化作正弦的和差。 是和还是差?

相关文档
相关文档 最新文档