文档库 最新最全的文档下载
当前位置:文档库 › 光电耦合器的检测方法

光电耦合器的检测方法

光电耦合器的检测方法
光电耦合器的检测方法

光电耦合器的检测方法

光电耦合器——又称光耦合器或光耦,它属于较新型的电子产品,现在它广泛应用于计算机、音视频……各种控制电路中。由于光耦内部的发光二极管和光敏三极管只是把电路前后级的电压或电流变化,转化为光的变化,二者之间没有电气连接,因此能有效隔断电路间的电位联系,实现电路之间的可靠隔离。

一、光电耦合器的检测

判断光耦的好坏,可在路测量其内部二极管和三极管的正反向电阻来确定。更可靠的检测方法是以下三种。

1.比较法

拆下怀疑有问题的光耦,用万用表测量其内部二极管、三极管的正反向电阻值,用其与好的光耦对应脚的测量值进行比较,若阻值相差较大,则说明光耦已损坏。

2.数字万用表检测法

下面以PC111光耦检测为例来说明数字万用表检测的方法,检测电路如图1所示。检测时将光耦内接二极管的+端{1}脚和-端{2}脚分别插入数字万用表的Hfe的c、e插孔内,此时数字万用表应置于NPN挡;然后将光耦内接光电三极管c极{5}脚接指针式万用表的黑表笔,e极{4}脚接红表笔,并将指针式万用表拨在R×1k挡。这样就能通过指针式万用表指针的偏转角度——实际上是光电流的变化,来判断光耦的情况。指针向右偏转角度越大,说明光耦的光电转换效率越高,即传输比越高,反之越低;若表针不动,则说明光耦已损坏。

3.光电效应判断法

仍以PC111光耦合器的检测为例,检测电路如图2所示。将万用表置于R×1k电阻挡,两表笔分别接在光耦的输出端{4}、{5}脚;然后用一节1.5V的电池与一只50~100Ω的电阻串接后,电池的正极端接PC111的{1}脚,负极端碰接{2}脚,或者正极端碰接{1}脚,负极端接{2}脚,这时观察接在输出端万用表的指针偏转情况。如果指针摆动,说明光耦是好的,如果不摆动,则说明光耦已损坏。万用表指针摆动偏转角度越大,表明光电转换灵敏度越高。

光电耦合器工作原理

光电耦合器件简介

光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。

当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。

图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型6脚封装

图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装

光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:

(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。

(2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。

(3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。

(4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。

光电隔离技术的应用

微机介面电路中的光电隔离

微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进

行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。

图六光电耦合器接线原理

对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。

功率驱动电路中的光电隔离

在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I /O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。电路实例如图7所示。

图七双向可控硅(晶闸管)

在马达控制电路中,也可采用光耦来把控制电路和马达高压电路隔离开。马达靠MOSFET或IGBT功率管提供驱动电流,功率管的开关控制信号和大功率管之间需隔离放大级。在光耦隔离级—放大器级—大功率管的连接形式中,要求光耦具有高输出电压、高速和高共模抑制。

远距离的隔离传送

在电脑应用系统中,由于测控系统与被测和被控设备之间不可避免地要进行长线传输,信号在传输过程中很易受到干扰,导致传输信号发生畸变或失真;另外,在通过较长电缆连接的相距较远的设备之间,常因设备间的地线电位差,导致地环路电流,对电路形成差模干扰电压。为确保长线传输的可靠性,可采用光电耦合隔离措施,将2个电路的电气连接隔开,切断可能形成的环路,使他们相互独

立,提高电路系统的抗干扰性能。若传输线较长,现场干扰严重,可通过两级光电耦合器将长线完全“浮置”起来,如图8所示。

图八传输长线的光耦浮置处理

长线的“浮置”去掉了长线两端间的公共地线,不但有效消除了各电路的电流经公共地线时所产生杂讯电压形成相互窜扰,而且也有效地解决了长线驱动和阻抗匹配问题;同时,受控设备短路时,还能保护系统不受损害。

过零检测电路中的光电隔离

零交叉,即过零检测,指交流电压过零点被自动检测进而产生驱动信号,使电子开关在此时刻开始开通。现代的零交叉技术已与光电耦合技术相结合。图9为一种单片机数控交流调压器中可使用的过零检测电路。

图九过零检测

220V交流电压经电阻R1限流后直接加到2个反向并联的光电耦合器GD1,GD2的输入端。在交流电源的正负半周,GD1和GD2分别导通,U0输出低电平,在交流电源正弦波过零的瞬间,GD1和GD2均不导通,U0输出高电平。该脉冲信号经反闸整形后作为单片机的中断请求信号和可控矽的过零同步信号。

注意事项

(1)在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两端共用一个电源,则光电耦合器的隔离作用将失去意义。

(2)当用光电耦合器来隔离输入输出通道时,必须对所有的信号(包括数位量信号、控制量信号、状态信号)全部隔离,使得被隔离的两边没有任何电气上的联系,否则这种隔离是没有意义的。

常见的光电耦合电路及其应用分析

常见的光电耦合电路及其应用分析 光电耦合电路是设计中常用的将信号进行隔离和转换并再次利用的一种应用,它主要是将输入的电信号通过介质转换成光信号,再根据介质和电路的特性转换成电信号输出,实现“电-光-电”之间的转换。同时将由于电路之间由于电容/电感等元器件或电磁感应等造成的干扰基本上排除。可见光电耦合电路在各位的设计应用中发挥着重要的作用。 光电耦合器是将光电耦合电路进行了集成和封装后得到的ic产品,它把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。最常用的发光器件就是LED发光二极管了,当输入电信号加到输入端会导致LED发光,光接受器件接受LED的发光的光信号后将其转换成电信号并输出。 光电耦合电路结构独特,可有效抑噪声消除干扰、开关速度快、体积小、可替代变压器隔离等,并可以组成和应用到开光电路、逻辑电路、隔离耦合电路、高压稳压电路、继电器替代电路等,故小编整理和总结了几种常见的光电耦合电路图,并对他们的应用需要和范围进行分析,希望能给大家的学习、掌握和应用这种电路有一定的指导作用。 (1)组成的多谐振荡器电路图 工作流程为接通电源后: A、电容C两端电压不能突变,电阻R数值大于Rl,电源电压Ec主要加在R上,F点电位很低,LED处于截止状态; B、电容充电电压增加导致F点电位逐渐增高,到达一定程度使LED导通发光,光敏三极管导通饱和,输出电压发生跃变使之接近电源电压;(即U0约=Ec) C、电容上存留电荷通过三极管、LED通路快速放电,并对其反向充电到达一定程度后导致LED截止及三极管截止???; D、电容再次通过电阻R和RL放电进行反向充电,LED发光光敏三极管再次饱和,如此循环形成振荡。 作用:多谐振荡器也叫自激多谐振荡器,它的作用是产生交流信号。将直流电变为交流

PC817A光电耦合器

PC817A/B/C--- 电光耦合器 光耦特性与应用 1.概述 光耦合器亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的可靠性。 光耦的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。 近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别介绍光耦合器的工作原理及检测方法。 2. 光耦的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气性能。 事实上,光耦合器是一种由光电流控制的电流转移器件,其输出特性与普通双极型晶体管的输出特性相似,因而可以将其作为普通放大器直接构成模拟放大电路,并且输入与输出间可实现电隔离。然而,这类放大电路的工作稳定性较差,

光耦的基本知识

光耦的基本知识 光耦合器(optical coupler,英文缩写为OC)亦称光电隔离器,简称光耦。光耦合器以光为媒介传输电信号。它对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类最多、用途最广的光电器件之一。光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。又由于光耦合器的输入端属于电流型工作的低阻元件,因而具有很强的共模抑制能力。所以,它在长线传输信息中作为终端隔离元件可以大大提高信噪比。在计算机数字通信及实时控制中作为信号隔离的接口器件,可以大大增加计算机工作的 可靠性。 1.光耦合器的主要优点 信号单向传输,输入端与输出端完全实现了电气隔离隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔离、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(S SR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目 的。 十几年来,新型光耦合器不断涌现,满足了各种光控制的要求。其应用范围已扩展到计测仪器,精密仪器,工业用电子仪器,计算机及其外部设备、通信机、信号机和道路情报系统,电力机械等领域。这里侧重介绍该器件的工作特性,驱动和输出电路及部分实际应用电路。近年来问世的线性光耦合器能够传输连续变化的模拟电压或模拟电流信号,使其应用领域大为拓宽。下面分别 介绍光耦合器的工作原理及检测方法。 2. 光耦合器的性能及类型 用于传递模拟信号的光耦合器的发光器件为二极管、光接收器为光敏三极管。当有电流通过发光二极管时,便形成一个光源,该光源照射到光敏三极管表面上,使光敏三极管产生集电极电流,该电流的大小与光照的强弱,亦即流过二极管的正向电流的大小成正比。由于光耦合器的输入端和输出端之间通过光信号来传输,因而两部分之间在电气上完全隔离,没有电信号的反馈和干扰,故性能稳定,抗干扰能力强。发光管和光敏管之间的耦合电容小(2pf左右)、耐压高(2.5KV左右),故共模抑制比很高。输入和输出间的电隔离度取决于两部分供电电源间的绝缘电阻。此外,因其输入电阻小(约10Ω),对高内阻源的噪声相当于被短接。因此,由光耦合器构成的模拟信号隔离电路具有优良的电气 性能。

光电耦合器及其应用

光电耦合器及其应用 [作者:佚名转贴自:未知点击数:933 更新时间:2006-3-31 【字体:A 】 光电耦合器,是近几年发展起来的一种半导体光电器件,由于它具有体积小、 寿命长、抗干扰能力强、工作温度宽及无触点输入与输出在电气上完全隔离等 特点,被广泛地应用在电子技术领域及工业自动控制领域中,它可以代替继电 器、变压器、斩波器等,而用于隔离电路、开关电路、数模转换、逻辑电路、 过流保护、长线传输、高压控制及电平匹配等。 为使读者了解与应用光电耦合器,今介绍几种光电耦合器件及应用电路,供大 家参考与开拓。 1.器件选择 (1)三极管输出型光电耦合器 三极管输出型光电耦合器电路如图46—1中(a)所示,它是由两部分组成的。其中,1、2端为输入端,通常由发光器件构成; 4、5、6端接一只光敏三极管构成输出端,当接收到发射端发出的红外光后,在三极管集电极中便有电流输出。 图46-1 三极管输出型光电耦合器的特点,是具有很高的输入输出绝缘性能,频率响应可达300kHz,开关时间数微秒。 (2)可控硅输出型光耦合器 可控硅输出型光耦合器的电路如图46?中(b)所示。该器件为六脚双列式封装。当1、2端加入输入信号后,发射管发出的红

外光被接在4、5、6脚的光敏可控硅接收,使其导通。它可应用在低电压电子电路控制高压交流回路的开启。 (3)光耦合的可控硅开关驱动器 图46—2中(a)为光敏双向开关器件;图46?中(b)为过零控制电路及光敏双向开关器件组合体。它们的工作原理是:利用输入端红外光控制输出端的光敏双向开关导通,进而触发外接双向可控硅导通,达到控制负载接入交流220V回路的目的。图中(a)为非过零控制,图中(b)为过零控制。本驱动器有非常好的输入与输出绝缘性,可构成固态继电器的控制电路,其输 出的控制功率由可控允许功率决定。 图46-2 (4)达林顿管输出的光检测器 达林顿管输出的光检测器如图46?中(a)所示。它是由两只管子组成复合管,具有很高的电流放大能力,形成下一级或负载的 驱动电流,有较强的光检测灵敏度。 (5)数字电路光耦合器 数字电路光耦合器电路如图46?中(b)所示。光耦合器输出为施密特触发电路形式,其特点是响应速度快、数字逻辑可靠,应 用于计算机接口、数控电源及电动机控制中。 (6)双向开关触发器输出的光检测器 图46—3中的(c)为双向开关触发器输出的光检测器电路。该图为三端器件,内部是光敏双向开关器件,收到红外光线后,双向开关器件导通,触发外接可控硅导通,使负载接入220V回路中。

光耦参数解释及其设计注意事项

光耦参数解释 1、正向工作电压V (forward voltage ) : V f是指在给定的工作电流下,LED本身的压降。常见的小功率LED通常以l f=10mA来测试正向工作电压,当然不同的LED,测试条件和测试结果也会不一样。 2、正向电流I f:在被测管两端加一定的正向电压时二极管中流过的电流。 3、反向工作电压 V r (reverse voltage :是指原边发光二极管所能承受的最大反向电 压,超过此反向电压,可能会损坏LED。而一般光耦中,这个参数只有5V左右,在存在反压或振荡的条件下使用时,要特别注意不要超过反向电压。如,在使用交流脉冲驱动LED 时,需要增加保护电路。 4、反向电流l r:在被测管两端加规定反向工作电压V r时,二极管中流过的电流。 5、反向击穿电压V br ::被测管通过的反向电流I r为规定值时,在两极间所产生的电压降。 6、结电容C j :在规定偏压下,被测管两端的电容值。 7、电流传输比CTR(current transfer ratio ):指在直流工作条件下,光耦的输出电流与输入电流之间的比值。光耦的CTR类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同决定了光耦工 作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。若输入电流、输出电流、电流传输比设计搭配不合理,可能导致电路不能工作在预想的工作状态。

8、集电极电流l c (collector current):如上图,光敏三极管集电极所流过的电流,通常表示其最大值。 9、输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持IC/IF < CTRminH^( CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 10、反向击穿电压V ( BR)ce。:发光二极管开路,集电极电流I c为规定值,集电极与发射集间的电压降。 11、反向截止电流I ce。:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 12、C-E饱和电压V ce(C-E saturation voltage ):光敏三极管的集电极-发射极饱和压降。 13、入出间隔离电容C io :光耦合器件输入端和输出端之间的电容值。 14、入出间隔离电阻:半导体光耦合器输入端和输出端之间的绝缘电阻值。 15、入出间隔离电压Vg :光耦合器输入端和输出端之间绝缘耐压值 16、传输延迟时间T PHL、T PLH :光耦合器在规定工作条件下,发光二极管输入规定电流I FP 的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下 降到1.5V时所需时间为传输延迟时间T p HL。从输入脉冲后沿幅度的50%到输出脉冲电平上 升到1.5V时所需时间为传输延迟时间T PLH。 17、上升时间Tr (Rise Time)&下降时间T f (Fall Time),其定义与典型测试方法如下图所示,它们反映了工作在开关状态的光耦,其开关速度情况。 T£ST CJHCUIT WAVE FORWS AJiusl I F tit pfodux I C- Z A

固态去耦合器企业标准

Q/BZL 陕西凌雷电气有限公司企业标准 Q/LL 015-2013 LSD-50/200固态去耦合器 2013-04-21发布 2013-04-21实施陕西凌雷电气有限公司发布

目次 前言 (Ⅲ) 1 总则 (1) 2 术语和定义 (1) 3 标志 (2) 4运行条件 (2) 5技术要求 (3) 6检验规程 (4) 7 型式试验 (5) 8 例行试验 (6) 9抽样试验 (6) 10验收 (6) 11包装、运输、保管及保修期 (7) I

前言 本标准主要参照GB18802.1-2002《低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法》制定。编写格式和规则与GB/T1.1-2000一致。 本标准从批准发布之日起生效。 本标准由陕西凌雷电气有限公司技术部提出。 本标准由陕西凌雷电气有限公司质管办归口。 本标准由陕西凌雷电气有限公司技术部负责起草。 本标准由陕西凌雷电气有限公司技术部负责解释。 本标准主要起草人:戴碧辉、吴林、陈萌 II

LSD-50/200固态去耦合器 1 总则 1.1 范围 本标准规定了LSD-50/200固态去耦合器的技术要求、试验方法、检验规则、制造安装、运输供货等内容。 1.2 规范性引用文件 下列文件中的条款通过本标准的引用而构成为本标准的条款。凡是注日期的引用文件其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 IEC61643.1 连接低压配电系统的电涌保护器第一部分:性能要求和试验方法 NVCE SP0177 减轻交流电和雷电对金属构筑物和腐蚀控制系统影响的措施 GB/T2423.1 电工电子产品环境试验第2部分:试验方法试验A:低温试验 GB/T2423.2 电工电子产品环境试验第2部分:试验方法试验B:高温试验 GB/T2423.3 电工电子产品环境试验第2部分:试验方法试验C:恒定湿热试验GB/T2423.5 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GB/T2423.10 电工电子产品环境试验第2部分:试验方法试验FC和导则:震动GB11032 交流无间隙金属氧化物避雷器 GB4208 外壳防护等级(IP代码) GB18802.1 低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法GB/T 50698 埋地钢质管道交流干扰防护技术标准 SY/T0032 地钢制管道交流排流保护技术标准 CDP-S-PC-AC-007 油气管道工程固态去耦合器技术规格书 2 术语和定义 GB18802.1、GB11032确立的以及下列术语和定义适用于本标准。 3

光电耦合器的应用与使用注意事项

国内的消费者很多是“面子消费”者,这一点很难用经济学去解读清楚,他们中的很多人并不是按照理性的穷人逻辑或者富人逻辑来决策自己的购买。所以商家对付穷人最好的促销办法就是,先给商品一个昂贵的价格,然后再给一个极低的折扣,这样让穷人觉得占了很大便宜。 富人从来不屑于干这样的事,他们不想更麻烦。对于他们来说,时间才是宝贵的,便捷才最重要,他们想在什么时候消费就在什么时候消费,对于他们来说,他们的经济条件可以让他们获得更多的自由度。 他们的购买总是即兴的,他们更喜欢在实体店里体验消费,享受店员为他们的讲解和赞誉,尽管他们知道那是阿谀之词。 他们会询问有没有折扣,但其实他们只是为了证明自己的精明,并不在意有多大折扣。 相对来说,富人更在意购物的体验过程,很多时候富人的消费愉悦只是购物后拥有的一刹那,事后他们往往对已经拥有的商品并没有多大兴趣了,甚至是买回去后,再也没有用过。 富人不懂得网购、不懂得团购、不懂得秒杀。他们更懂得名牌,懂得名牌间的细微差距,他们总是津津乐道并放大那些细微的见识,用以印证自己是个有品位的人如果我们把人分作穷人和富人,把商品分作必需品和奢侈品,我们就可把这些要素纳入一张表中,在这张表中我们可以清晰地看到,穷人对必需品的需求弹性大,而富人对奢侈品的需求弹性大。 这也就解释了为什么:穷人对必需品很容易情绪紧张,富人超喜欢名牌打折! 中国的消费者结构发生了变化,所以,一方面我们看到消费者对CPI的增长怨声一片,另一方面我们也看到在奢侈品领域繁荣一片。这都是真实的,穷人不明白富人为何买那些没用的东西,富人不明白穷人为何那么斤斤计较。 穷“富人”与富“穷人” 如果你单纯地认为中国的穷人与富人已经划分清楚,穷人在意必需品,富人在意奢侈品,那你就错了! 中国的消费者不是可以简单地用穷人和富人来分得开的,中国历来都有“穷大方”,“富抠门”的说法,更多的消费者是兼具这两种品性的。 有时候我们真的不知道他们的收入状况。我们曾走访过国内许多城市的消费者,在我们做专项调查的时候,中国的消费者无一例外地虚报自己的收入,最离谱的是成都,收入虚报

光电耦合器的发展及应用(精)

光电耦合器的发展及应用 摘要:半导体光电耦合器现已发展成为一类特殊的半导体隔离器件。它体积小、寿命长、无触点、抗干扰、能隔离,并具有单向信号传输和容量连接等功能。文中介绍了光电耦合器的典型结构和特点以及国内外的发展现状,最后给出了半导体电隔离耦合器件的多种应用电路实例。 关键词:发光器件光接收器件输入输出光电耦合器 随着半导体技术和光 电子学的发展,一种 能有效地隔离噪音和 抑制干扰的新型半导 体器件——光电耦合 器于1966年问世了。 光电耦合器的优点是 体积小、寿命长、无 触点、抗干扰能力 强、能隔离噪音、工 作温度宽,输入输出之间电绝缘,单向传输信号及逻辑电路易连接等。光电耦合器按光接收器件可分为有硅光敏器件(光敏二极管、雪崩型光敏二极管、PIN 光敏二极管、光敏三极管等)、光敏可控硅和光敏集成电路。把不同的发光器件和各种光接收器组合起来,就可构成几百个品种系列的光电耦合器,因而,该器件已成为一类独特的半导体器件。其中光敏二极管加放大器类的光电耦合器随着近年来信息处理的数字化、高速化以及仪器的系统化和网络化的发展,其需求量不断增加。 1 光电耦合器的结构特点 光电耦合器的主要结构是把发光器件和光接收器件组装在一个密闭的管壳内,然后利用发光器件的管脚作输入端,而把光接收器的管脚作为输出端。当在输入端加电信号时,发光器件发光。这样,光接收器件由于光敏效应而在光照后产生光电流并由输出端输出。从而实现了以“光”为媒介的电信号传输,而器件的输入和输出两端在电气上是绝缘的。这样就构成了一种中间通过光传输信号的新型半导体电子器件。光电耦合器的封装形式一般有管形、双列直插式和光导纤维连接三种。图1是三种系列的光电耦合器电路图。 光电耦合的主要特点如下: ●输入和输出端之间绝缘,其绝缘电阻一般都大于10 10Ω,耐压一般可超过1kV,有的甚至可以达到10kV以上。

光电耦合器件简介

光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之部结构图三极管接收型 4脚封装

图二光电耦合器之部结构图三极管接收型 6脚封装 图三光电耦合器之部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之部结构图可控硅接收型 6脚封装 图五光电耦合器之部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因:

(1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号与类比电路的介面处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将类比电路和数位电路相互隔离,起到抑制交叉串扰的作用。 图六光电耦合器接线原理 对于线性类比电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/F变换后再用数位光耦进行隔离。 功率驱动电路中的光电隔离 在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动介面电路,为避免微机受到干扰,须采取隔离措施。如可控硅所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与可控硅触发电路进行隔离。电路实例如图7所示。

IGBT的常识及使用注意事项

IGBT的常识及使用注意事项 一、IGBT管简介 IGBT管是绝缘栅双极型晶体管(Isolated Gate Bipolar Transistor)的简称,它是80年代初诞生,90年代迅速发展起来的新型复合电力电子器件IGBT管是由MOSFET场效应晶体管和BJT双极型晶体管复合而成的,其输入级为MOSFET,输出级为PNP型大功率三极管,它融和了这两种器件的优点,既具有MOSFET器件输入阻抗高响应速度快热稳定性好和驱动电路简单的优点,又具有双极型器件通态电压低耐压高和输出电流大的优点,其频率特性介于MOS-FET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位IGBT管的开通和关断是由栅极电压来控制IGBT管的。当栅极加正电压时,OSFET内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT管导通,此时高耐压的IGBT管也具有低的通态压降在栅极上加负电压时,MOSFET内的沟道消失,PNP晶体管的基极电流被切断,IGBT管即关断 IGBT管与MOSFET一样也是电压控制型器件,在它的栅极发射极间施加十几伏的直流电压,只有微安级的漏电流,基本上不消耗功率,显示了输入阻抗大的优点。 二、IGBT管的代换 由于IGBT管工作在大电流高电压状态,工作频率较高,发热量大,因此其故障率较高,又由于其价格较高,故代换IGBT管时,应遵循以下原则:首先,尽量用原型号的代换,这样不仅利于固定安装,也比较简便其次,如果没有相同型号的管子,可用参数相近的IGBT管来代换,一般是用额定电流较大的管子代替额定电流较小的,用高耐压的代替低耐压的,如果参数已经磨掉,可根据其额定功率来代换。 三、IGBT管的保存 保存半导体元件的场合温度与湿度应保持常温常湿状态,不应偏离太大一般地,常温规定为5~35摄氏度,常湿规定为45%~75%在冬天特别干燥的地区,需用加湿机加湿装IGBT管模块的容器,应选用不带静电的容器并尽量远离有腐蚀性气体或灰尘较多的场合在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方。 四、使用注意事项 IGBT管的栅极通过一层氧化膜与发射极实现电隔离由于此氧化膜很薄,IGBT管的UGE 的耐压值为 20V,在IGBT管加超出耐压值的电压时,会导致损坏的危险此外,在栅极发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位升高,集电极则有电流流过这时,如果集电极与发射极间存在高电压,则有可能使IGBT管发热乃至损坏在应用中,有时虽然保证了栅极驱动电压没有超过栅极最大额定电压,但栅极连线的寄生电感和栅极与集电极间的电容耦合,也会产生使氧化层损坏的振荡电压为此,通常采用双绞线来传送驱动信号,以减少寄生电感在栅极连线中串联小电阻也可以抑制振荡电压,如果栅极回路不合适或者栅极回路完全不能工作时(栅极处于开路状态),若在主回路上加上电压,则IGBT管就会损坏为防止这类损坏情况发生,应在栅极一发射极之间接一只10千欧左右的电阻。此外,由于IGBT管为MOS结构,对于静电就要十分注意因此,请注意下面几点: (1)在使用模块时,手持分装件时,请勿触摸驱动端子部分当必须要触摸模块端子时,要先将人体或衣服上的静电放电后,再触摸; (2)在用导电材料连接IGBT管的驱动端子时,在配线未接好之前请先不要接上模块; (3)尽量在底板良好接地的情况下操作如焊接时,电烙铁要可靠接地在安装或更换IGBT管时,应十分重视IGBT管与散热片的接触面状态和拧紧程度,为了减少接触热阻,最好在散热器与

耦合器检验标准

1目的 为了确保所检验的全光纤型分支器件产品符合YD/T1117-2001产品要求,严格禁止不合格产品出厂。 2范围 本标准规定了全光纤型分支器件的所有检验项目和测试方法以及产品的抽样规则等。 职责 技品部对确保正确执行本标准全权负责,检验人员应严格按照本标准进行检验,对产品质量负责,并记录其数据与现象,交由技品部处理。 包装人员对产品包装负责。 引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。 YD/T1117-2001 全光纤型分支器件技术条件 检验项目 过程检验 注: 该步工艺只对1480/1550&980/1550波分复用器作要求; 该项检验标准只对1480/1550波分复用器作要求; 该项检验标准只对980/1550波分复用器作要求; 其中的分光比是以1工艺步骤中的A为基数;A为实际分光比。 产品分级标准 1×3或3×3、1×4或4×4耦合器分级 表一耦合器的分级

1480/1550nm波分复用耦合器的分级 表二1480/1550nm波分复用耦合器的分级 980/1550nm波分复用耦合器的分级

表三980/1550nm波分复用耦合器的分级 *注: *1上述1480/1550nm&980/1550波分复用耦合器均为单级基本型器件,全光纤结构; *2插入损耗值为0.25mm尾纤型芯件指标,不包括连接器损耗;若包括还须加上的插入损耗(如:+=)。 *3回波损耗指器件本身的指标。 产品性能实验 表四全光纤型分支器件环境性能实验 表五全光纤型分支器件机械性能实验

工作需求 分支器件的测量和试验应在YD/T1117-2001中规定的正常大气条件下进行,即: 温度:15℃~31℃ 湿度:30%~70% 测量所用仪器、仪表的精度均应符合要求,并进行定期计量。 产品检验 被检验样品应是整件的全光纤型分支器件产品。我公司对全部产品进行日常检验,有特殊情况进行型式检验。日常检验 该检验是对全部产品进行的检验,由公司内部专职检验员负责,按表一、二、三确定产品的等级。对合格产品记录其检验数据,随同产品提交给客户;对不合格产品,记录其数据与现象,交由品质部处理。检验员对所检验的产品加盖专人质量印章,并对其所检验的产品质量负责。 型式检验 光分支器件有下列情况之一时,一般进行型式检验,型式检验按YD/T1117-2001质量评定程序中的8.2.2《周期检验》进行。 新产品或老产品转厂生产的试制定型鉴定; 正式生产后,如结构、材料、工艺有较大改变,可能影响产品性能时; 产品长期停产后,恢复生产时; 出厂检验结果与上次型式检验有较大差别时; 国家质量监督机构提出进行型式检验要求时。 包装、标志、运输和贮存 标志 产品上位置允许时应标有产品名称、型号规格、编号、生产厂家、生产日期 包装 产品应用盒子包装好,包装盒内应有产品性能指标测试数据,包装盒上应标有产品名称、规格型号、生产厂家。运输 当产品需要长途运输时,需用木箱或硬纸板作外包装,在箱上写明不能大力抛、碰、压,应有防雨防潮标志,以免损坏产品。 贮存 产品应放置在工作温度范围以内的环境中。 相关记录

光电耦合器工作原理详细解说

光电耦合器工作原理详细解说光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型 4脚封装

图二光电耦合器之内部结构图三极管接收型 6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型 4脚封装

图四光电耦合器之内部结构图可控硅接收型 6脚封装

图五光电耦合器之内部结构图双二极管接收型 6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,

光耦参数解释与设计注意事项

一:光耦参数解释 1、正向工作电压f V (forward voltage ):f V 是指在给定的工作电流下,LED 本身的压降。常见的小功率LED 通常以f I =10mA 来测试正向工作电压,当然不同的LED ,测试条件和测试结果也会不一样。 2、正向电流f I :在被测管两端加一定的正向电压时二极管中流过的电流。 3、反向工作电压r V (reverse voltage ):是指原边发光二极管所能承受的最大反向电压,超过此反向电压,可能会损坏LED 。而一般光耦中,这个参数只有5V 左右,在存在反压或振荡的条件下使用时,要特别注意不要超过反向电压。如,在使用交流脉冲驱动LED 时,需要增加保护电路。 4、反向电流r I :在被测管两端加规定反向工作电压r V 时,二极管中流过的电流。 5、反向击穿电压br V ::被测管通过的反向电流r I 为规定值时,在两极间所产生的电压降。 6、结电容j C :在规定偏压下,被测管两端的电容值。 7、电流传输比CTR(current transfer ratio ):指在直流工作条件下,光耦的输出电流与输入电流之间的比值。光耦的CTR 类似于三极管的电流放大倍数,是光耦的一个极为重要的参数,它取决于光耦的输入电流和输出电流值及电耦的电源电压值,这几个参数共同决定了光耦工作在放大状态还是开关状态,其计算方法与三极管工作状态计算方法类似。若输入电流、输出电流、电流传输比设计搭配不合理,可能导致电路不能工作在预想的工作状态。

8、集电极电流c I (collector current ):如上图,光敏三极管集电极所流过的电流,通常表示其最大值。 9、输出饱和压降VCE(sat):发光二极管工作电流IF 和集电极电流IC 为规定值时,并保持IC/IF≤CTRmin 时(CTRmin 在被测管技术条件中规定)集电极与发射极之间的电压降。 10、反向击穿电压ceo )(BR V :发光二极管开路,集电极电流c I 为规定值,集电极与发射集间的电压降。 11、反向截止电流ceo I :发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 12、C-E 饱和电压ce V (C-E saturation voltage ):光敏三极管的集电极-发射极饱和压降。 13、入出间隔离电容io C :光耦合器件输入端和输出端之间的电容值。 14、入出间隔离电阻io R :半导体光耦合器输入端和输出端之间的绝缘电阻值。 15、入出间隔离电压io V :光耦合器输入端和输出端之间绝缘耐压值 16、传输延迟时间PHL T 、PLH T :光耦合器在规定工作条件下,发光二极管输入规定电流FP I 的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V 时所需时间为传输延迟时间PHL T 。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V 时所需时间为传输延迟时间PLH T 。 17、上升时间Tr (Rise Time)& 下降时间f T (Fall Time),其定义与典型测试方法如下图所示,它们反映了工作在开关状态的光耦,其开关速度情况。

光纤耦合器

光纤耦合器 光纤耦合器的概述 ?·光纤耦合器的简介 ?·光纤耦合器的分类 ?·光纤耦合器的制作方式 ?·光纤耦合器端口的级联 光纤耦合器的应用 ?·2×2单模光纤耦合器的改进... ?·光纤耦合器中光孤子传输的... ?·可调光子晶体光纤耦合器的制作 光纤耦合器的简介 光纤耦合器是指光讯号通过光纤中分至多条光纤中的元件,属于一种光被动元件,一般 在电信网路、有线电视网路、用户回路系统、区域网路各个领域都会应用到,与光纤连接器 在被动元件中起重大作用,也叫分歧器. 光纤耦合器的分类 光纤耦合器一般分为三类: 标准耦合器:双分支,单位1X2,就是将光讯号未成两个功率 星状/树状耦合器 波长多工器:也称作WDM,一般波长属于高密度分出,即波长间距窄,就是WDM 光纤耦合器的制作方式 光纤耦合器制作方式有烧结(FUSE)、微光学式(MICRO Optics)、光波导式(Wave Guide) 三种.这里介绍下烧结方式,烧结方式占了多数(约有90%),主要的方法是将两条光纤并在一起烧融拉伸,使核芯聚合一起,以达光耦合作用,而其中最重要的生产设备就是融烧机,也是最为重要的步骤,虽然重要步骤部分可由机器代工,但烧结之后,必须人工封装,所以人工成本在10%-15%左右,其次采用人工检测封装必须保证品质一致性,这也是量产时所必须克服的,但技术困难度不若DWDM MODULE及光主动元件高,因此初期想进入光纤产业的厂商,大部 分会从光耦合器切入,毛利则在20~30% 光纤耦合器端口的级联 光纤耦合器端口的级联 由于光纤端口的价格仍然非常昂贵,所以,光纤主要被用于核心交换机和骨干交换机之间连接,或被用于骨干交换机之间的级联.需要注意的是,光纤端口均没有堆叠的能力,只能被用于级联. 1. 光纤跳线的交叉连接

各种光电耦合器参数

常用参数 正向压降VF:二极管通过的正向电流为规定值时,正负极之间所产生的电压降。 正向电流IF:在被测管两端加一定的正向电压时二极管中流过的电流。 反向电流IR:在被测管两端加规定反向工作电压VR时,二极管中流过的电流。 反向击穿电压VBR::被测管通过的反向电流IR为规定值时,在两极间所产生的电压降。结电容CJ:在规定偏压下,被测管两端的电容值。 反向击穿电压V(BR)CEO:发光二极管开路,集电极电流IC为规定值,集电极与发射集间的电压降。 输出饱和压降VCE(sat):发光二极管工作电流IF和集电极电流IC为规定值时,并保持 IC/IF≤CTRmin时(CTRmin在被测管技术条件中规定)集电极与发射极之间的电压降。 反向截止电流ICEO:发光二极管开路,集电极至发射极间的电压为规定值时,流过集电极的电流为反向截止电流。 电流传输比CTR:输出管的工作电压为规定值时,输出电流和发光二极管正向电流之比为电流传输比CTR。 脉冲上升时间tr、下降时间tf:光耦合器在规定工作条件下,发光二极管输入规定电流IFP 的脉冲波,输出端管则输出相应的脉冲波,从输出脉冲前沿幅度的10%到90%,所需时间为脉冲上升时间tr。从输出脉冲后沿幅度的90%到10%,所需时间为脉冲下降时间tf。 传输延迟时间tPHL、tPLH:光耦合器在规定工作条件下,发光二极管输入规定电流IFP的脉冲波,输出端管则输出相应的脉冲波,从输入脉冲前沿幅度的50%到输出脉冲电平下降到1.5V时所需时间为传输延迟时间tPHL。从输入脉冲后沿幅度的50%到输出脉冲电平上升到1.5V时所需时间为传输延迟时间tPLH。 入出间隔离电容CIO:光耦合器件输入端和输出端之间的电容值。 入出间隔离电阻RIO:半导体光耦合器输入端和输出端之间的绝缘电阻值。 入出间隔离电压VIO:光耦合器输入端和输出端之间绝缘耐压值。 最大额定值 参数名称 符号 最大额定值 单位 V 反向电压 5 V R I 正向电流 50 mA

光电耦合器工作原理

光电耦合器工作原理 光电耦合器件简介 光电偶合器件(简称光耦)是把发光器件(如发光二极体)和光敏器件(如光敏三极管)组装在一起,通过光线实现耦合构成电—光和光—电的转换器件。光电耦合器分为很多种类,图1所示为常用的三极管型光电耦合器原理图。 当电信号送入光电耦合器的输入端时,发光二极体通过电流而发光,光敏元件受到光照后产生电流,CE导通;当输入端无信号,发光二极体不亮,光敏三极管截止,CE不通。对于数位量,当输入为低电平“0”时,光敏三极管截止,输出为高电平“1”;当输入为高电平“1”时,光敏三极管饱和导通,输出为低电平“ 0”。若基极有引出线则可满足温度补偿、检测调制要求。这种光耦合器性能较好,价格便宜,因而应用广泛。 图一最常用的光电耦合器之内部结构图三极管接收型4脚封装

图二光电耦合器之内部结构图三极管接收型6脚封装 图三光电耦合器之内部结构图双发光二极管输入三极管接收型4脚封装

图四光电耦合器之内部结构图可控硅接收型6脚封装

图五光电耦合器之内部结构图双二极管接收型6脚封装 光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种杂讯干扰,使通道上的信号杂讯比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的杂讯电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极体发光,从而被抑制掉了。 (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰杂讯都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。 (3)光电耦合器可起到很好的安全保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。 (4)光电耦合器的回应速度极快,其回应延迟时间只有10μs左右,适于对回应速度要求很高的场合。 光电隔离技术的应用 微机介面电路中的光电隔离 微机有多个输入埠,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的杂讯干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作介面,对信号及杂讯进行隔离。典型的光电耦合电路如图6所示。该电路主要应用在“A/D转换器”的数位信号输出,及由CPU发出的对前向通道的控制信号

IGBT的常识及使用注意事项

IGBT的常识及使用注意事项 IGBT的常识及使用注意事项一、IGBT管简介 IGBT管是绝缘栅双极型晶体管(Isolated Gate Bipolar Transistor)的简称,它是80年代初诞生,90年代迅速发展起来的新型复合电力电子器件IGBT管是由MOSFET场效应晶体管和BJT双极型晶体管复合而成的,其输入级为MOSFET,输出级为PNP型大功率三极管,它融和了这两种器件的优点,既具有MOSFET器件输入阻抗高响应速度快热稳定性好和驱动电路简单的优点,又具有双极型器件通态电压低耐压高和输出电流大的优点,其频率特性介于MOS-FET与功率晶体管之间,可正常工作于几十kHz频率范围内,在现代电力电子技术中得到了越来越广泛的应用,在较高频率的大、中功率应用中占据了主导地位IGBT管的开通和关断是由栅极电压来控制IGBT管的。当栅极加正电压时,OSFET内形成沟道,并为PNP晶体管提供基极电流,从而使IGBT管导通,此时高耐压的IGBT管也具有低的通态压降在栅极上加负电压时,MOSFET内的沟道消失,PNP 晶体管的基极电流被切断,IGBT管即关断IGBT管与MOSFET一样也是电压控制型器件,在它的栅极发射极间施加十几伏的直流电压,只有微安级的漏电流,基本上不消耗功率,显示了输入阻抗大的优点。

二、IGBT管的代换 由于IGBT管工作在大电流高电压状态,工作频率较高,发热量大,因此其故障率较高,又由于其价格较高,故代换IGBT管时,应遵循以下原则:首先,尽量用原型号的代换,这样不仅利于固定安装,也比较简便其次,如果没有相同型号的管子,可用参数相近的IGBT管来代换,一般是用额定电流较大的管子代替额定电流较小的,用高耐压的代替低耐压的,如果参数已经磨掉,可根据其额定功率来代换。 三、IGBT管的保存 保存半导体元件的场合温度与湿度应保持常温常湿状态,不应偏离太大一般地,常温规定为5~35摄氏度,常湿规定为45%~75%在冬天特别干燥的地区,需用加湿机加湿装IGBT管模块的容器,应选用不带静电的容器并尽量远离有腐蚀性气体或灰尘较多的场合在温度发生急剧变化的场所IGBT模块表面可能有结露水的现象,因此IGBT模块应放在温度变化较小的地方。 四、使用注意事项 IGBT管的栅极通过一层氧化膜与发射极实现电隔离由于此氧化膜很薄,IGBT管的UGE 的耐压值为20V,在IGBT 管加超出耐压值的电压时,会导致损坏的危险此外,在栅极发射极间开路时,若在集电极与发射极间加上电压,则随着集电极电位的变化,由于集电极有漏电流流过,栅极电位

相关文档
相关文档 最新文档