文档库 最新最全的文档下载
当前位置:文档库 › 湿法混料工艺制备钒电池双极板及其性能研究

湿法混料工艺制备钒电池双极板及其性能研究

湿法混料工艺制备钒电池双极板及其性能研究
湿法混料工艺制备钒电池双极板及其性能研究

一种含钒钢渣提钒的方法

(10)申请公布号 (43)申请公布日 2013.06.05C N 103131867 A (21)申请号 201310077492.X (22)申请日 2013.03.12 C22B 7/04(2006.01) C22B 3/08(2006.01) C22B 3/26(2006.01) C22B 34/22(2006.01) (71)申请人昆明理工大学 地址650093 云南省昆明市五华区学府路 253号 (72)发明人叶国华 童雄 路璐 何伟 (54)发明名称 一种含钒钢渣提钒的方法 (57)摘要 本发明涉及一种含钒钢渣提钒的方法,属选 矿、湿法冶金、资源综合利用领域。主要包括选矿 预处理、常温常压下不焙烧选择性分段酸浸、含钒 酸浸液的净化与富集三大步骤。本方法通过选矿 预处理、常温常压下不焙烧选择性分段酸浸、溶剂 萃取等单一工序的科学集成,构建常温常压下含 钒钢渣不焙烧酸浸提钒的新工艺,使钒总回收率 达80%以上,与传统工艺从含钒固废中提钒时总 回收率不足70%相比,新工艺提钒指标大幅提升。 (51)Int.Cl. 权利要求书1页 说明书7页 附图1页 (19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书7页 附图1页(10)申请公布号CN 103131867 A *CN103131867A*

1/1页 1.一种含钒钢渣提钒的方法,其特征在于具体步骤包括如下: (1)将含钒钢渣破碎、磨矿后在按照常规工艺在磁场强度为0.08T ~0.25T 的条件下进行弱磁选,得到的磁性物质为磁性铁精矿,其余为磁选尾矿,然后将磁性铁精矿加水调整至矿浆浓度15~30wt%,在冲程6~14mm 、冲次280~440r/min 的条件下按照常规工艺进行重选,得到的比重大的物质为重选精矿,比重小的物质为重选尾矿; (2)在常温常压条件下进行Ⅰ段预浸除杂,将步骤(1)中得到的重选精矿在硫酸溶液中按照固液比1:1~6g/ml 混合并调整混合液的pH 值为3~4,在搅拌强度为100~500转/min 的条件下搅拌浸出0.5~6h ,经固液分离得到Ⅰ段浸渣和含铁酸浸液;在常温常压条件下进行Ⅱ段浸出提钒,将Ⅰ段浸渣在硫酸溶液中按照固液比1:1~6g/ml 混合并调整混合液的pH 值为0.3~2,经固液分离得到Ⅱ段浸渣和含钒酸浸液; (3)首先将步骤(2)中的含钒酸浸液按照常规工艺依次进行萃前氧化、酸度调节和萃取,萃取的上层清液为负载有机相,下层为萃取废液,上下层分离后将负载有机相进行洗涤除杂,在常温条件下,将负载有机相加入活性硫酸盐溶液中,按照相比O/A=1~6的条件下洗涤3~15min ,洗涤完毕后得到的上层清液为载钒有机相,下层为洗涤废液,将上下层分离,即可得到载钒有机相和洗涤废液,洗涤废液按常规工艺处理后返回浸出; (4)将步骤(3)中得到的载钒有机相按照常规工艺进行反萃,反萃后得到的上层液为卸载有机相,下层液为反萃液,卸载有机相返回萃取步骤使用,反萃液按照常规工艺进行铵盐沉钒,将铵盐沉钒得到的沉淀产品按照常规工艺进行煅烧分解,最终制得的精钒产品。 2.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述含钒钢渣产生于含钒铁水的炼钢过程,具体成分包括V 2O 5 1~5wt%,CaO 40%~60wt%,TFe 10%~25wt%。 3.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述含钒钢渣破碎、磨矿后的粒度为小于74μm 的占含钒钢渣的55wt%以上。 4.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述含钒酸浸液在萃取之前按照常规工艺进行萃前氧化是将含钒酸浸液中的钒离子全部氧化为5价,溶液颜色从蓝绿色变成棕黄色,酸度调节是调整含钒酸浸液pH 为1.0~2.5。 5.根据权利要求1所述的含钒钢渣提钒的方法,其特征在于:所述活性硫酸盐为硫酸钠或硫酸铵,浓度为0.2~0.8mol/L 。权 利 要 求 书CN 103131867 A

浅析含钒钢渣湿法提钒生产工艺与发展前景

浅析含钒钢渣湿法提钒生产工艺与发展前景 钒是一种稀有、柔软而黏稠的过渡金属,它的矿物形态一般与其它金属的矿物混合在一起,一般被用于材料工程中作为合金成分,把钒掺进钢里制成钒钢,可使钒钢结构比普通钢更紧密、更有韧性、弹性,机械强度更高。目前全球钒渣、氧化钒、钒铁的主要产地是南非、中国、俄罗斯、美国、澳大利亚、新西兰和日本等七国。南非、俄罗斯和中国一直是三个最大的产钒国,除美国和日本从石油残渣和电厂飞灰中提取钒外,其他各国都是从矿石冶炼过程中提取钒[1]。 中国钒工业的崛起主要得益于攀枝花钒钛磁铁矿的开发利用,目前国内各工厂钒的提取工艺基本相同,均是采用钒渣钠法焙烧、多钒酸铵沉淀焙烧法生产V2O5。具体工艺为钒钛磁铁矿原矿经选矿得到的含钒铁精矿送入烧结、炼铁工序,得到含钒铁水经提钒转炉生产钒渣(含V2O5平均15%)。钒渣经过添加氯化钠或碳酸钠进行钠法焙烧、水浸取、多钒酸铵沉钒等过程获得多钒酸铵,最后经反射炉熔化得到片状V2O5[2]。 本文在此介绍一种钢渣提钒新生产工艺——湿法提钒工艺,并从生产工艺、资源能源利用、经济技术指标、污染物排放等方面与传统钠法焙烧工艺进行比较,分析探讨湿法提钒工艺的发展前景。 1、湿法提钒工艺概况 湿法提钒工艺是以含钒钢渣为原料,而不是传统钠法焙烧生产工艺使用的经提钒转炉生产的标准钒渣,该含钒钢渣是钒钛磁铁矿经过炼钢转炉生产钢水后废弃的钢渣,该钢渣中V2O5平均含量仅为4%。该钢渣的成分见下: 湿法提钒工艺是将钢渣直接酸浸—净化—沉钒—熔化制得片状五氧化二钒,不同于传统钠法工艺需要焙烧,为了区别传统工艺,本文将该新工艺称为湿法提钒工艺。具体工艺流程叙述如下: ①含钒钢渣预处理 含钒钢渣经原料预处理,磨细达到所需粒径并除去所夹带的铁后,送入酸浸工段。 ②酸浸 酸浸工段是该生产工艺的核心。含钒钢渣在蒸汽保温的条件下,用一定浓度的硫酸溶液(添加助浸剂)进行两段逆流酸浸浸取,使钢渣中的钒(也包括其他杂质)融入酸浸液中。浸渣采用两段浸取,每段浸取又分为三级,确保工艺的连续性。第一段通过控制pH在4左右,使钒以钒酸钙沉淀的形态留入渣中,而大部分的铁、铬、锰、硅、磷、硫等杂质被浸出以离子态进入上清液,其中大部分的铁以硫酸亚铁形式存在上清液中,铬在硫酸亚铁的还原作用下主要以六价铬存在于上清液中。经固液分离,底流(钒酸钙以及其它不溶物)进入第二段酸浸阶段,而大部分的铁、铬、锰、硅、磷、硫等杂质随上清液而分离。上清液通过加入氨水使铁以黄铵铁矾(NH4Fe3(SO4)2(OH)6)形态沉淀析出,黄铵铁矾利用真空带式过滤机压滤回收,然后送烧结厂综合利用。沉黄铵铁矾后的废水返回配酸槽配酸回用。 第二段酸浸同样在蒸汽保温条件下用硫酸浸取,通过控制浸出液pH为1左右,钒被浸出进入上清液,并以三价和五价形态共存,同时第一次酸浸后未分离完的铁、铬等杂质也被浸出进入上清液。经固液分离去除不溶物,上清液送往萃前处理罐暂存。 ③氧化 经固液分离后的酸浸液中钒以三价和五价形态存在,为了保证后序净化工段产品质量,

提钒工艺

1 背景 1.1 钒的性质及应用 钒是高熔点金属之一,呈浅灰色。密度5.96克/厘米3。熔点1890±10℃,沸点3380℃,化合价+2、+3、+4和+5。其中以5价态为最稳定,其次是4价态。电离能为6.74电子伏特。有延展性,质坚硬,无磁性。具有耐盐酸和硫酸的本领,并且在耐气-盐-水腐蚀的性能要比大多数不锈钢好。于空气中不被氧化,可溶于氢氟酸、硝酸和王水。 我国是钒资源比较丰富的国家,钒矿主要分布在四川的攀枝花和河北的承德,大多数是以石煤的形式存在。 大约80%的钒和铁一起作为钢里的合金元素。只需在钢中加入百分之几的钒,就能使钢的弹性、强度大增,抗磨损和抗爆裂性极好,既耐高温又抗奇寒,在汽车、航空、铁路、电子技术、国防工业等部门,到处可见到钒的踪迹。此外,钒的氧化物已成为化学工业中最佳催化剂之一,有“化学面包”之称。其应用如下: (1)、用作合金元素,例如: 1)运用在医疗器械中的特别的不锈钢 2)运用在工具中的不锈钢 3)与铝一起作为钛合金物运用在高速飞机的涡轮喷气发动机中 4)含钒的钢经常被用在轴、齿轮等关键的机械部分中 (2)、在其它领域的应用: 1)钒吸收裂变中子的半径很小,因此被用在核工业中 2)在炼钢过程中钒被用来导致碳化物的形成 3)在给钢涂钛的时候钒往往被作为中介层 4)钒与镓的合金可以用来制作超导电磁铁,其磁强度可达175,000高斯 5)在制造缩苹果酸酐和硫酸的过程中钒被用来做催化剂 6)五氧化二钒(V 2O 5 )被用来制做特殊的陶瓷作为催化剂 1.2 五氧化二钒及金属钒的制备方法 (1)工业上金属钒的制备方法: 工业上常以各种含钒矿石为原料制备钒。如在钒炉渣中加入NaCl,经空气

揭秘!锂电池制造工艺全解析

揭秘!锂电池制造工艺全解析 锂电池结构 锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。对于电池厂家而言,需要对产线上的设备大面积进行更换。

锂电池制造工艺 锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。除此之外,电池组的生产还需要Pack 自动化设备。 锂电前段生产工艺 锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。

钒及钒生产工艺

钒及钒生产工艺 第一章钒的性质及应用 一、钒的性质: 钒是一种十分重要的战略物资,在钢铁、电子、化工、宇航、原子能、航海、建筑、体育、医疗、电源、陶瓷等在国民经济和国防中占有十分重要的位置。 常温下钒的化学性质较稳定,但在高温下能与碳、硅、氮、氧、硫、氯、溴等大部分非金属元素生成化合物。例如:钒在空气中加热至不同温度时可生成不同的钒氧化物。在180℃下,钒与氯作用生成四氯化钒(VCl4);当温度超过800℃时,钒与氮反应生成氮化钒(VN);在800~1000℃时,钒与碳生成碳化钒(VC)。 钒具有较好的耐腐蚀性能,能耐淡水和海水的侵蚀,亦能耐氢氟酸以外的非氧化性酸(如盐酸、稀硫酸)和碱溶液的侵蚀,但能被氧化性酸(浓硫酸、浓氯酸、硝酸和王水)溶解。在空气中,熔融的碱、碱金属碳酸盐可将金属钒溶解而生成相应的钒酸盐。此外,钒亦具有一定的耐液态金属和合金(钠、铅、铋等)的腐蚀能力。 钒有多种氧化物。V2O3和V2O4之间,存在着可用通式V n O2n-1(3≤n≤9)表示的同族氧化物,在V2O4到V2O5之间,已知有V3O5、V3O7、V4O7、V4O9、V5O9、V6O11、V6O13等氧化物。工业上钒氧化物主要是以V2O5、V2O4和V2O3

形式存在,特别是V2O5和生产尤为重要。它们的主要性质列于下表: 二、钒的应用 三、五氧化二钒的性质 V2O5是一种无味、无嗅、有毒的橙黄色或红棕色的粉末,微溶于水(质量浓度约为L),溶液呈黄色。它在约670℃熔融,冷却时结晶成黑紫色正交晶系的针状晶体,它的结晶热很大,当迅速结晶时会因灼热而发光。V2O5是两性氧化物,但主要呈酸性。当溶解在极浓的NaOH 中时,得到一种含有八面体钒酸根离子VO43-的无色溶液。它与Na2CO3

燃料电池的双极板和燃料电池的制作方法

本公开提供了一种燃料电池的双极板和燃料电池,涉及燃料电池领域,该双极板包括第一极板和第二极板,第一极板和第二极板中的一个为阴极板,另一个为阳极板,第一极板和第二极板之间形成有长度不同的多条冷却流道,冷却流道的横截面积与冷却流道的长度正相关。因此,长度较长的冷却流道横截面积较大,长度较短的冷却流道横截面积较小。虽然长度较长的冷却流道阻力较大,流速较慢,但横截面积较大,虽然长度较短的冷却流道阻力较小,流速较快,但横截面积也较小,从而可以减小长度不同的冷却流道中冷却液的流量差异,这样双极板上不同区域受到的冷却效果也更接近,双极板上温度分布更均匀,有利于使燃料电池工作更稳定,延长燃料电池的寿命。 权利要求书 1.一种燃料电池的双极板,其特征在于,包括相互重叠的第一极板(11)和第二极板(12),所述第一极板(11)和所述第二极板(12)中的一个为阴极板,另一个为阳极板,所述第一极板(11)和所述第二极板(12)之间形成有长度不同的多条冷却流道(101),所述多条冷却流道(101)中,至少部分冷却流道(101)的横截面积与所述冷却流道(101)的长度正相关。

2.根据权利要求1所述的双极板,其特征在于,所述第一极板(11)上具有第一流道槽 (11a),所述第二极板(12)上具有第二流道槽(12a),所述第一流道槽(11a)和所述第二流道槽(12a)围成所述冷却流道(101)。 3.根据权利要求2所述的双极板,其特征在于,所述第一流道槽(11a)的横截面和所述第二流道槽(12a)的横截面均为梯形,且在同一所述冷却流道(101)中,所述第一流道槽(11a)的横截面和所述第二流道槽(12a)的横截面全等。 4.根据权利要求3所述的双极板,其特征在于,所述第一极板(11)上的各个所述第一流道槽(11a)的深度均相等,所述第二极板(12)上的各个所述第二流道槽(12a)的深度均相等。 5.根据权利要求1~4任一项所述的双极板,其特征在于,所述多条冷却流道(101)分布于所述双极板上的一矩形区域(B)内,同一所述冷却流道(101)的两端开口位于所述矩形区域(B)的同一侧边。 6.根据权利要求5所述的双极板,其特征在于,所述矩形区域(B)具有平行相对的第一侧边(B1)和第二侧边(B2),所述多条冷却流道(101)包括位于对称轴(m)和所述第一侧边(B1)之间的多条第一冷却流道(1011)、位于所述对称轴(m)和所述第二侧边(B2)之间的多条第二冷却流道(1012),所述对称轴(m)为所述矩形区域(B)的平行于所述第一侧边(B1)的对称轴。 7.根据权利要求6所述的双极板,其特征在于,所述多条冷却流道(101)中,最靠近所述对称轴(m)的n条冷却流道(101)的横截面积与所述冷却流道(101)的长度正相关,所述多条冷却流道(101)中除所述n条冷却流道(101)之外的冷却流道(101)横截面积相等,2≤n <N,且n为整数,N为所述冷却流道(101)的总条数。 8.根据权利要求6所述的双极板,其特征在于,在所述第一侧边(B1)向所述对称轴(m)靠近的方向上,相邻的所述第一冷却流道(1011)的间距逐渐减小。 9.根据权利要求6所述的双极板,其特征在于,所述多条第一冷却流道(1011)和所述多条第二冷却流道(1012)关于所述对称轴(m)对称。

锂电池生产工艺分析

璽电池生产工艺分析 关于循环不合格的分析 一、正负极活性材料的物化结构性质的影响 正负极活性材料的物化结构性质对锂离子的嵌入和脱嵌有决定性的影响,因而影响电池的循环寿命。正负极活性材料的结构是主要的影响因素,使用容易脱嵌的活性材料充放电循环时,活性材料的结构变化较小,而且这种微小变化是可逆的,因而有利于延长充放电循环寿命。 1、材料在充放电过程中的结构稳定性 材料在充放电过程中的结构稳定性有利于提高其充放循环性能。如尖晶石材料LiXMn204,具有优越的循环性能,其主要原因之一便是在锂离子的嵌入和胶出过程中,单元晶胞膨胀、收缩率小于1%,即体积变化小;LiXMn204(X大于等于1)电极在充放过程中容量损失严重,主要是因为在充放电过程中,其颗粒表面发生John- Teller畸变效应,单元晶胞膨胀严重,使结构完整性破坏。对材料进行适当的离子掺杂可有效提高材料的结构稳定性。如对尖晶石结构LiXMn2O4进行适量的钻(Co) 掺杂,因钻使该材料的晶格参数变小,在循规蹈矩环过程中晶体结构趋于稳定,从而有效改善了其循环稳定性。 2、活性材料的料度分布及大小影响 活性材料的粒度对其循环性能影响很大。研究表明:活性材料的粒度在一定范围与材料的循环性能正相关;活性材料的粒度分布越宽,其循环性能就越差,因为当粒度分布较宽时,其孔隙度差,从而影响其对电解液的毛细管作用而使阻抗表现较大,当充电到极限电位时,大颗粒表面的锂离子会过度脱嵌而破坏其层状结构,而不利于循环性能。 3、层状结构的取向性及片度的影响

具有高度取向性和高度层状有序结构且层状结构较厚的材料,因锂离子插入的方向性强,使用其大电流充电放循环时性能不佳,而对于一些具有无序性层状结构 (混层结构)或层结构较薄的材料,山于其锂离子脱嵌速率快,且锂脱嵌引起的体积变化较小,因而其充放循环过程中容降率较小,且耐老化。 4、电极材料的表面结构和性质的影响 改善电极材料的表面结构和性质可有效抑制有机溶剂的共插入及其与电解液间的不良反应,如在石黑表面包覆一层有机聚合物热解碳,在一些正极活性材料如LiC002, LiC0XNil-X02等表层涂覆一层玻璃态复合氧化物如 LiO-A12O3-SiO2, Li20-2B203等可显著改善材料的充放电循环性能及电池的安全性。 二、电极涂层粘结强度的影响 正负极涂层的粘结强度足够高时,可防止充放循环过程中正负极优其是负极的粉化脱落或涂层因过度膨胀收缩而剥离基片,降低循环容降率;反之,如果粘结强度达不到要求,则随循环次数的增加,因涂层剥离程度加重而使电池内阻抗不断增大,循环容量下降加剧。具体说来,包括以下儿方面的因素。 1、胶粘剂的材料选择 LI前常用的粘合剂为水溶性有机氟粘合剂(PVDF, PTFE等),其粘结强度受物理化学性能参数如分子量、热稳定性、热收缩率、电阻率、熔融及软化温度以及在溶剂中的溶胀饱合度、化学稳定性等的影响;此外,正极和负极所用的粘结剂及溶剂均要非常纯,以免因杂质存在而使电极中的粘结剂氧化和老化,从而降 低电池的循环性能。 2、胶粘剂的配制

对石煤火法和湿法提钒优缺点的浅见

对石煤火法和湿法提钒优缺点的浅见 对石煤提钒(五氧化二钒)火法和湿法技术优缺点的浅见 目前含钒石煤提钒在工艺上存在火法和湿法两大路线。 1.火法提钒技术(焙烧法) 火法是对矿石进行高温氧化焙烧再湿法浸出提钒的技术,是石煤提钒最早出现的技术,在工业上包括加盐焙烧(包括低盐焙烧)、空白焙烧和钙化焙烧三种焙烧方式,此外还有复合添加剂焙烧,但复合添加剂焙烧属于上述焙烧方式在配方上的局部改进。 加盐焙烧技术,在焙烧过程中产生大量的氯化氢、氯气,若不吸收将造成极其严重的废气污染,若吸收处理,一则吸收处理成本高,二则废气污染转化为废水污染,此外,由于焙烧时添加食盐(工业盐),在此后的过程中造成液体中盐含量高,影响生产过程工艺水的循环利用,一般循环利用率在40%左右,每生产一吨五氧化二钒,通常不得不排放300吨左右的废水(处理费用很高,目前工厂均未处理),因此多省对新建企业提出不能采用该技术。 空白焙烧技术由于对矿石的选择性强,只在个别企业采用。 钙化焙烧技术,可以解决加盐焙烧技术的废气污染问题,而且在焙烧过程中对矿石中的硫还有较好的固硫作用,目前在国内有数家企业采用,此外,该项技术有利于工艺水的循环利用,水循环利用率可以达到90%以上。但采用该项技术需预先对矿石做好工艺提取实验,必要的时候可以采用以石灰(或石灰石)为主的复合添加剂(决不添加食盐),在设备配套的情况下,钒总收率可以超过加盐焙烧技术,生产成本可以低于加盐焙烧技术,但投资比加盐焙烧技术要高点。 2.湿法提钒技术(强酸浸出提钒技术) 湿法提钒技术,指对矿石不进行焙烧而采用较高浓度的酸对矿石中的钒进行浸出,酸,通常为硫酸,但有些技术单位混配盐酸,甚至价格高、危险性、腐蚀性很强的氢氟酸,还常常添加一些氧化剂,浸出过程通常在加热加压情况下进行,若不加压,代价是提高氧化剂用量或采用氧化性更强的氧化剂,当然付出的是高成本。该技术的优点是无

【CN109852932A】氢燃料电池金属双极板及其制备方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910124594.X (22)申请日 2019.02.20 (71)申请人 金华市畔星科技有限公司 地址 321000 浙江省金华市金东区东孝街 道康济北街1378号金华智能制造产业 园17幢4楼 (72)发明人 周科 秦子威 汪宏斌 陈卓  (74)专利代理机构 杭州知见专利代理有限公司 33295 代理人 杨剑 赵越剑 (51)Int.Cl. C23C 14/16(2006.01) C23C 14/35(2006.01) C23C 14/06(2006.01) H01M 8/0228(2016.01) H01M 8/0206(2016.01)H01M 8/0213(2016.01) (54)发明名称 氢燃料电池金属双极板及其制备方法 (57)摘要 本发明公开了一种氢燃料电池金属双极板 及其制备方法,包括表面带镀层的金属双极板, 所述镀层由金属双极板表面向外依次为银镀层、 TiCrN镀层及石墨镀层。本发明具有优异的导电 性能和耐腐蚀性能,接触电阻低,膜基结合力好, 导热性能好。权利要求书1页 说明书5页 附图1页CN 109852932 A 2019.06.07 C N 109852932 A

权 利 要 求 书1/1页CN 109852932 A 1.一种氢燃料电池金属双极板,包括表面带镀层的金属双极板,其特征在于:所述镀层由金属双极板表面向外依次为银镀层、TiCrN镀层及石墨镀层。 2.根据权利要求1所述的氢燃料电池金属双极板,其特征在于:所述金属双极板的材料为316L不锈钢或钛合金。 3.如权利要求1所述的氢燃料电池金属双极板的制备方法,其特征在于,包括如下步骤: (1)对金属双极板表面进行预处理以获得清洁的金属双极板表面; (2)把经过预处理的金属双极板放入磁控溅射器的真空腔内,抽真空; (3)离子溅射清洗; (4)开启银靶,进行银镀层溅射; (5)关闭银靶,开启钛和铬靶,进行TiCr镀层预溅射; (6)通入氮气,制备TiCrN镀层; (7)关闭氮气、钛靶和铬靶;开启碳靶,进行石墨镀层溅射; (8)关闭碳靶,离子溅射清洗,开放气阀,取出产品。 4.根据权利要求3所述的制备方法,其特征在于:步骤(1)中,所述预处理为:先用砂纸对金属双极板表面打磨,然后抛光机抛光,蒸馏水冲洗,接着分别浸入乙醇和丙酮溶液中超声清洗,烘干。 5.根据权利要求3所述的制备方法,其特征在于:步骤(2)中,抽真空为将真空腔体内压力抽至2×10-5Torr为止。 6.根据权利要求3所述的制备方法,其特征在于:步骤(3)和步骤(8)中,所述离子溅射清洗采用氩离子溅射清洗20-30min。 7.根据权利要求3所述的制备方法,其特征在于:步骤(4)中,银镀层溅射的参数为:银靶电流大小1-6A,基体偏压-80V,沉积时间10-20min。 8.根据权利要求3所述的制备方法,其特征在于:步骤(5)中,TiCr镀层预溅射的参数为:Cr靶电流2-8A,Ti靶电流1-6A,基体偏压-80V,沉积时间5-20min。 9.根据权利要求3所述的制备方法,其特征在于:步骤(6)中,制备TiCrN镀层参数为:氮气流量通过OEM 系统来调节,调节OEM值为40-80%,保持Cr靶电流不变,Ti靶电流调节为2-8A,基体偏压-80V,沉积时间60-300min。 10.根据权利要求3所述的制备方法,其特征在于:步骤(7)中,石墨镀层溅射的参数为:碳靶电流大小1-6A,基体偏压-80V,沉积时间15-25min。 2

(完整版)锂电池英文生产流程

Mixing(配料) Mix solvent and bound separately with positive and negative active materials. Make into positive and negative pasty materials after stirring at high speed till uniformity. Coating(涂布) Now, we are in coating line. We use back reverse coating. This is the slurry-mixing tank. The anode(Cathode)slurry is introduced to the coating header by pneumaticity from the mixing tank. The slurry is coated uniformly on the copper foil, then the solvent is evaporated in this oven. (下面的依据情况而定)There are four temperature zones, they are independently controlled. Zone one sets at 55 degree C, zone two sets at 65 degree C, zone three sets at 80 degree C, zone four sets at 60 degree C. The speed of coating is 4 meters per minute. You see the slurry is dried. The electrode is wound to be a big roll and put into the oven. The time is more than 2 hours and temperature is set at 60 degree C. Throughout the coating, we use micrometer to measure the electrode thickness per about 15 minutes. We do this in order to keep the best consistency of the electrode. Vocabulary: coating line 涂布车间back reverse coating 辊涂coating header 涂布机头 Al/copper foil 铝/铜箔degree C 摄氏度temperature zones 温区 wind to be a(big)roll 收卷evenly/uniformly 均匀oven 烘箱 evaporate 蒸发electrode 极片 Cutting Cut a roll of positive and negative sheet into smaller sheets according to battery specification and punching request. Pressing Press the above positive and negative sheets till they become flat. Punching Punching sheets into electrodes according to battery specification, Electrode After coating we compress the electrode with this cylindering machine at about 7meters per minute. Before compress we clean the electrode with vacuum and brush to eliminate any particles. Then the compressed electrode is wound to a big roll. We use micrometer to measure the compressed electrode thickness every 10 minutes. After compressing we cut the web into large pieces. We tape the cathode edge to prevent any possible internal short. The large electrode with edge taped is slit into smaller pieces. This is ultrasonic process that aluminum tabs are welded onto cathodes using ultrasonic weld machine. We tape the weld section to prevent any possible internal short. And finally, we clean the finished electrodes with vacuum and brush. Vocabulary: cylindering 柱形辊压vacuum 真空particle 颗粒 wound 旋紧卷绕micrometer 千分尺internal short 内部短路 slit 分切ultrasonic 超声波weld 焊接

锂电池生产工艺修订稿

锂电池生产工艺 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锂离子电池工艺流程 正极混料 原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面; 如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、 齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快, 但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但 太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排 出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。 6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热 浆料容易结皮,太冷浆料的流动性将大打折扣。 稀释。将浆料调整为合适的浓度,便于涂布。 原料的预处理 (1)钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。 (2)导电剂:脱水。一般用200 oC常压烘烤2小时左右。 (3)粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。 (4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。 2.1.2物料球磨

燃料电池双极板

Fuel Cell Bipolar Plate Introduction This study presents a model that couples the thermal and the structural analysis in a bipolar plate in a proton exchange membrane fuel cell (PEMFC). The fuel cell stack consists of unit cell of anode, membrane, and cathode connected in series through bipolar plates. The bipolar plates also serve as gas distributors for hydrogen and air that is fed to the anode and cathode compartments, respectively. Figure 1 below shows a schematic drawing of a fuel cell stack. The unit cell and the surrounding bipolar plates are shown in detail in the upper right corner of the figure.Fuel cell stack Bipolar plate Cathode Anode Membrane Figure 1: Schematic drawing of the fuel cell stack. The unit cell consists of an anode, membrane electrolyte, and a cathode. The unit cell is supported and supplied with reactants through the bipolar plates. The bipolar plates also serve as current collectors and feeders. The PEMFC is one of the strongest alternatives for automotive applications where it has the potential of delivering power to a vehicle with a higher efficiency, from oil to propulsion, than the internal combustion engine. The fuel cell operates at temperatures just below 100 °C, which means that it has to be heated at start-up. The heating process induces thermal stresses in the bipolar plates. This analysis reveals the magnitude and nature of these stresses.

揭秘!锂电池制造工艺设计全解析

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 揭秘!锂电池制造工艺设计全解析 WORD 格式-可编辑揭秘!锂电池制造工艺全解析锂电池结构锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。 目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。 若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。 对于电池厂家而言,需要对产线上的设备大面积进行更换。 锂电池制造工艺锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。 差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 专业知识--整理分享 1/ 7

WORD 格式-可编辑锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。 除此之外,电池组的生产还需要 Pack 自动化设备。 锂电前段生产工艺锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。 配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。 如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。 因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。 锂电中段工艺流程锂电池制造过程中,中段工艺主要是完成电池的成型,主要工艺流程包括制片、极片卷绕、模切、电芯卷绕成型和叠片成型等,是当前国内设备厂商竞争比较激烈的一个领域,占锂电池生产线价值量约 30%。 目前动力锂电池的电芯制造工艺主要有卷绕和叠片两种,对应的

锂电池生产工艺分析

关于循环不合格的分析 一、正负极活性材料的物化结构性质的影响 正负极活性材料的物化结构性质对锂离子的嵌入和脱嵌有决定性的影响,因而影响电池的循环寿命。正负极活性材料的结构是主要的影响因素,使用容易脱嵌的活性材料充放电循环时,活性材料的结构变化较小,而且这种微小变化是可逆的,因而有利于延长充放电循环寿命。 1、材料在充放电过程中的结构稳定性 材料在充放电过程中的结构稳定性有利于提高其充放循环性能。如尖晶石材料LiXMn2O4,具有优越的循环性能,其主要原因之一便是在锂离子的嵌入和胶出过程中,单元晶胞膨胀、收缩率小于1%,即体积变化小;LiXMn2O4(X大于等于1)电极在充放过程中容量损失严重,主要是因为在充放电过程中,其颗粒表面发生Jahn-Teller畸变效应,单元晶胞膨胀严重,使结构完整性破坏。对材料进行适当的离子掺杂可有效提高材料的结构稳定性。如对尖晶石结构LiXMn2O4进行适量的钴(Co)掺杂,因钴使该材料的晶格参数变小,在循规蹈矩环过程中晶体结构趋于稳定,从而有效改善了其循环稳定性。 2、活性材料的料度分布及大小影响 活性材料的粒度对其循环性能影响很大。研究表明:活性材料的粒度在一定范围与材料的循环性能正相关;活性材料的粒度分布越宽,其循环性能就越差,因为当粒度分布较宽时,其孔隙度差,从而影响其对电解液的毛细管作用而使阻抗表现较大,当充电到极限电位时,大颗粒表面的锂离子会过度脱嵌而破坏其层状结构,而不利于循环性能。 3、层状结构的取向性及厚度的影响 具有高度取向性和高度层状有序结构且层状结构较厚的材料,因锂离子插入的方向性强,使用其大电流充电放循环时性能不佳,而对于一些具有无序性层状结构(混层结构)或层结构较薄的材料,由于其锂离子脱嵌速率快,且锂脱嵌引起的体积变化较小,因而其充放循环过程中容降率较小,且耐老化。 4、电极材料的表面结构和性质的影响 改善电极材料的表面结构和性质可有效抑制有机溶剂的共插入及其与电解液间的不良反应,如在石黑表面包覆一层有机聚合物热解碳,在一些正极活性材料如LiCOO2,LiC0XNi1-XO2等表层涂覆一层玻璃态复合氧化物如

国内石煤提钒工艺现状分析及面临问题

国内石煤提钒工艺现状分析及面临问题 邹晓勇 (吉首大学化工学院副教授,吉首市诚技科技开发有限公司总经理,湖南省) 邹晓勇,男,41岁 从事石煤提钒新技术研究十多年,在石煤提钒领域发表论文十多篇; 主持研发的钙化焙烧低酸浸出离子交换法提钒技术已实现规模化工业运行两年多; 采用该项技术的石煤提钒项目已获得国内多个省市环保部门的项目批复。 石煤提钒,通常指以含钒碳质页岩、含钒煤矸石等为原料提取钒化合物的工业过程。 我国的石煤提钒工业起步于70年代末期,此后经历了两次大的发展时期,即八十年代的初步发展期,以及2004年到现在的大发展期。石煤提钒工业经过三十年的发展,在钒行业已经具有较重要的地位,产量估计已经达到钒总产量的40%左右。在工业行业里,石煤提钒是个较年轻的行业,在工艺、设备方面仍然处于较落后的状况,仍然存在较大的技术和经济提升空间。 1 石煤提钒工艺现状 经过三十年的发展,石煤提钒工艺发展为两大工艺路线,即火法焙烧湿法浸出提钒工艺和湿法酸浸提钒工艺。火法焙烧湿法浸出提钒工艺,指的是矿石经过高温氧化焙烧,低价钒氧化转化为五价钒,再进行湿法浸出得到含钒液体实现矿石提钒的工艺过程;湿法酸浸提钒工艺,指的是含钒原矿直接进行酸浸,包括在较高浓度酸性条件下,甚至是加热加压、氧化剂存在的环境下,实现矿物中钒溶解得到含钒液体的工艺过程。 1.1火法焙烧湿法浸出提钒工艺 火法焙烧湿法浸出提钒工艺,根据焙烧过程添加剂的不同或焙烧机理的区别,分为加盐焙烧提钒工艺、空白焙烧提钒工艺、钙化焙烧提钒工艺等。 1.1.1加盐焙烧提钒工艺 1976年,湖南冶金研究所与岳阳新开公社合作进行石煤提钒的试验研究并建厂生产。焙烧设备选用安化钒厂的平窑,并对之进行了改进。到1979年,石煤加盐氧化钠化焙烧—水浸—水解沉粗钒—粗钒碱溶精制—精钒的传统工艺流程己经形成,此工艺也就是行业传统上说的“钠法焙烧、两步法沉钒工艺”或“加盐焙烧提钒工艺”。

18650锂电池生产工艺设计

18650锂电芯诞生全过程揭秘(图) 2014-12-01 10:47:42来源:充电头 导读:18650是目前最常见的锂电封装方式,无论是当下最流行的三元材料,还是国家力推的磷酸铁锂,以及尚未普及的钛酸锂,均有18650的规格。18650型电芯,采用Cylindrical圆柱形封装方式,这种电芯直径18mm,长度65mm,广泛应用于充电宝、电动车、笔记本、强光手电筒等领域。 OFweek锂电网讯:锂电池是目前数码领域使用最多的电池。其最突出的优点是能量密度高,适用于非常注重体积、便携的数码产品。同时,相对于以往的干电池,锂离子电池可以循环利用,在环保方面也有优势。锂离子电池的正负极材料都可以吸收、释放锂离子。但是锂离子在正极和负极中的化学势能有所不同。负极中的锂离子化学势能高,正极中的锂离子化学势能低。锂离子放电时,负极中存储的锂离子释放出来,被正极所吸收。由于负极中锂离子的化学势能高于正极,这部分势能差就以电能的形式释放出来。充电过程则是上述过程的逆转,将正极中的锂离子释放到负极中。由于这种锂离子在正负极中的来回迁移,锂离子电池又被称为摇椅电池。 18650是目前最常见的锂电封装方式,无论是当下最流行的三元材料,还是国家力推的磷酸铁锂,以及尚未普及的钛酸锂,均有18650的规格。18650型电芯,采用Cylindrical圆柱形封装方式,这种电芯直径18mm,长度65mm,广泛应用于充电宝、电动车、笔记本、强光手电筒等领域,这类封装的好处是规格统一,方便自动化、规模化生产,具有机械强度高、耐冲击性强、良品率高等特点;此外还有Prismatic方形软包封装,常见于手机和平板电脑,这类封装最直接的好处是轻薄,体积小,便携。 在笔记本电脑时代,18650电芯还只是数码产品的幕后英雄。随着智能手机和平板等智能设备的普及,移动电源成为了人们出行必不可少的装备,18650也得以开始从幕后走向前台,被大众所熟知。那么,看似简单的18650电芯是如何诞生?它有什么秘密呢?接下来,让我们一起去探索它的诞生过程。近日笔者有幸进入东莞一家电芯厂拜访学习,将从涂布、组装、测试三方面图文并茂,为大家介绍18650电芯的诞生过程。 电芯的生产过程一:涂布

相关文档