文档库 最新最全的文档下载
当前位置:文档库 › Explosive shock processing of Pr2Fe14B-Fe

Explosive shock processing of Pr2Fe14B-Fe

Explosive shock processing of Pr2Fe14B-Fe
Explosive shock processing of Pr2Fe14B-Fe

Explosive shock processing of Pr2Fe14B/?–Fe

exchange-coupled nanocomposite bulk magnets

Z.Q.Jin

School of Materials Science and Engineering,Georgia Institute of Technology,

Atlanta,Georgia30332;and Department of Physics,University of Texas at Arlington,

Arlington,Texas76019

N.N.Thadhani,a)M.McGill,Y.Ding,and Z.L.Wang

School of Materials Science and Engineering,Georgia Institute of Technology,

Atlanta,Georgia30332

M.Chen and H.Zeng

IBM T.J.Watson Research Center,Yorktown Heights,New York10598;and Department of Physics, University of Texas at Arlington,Arlington,Texas76019

V.M.Chakka and J.P.Liu

Department of Physics,University of Texas at Arlington,Arlington,Texas76019

(Received31August2004;accepted26October2004)

Explosive shock compaction was used to consolidate powders obtained from melt-spun

Pr

2Fe

14

B/?–Fe nanocomposite ribbons,to produce fully dense cylindrical compacts of

17–41-mm diameter and120-mm length.Characterization of the compacts revealed

refinement of the nanocomposite structure,with approximately15nm uniformly sized

grains.The compact produced at a shock pressure of approximately1GPa maintained

a high coercivity,and its remanent magnetization and maximum energy product were

measured to be0.98T and142kJ/m3,respectively.The compact produced at4–7GPa

showed a decrease in magnetic properties while that made at12GPa showed a

magnetic softening behavior.However,in both of these cases,a smooth hysteresis loop

implying exchange coupling and a coercivity of533kA/m were fully recovered after

heat treatment.The results illustrate that the explosive compaction followed by

post-shock heat treatment can be used to fabricate exchange-coupled nanocomposite

bulk magnets with optimized magnetic properties.

I.INTRODUCTION

A variety of nanocomposites consisting of hard mag-

netic R

2Fe

14

B(R?rare earth)and soft magnetic?–Fe

or Fe

3B phases are being extensively investigated due

to their potentially higher maximum energy product

(BH)

max through the exchange coupling between neigh-

boring magnetic phases.1,2The prerequisite for effective exchange coupling is a small grain size of soft magnetic phase,1with the critical dimension estimated to be less than the twice domain wall width of the hard magnetic phase,3which is usually in the order of10nm.Nanocom-posites with such characteristics have been recently shown to have significantly improved magnetic proper-ties.4–8However,these nanocomposites have been typi-cally produced in the form of powders or thin films,and there exist major obstacles in producing bulk nanocom-posite magnets.Conventional sintering and hot-pressing methods,which are usually used to produce single-phase microcrystalline permanent magnets,are not favored in making bulk nanocomposite magnets because it is diffi-cult to avoid grain growth during these processes. Nanocrystalline bulk magnets have also been produced by resin bonding.However,resin-bonded magnets gen-erally suffer from a loss in remanence.Hence,there ex-ists a need to develop a method that can produce mono-liths from powders without changing their unique ultra-fine grain(nanoscale)structure.

Dynamic shock compaction of powders has been suc-cessfully used as a powder consolidation technique for making bulk nanocrystalline and metastable ma-terials9–12for which long-term thermal exposures would be undesirable.Shock compaction is a one-stage densi-fication/bonding process that involves consolidation of powders via the intense deposition of shock energy at inter-particle regions resulting in localized deformation and plastic flow of surfaces in the process of void https://www.wendangku.net/doc/9111641661.html,rge amounts of plastic deformation,particle fracture,and grain size reduction,can also occur in the process of void collapse as the powders are compacted to full density.The consolidation pressures are typically in

a)Address all correspondence to this author.

e-mail:naresh.thadhani@https://www.wendangku.net/doc/9111641661.html,

DOI:10.1557/JMR.2005.0085

J.Mater.Res.,Vol.20,No.3,Mar2005?2005Materials Research Society599

the order of a few to tens of giga-Pascals and the duration of the pressure pulse is up to a few microseconds,de-pending on the consolidation geometry(gas gun or ex-plosive loading)used.Consolidation of powders utilizing shock waves has been successfully used to prepare fully dense compacts of metals,alloys,and ceramics,while retaining the structural characteristics of the starting materials.13

Shock waves can be generated by the impact of a projectile accelerated using a gas gun or explosive load-ing devices or by detonating explosive charges in contact with the powder container.The gas-gun loading tech-nique is generally used for making small-scale bulk materials to study the effects of compact characteristics as a function of more controlled shock-compression con-ditions,while explosive compaction is more amenable to the production of large-scale samples.Explosive com-paction also has the potential of being effectively used for low-cost,high-volume production of bulk compacts of nanomaterials.Considerable work has been performed in characterizing the microstructural and magnetic prop-erties of explosively compacted single-phase RFeB9,14

and SmFeN alloys.15Preparation of bulk Nd

2Fe

14

B/Fe

3

B

nanocomposite magnets by dynamic compaction(using a propellant gun facility)has also been reported by Saito.12However,the compact had low coercivity(H

c~215kA/m)and its density was only approximately85% of the ingot density.Recently,we investigated the shock

consolidation of Pr

2Fe

14

B/?–Fe nanocomposite powders

using a3-capsule plate-impact gas gun recovery fixture with shock loading conditions and capsule geometry de-signed based on two-dimensional computer simulations of shock wave propagation characteristics.A significant advantage of using Pr rather than Nd in the RFeB sys-tems is its larger magnetocrystalline anisotropy constant, which is apparently beneficial to procurement of a higher

intrinsic coercivity.Moreover,the Pr

2Fe

14

B magnets do

not show spin reorientation transformation below the room temperature,making them potential for the appli-

cations at low temperature.Fully dense bulk Pr

2Fe

14

B/

?–Fe nanocomposite magnets were successfully pro-duced,while retaining the nano-scale structure and mag-

netic properties with H

c of516kA/m and(BH)

max

of

128kJ/m3.16,17These results provide the rationale that dynamic shock compaction can be used for preparation of bulk nanostructured magnets by optimization of com-paction parameters by proper design of fixtures and use of powder morphology that allows for high initial pack-ing density.To determine that scale-up of the dynamic shock compaction process is possible while retaining and even possibly further improving the magnetic prop-erties,we investigated explosive shock compaction of

Pr

2Fe

14

B/?–Fe nanocomposite powders using a double-

tube cylindrical-implosion geometry.This configuration allows a radial build-up of pressure within the powder assembly rather than a planer-wave propagation in the plate-impact experiments using a gas gun.16In this paper, the explosive compaction conditions determined using two dimensional numerical simulations was first dis-cussed.The cylindrical isotropic bulk compacts of17–41mm diameter and120mm length was produced.The microstructure and magnetic properties of these com-pacts were characterized as a function of consolidation conditions as well as their variability in a given compact based on correlations with predictions from numerical simulations.

II.EXPERIMENTAL PROCEDURE

Melt-spun Pr

2

Fe

14

B based nanocomposite ribbons, with20wt%?–Fe,were used in this study.The ribbons were ground into powder flakes having a size of10?200?m and packed in a steel container tube at~60% theoretical mass density(TMD).The experimental con-figuration,shown schematically in Fig.1,used a cylin-drical implosion geometry consisting of two concentric tubes of approximately152mm length,with the

internal

FIG.1.Schematic view of explosive compaction setup:(1)detonator, (2)datasheet booster,(3)PVC pipe,(4)explosive,(5)steel top plug, (6)flyer tube,(7)powder container,(8)void,(9)nanocomposite pow-der,(10)steel bottom plug(11)momentum trap,(12)wood base.

J.Mater.Res.,Vol.20,No.3,Mar2005 600

steel tube containing the powder and the external steel tube acting as the flyer tube,which accelerated inwards upon detonation of the surrounding explosive.Steel plugs were used to seal the container at opposite ends. The assembly was placed concentrically in a polyvinyl chloride(PVC)pipe approximately152mm in diameter and surrounded with ammonium nitrate and fuel oil mixed with low density perlite diluent(ANFOIL)explo-sive.As shown in the figure,the length(304mm)of the explosive-containing PVC pipe was taken to be equal to the length of the steel tube with top and bottom plugs, plus the PVC pipe diameter,which allowed planar-wave propagation through the explosive prior to its reaching the concentric steel tube assembly.A datasheet booster was placed on top of the explosive in contact with the detonator to generate a shock wave and initiate the ANFOIL explosive.Upon initiation,the detonation wave sweeps along the flyer tube and accelerates it inward, resulting in a convergent shock wave propagating through the length of the cylinder,and subsequently re-sulting in powder compaction.The detonation pressure

P d of the ANFOIL explosive can be altered by varying

the concentration of the low-density perlite additive, thereby influencing the flyer tube implosion velocity; consequently the shock pressure propagates through and consolidates the powder.Shock compaction pressure P

s can also be altered by varying the diameter and wall thickness of the two concentric tubes.In the present work,two types of geometries and explosive-diluent con-centrations were used.The first(referred to as COMP-A) used a flyer tube with a small inner diameter of39mm and explosive ANFOIL containing14wt%perlite.The second(referred to as COMP-B)used a flyer tube with a larger inner diameter of69mm,and ANFOIL containing 20wt%perlite.The wall thickness of the respective con-tainer and flyer tubes was similar in both cases. Following shock compression,the compacts were re-covered in the form of cylinders of approximately120-mm length and approximately17-mm diameter for COMP-A and41-mm diameter for COMP-B.The densities of these compacts were determined using the Archimedean method,and microhardness measurements were per-formed using the LECO DM-400F(St.Joseph,MI)mi-crohardness tester to evaluate the mechanical integrity of the consolidated powder compacts.The starting powders and the recovered shock-consolidated compacts were characterized by x-ray diffraction(XRD)using Cu K?radiation(??1.54?),scanning electron microscopy (SEM),and transmission electron microscopy(TEM). Differential thermal analysis(DTA)was performed us-ing a Perkin-Elmer DTA7(Wellesley,MA)at a heating rate of20K/min to check for structural changes caused by post-shock heat treatments.The magnetic properties were measured using a superconducting quantum inter-ference device magnetometer with a maximum applied field of5570kA/m.The measured magnetic properties were corrected by using effective demagnetization factor (estimated according to the sample morphology)of0.33 and0.14for starting powders and shock compacted samples,respectively.

III.RESULTS AND DISCUSSION

A.Calculation of shock compaction pressure

for double-tube implosion system

The double tube cylindrical implosion system involves the implosion of a flyer tube onto a powder container generating a shock wave propagating through and con-solidating the powder.The shock pressure acting on the powders is directly related to the implosion velocity of flyer tube,which can be estimated(based on the geom-etry used)as described by Meyers and Wang using the Gurney equation(see Ref.18)

V

p

=?2E

?3??5?m1?m2?+2?m1?m2?2R+r r+2r R+r??1?2,

where,√2E(selected to be0.7km/s)reflects the Gurney energy of explosive charge,R and r are the inner diam-eter of the explosive container and flyer tube,respec-

tively,and m

1

/m

2

is the ratio between the mass of the flyer tube and the mass of the explosive,which can be expressed by

m

1

?m2=

?1

?2??r+t?2?r2

R2??r+t?2

?,

where?

1

and?

2

are the densities of flyer tube and the explosive,respectively,and t is the thickness of flyer tube.For a selected size R(~152mm)of explosive con-tainer and thickness t(~5mm)of flyer tube,increasing

the size of the flyer tube r results in variation of m

1

/m

2 and thus,the flyer tube implosion velocity.With increase in the diameter of the flyer tube from39to69mm,the resulting flyer tube implosion velocity decreases from 380to290m/s.Since the shock pressure acting on the powders varies with the square of the impact velocity,18 the shock pressure at the interface between flyer tube and powder decreases correspondingly.

For the shock compaction of powders,the consolida-tion history within the powder assembly is more com-plicated.Involving the variations in the thickness of

flyer tube and the difference in√2E and density?

2

due to different explosive diluent concentrations(14and 20wt%perlite for COMP-A and COMP-B,respec-tively),the corresponding maximum peak shock pres-sures generated in the powders were thus calculated,us-ing the AUTODYN-2D computer code19and the P–?

J.Mater.Res.,Vol.20,No.3,Mar2005601

model of powder densification.20Figures2(a)and2(b) show the collapse of the flyer tube onto the inner powder container tube,and propagation of the initial shock wave down the concentric tube assembly resulting in the radial build-up of pressure along the compact axis.It can be seen that peak pressure generated varies such that it is highest along the axial core,and it decreases to a more uniform pressure along the bulk of the outer regions.The initial compaction pressure was thus,calculated to be in the range of4–7GPa and0.6–1GPa for COMP-A and COMP-B,respectively.As the shock wave reaches the bottom steel plug[Fig.2(c)],a build up of pressure is observed due to radial wave interaction,which results in a higher pressure shock wave(~12GPa for COMP-A) entering from the bottom and concentrating along the compact axis as a Mach stem(region of high pressure and high temperature).

B.Physical characteristics of explosively compacted samples

Following explosive shock consolidation,cylindrically

shaped compacts of nanocomposite magnets were ob-tained as shown in the photograph of a recovered com-pact in Fig.3.It can be seen that except for the top and bottom plug regions(which are around~1/8length of the cylinder from the top and bottom surface,respectively), the cylinder has been subjected to uniform deforma-tion throughout its length.This is consistent with AUTODYN-2D simulation results shown earlier in Fig.2.The top view of the compacted samples shows spoke-like radial lines,revealing the geometrical effect of the convergence of axisymmetric shock waves. Figures4(a)and4(b)show photographs of cross sec-tions of the top and bottom regions of COMP-A(4–7GPa shock pressure)compact,respectively.For the top region[Fig.4(a)],the original steel tube of22mm diam-eter has been constricted down to17mm,resulting in 23%deformation and consequent densification of the nanocomposite powders.The density of the axial region of the compact along its mid-length is around98.5% TMD,while that of the outer regions is97–98%TMD. The higher density in the center region can also be illus-trated by its more condensed surface morphology.In the photograph,macrocracks generated due to tension from radial release waves are also observed.The bottom sec-tion of the compact shows an axial cavity[Fig.4(b)], which is attributed to an effect of a Mach stem.The Mach stem originated from the convergence of a high-pressure shock wave along the cylinder axis generated

in FIG.2.AUTODYN-2D model of double-tube explosive compaction showing pressure contour

at(a)80?s,(b)128?s,(c)166?

s.

FIG.3.Photograph of the cylinders after explosive compaction.

J.Mater.Res.,Vol.20,No.3,Mar2005

602

the bottom part of the compact as described earlier.The cavity with a maximum diameter of approximately 10mm extends to almost three-quarters of the length of the cylindrical compact.The inner surface of the cavity shows evidence of formation of traces of melted and resolidified material.Similar formation of melted and resolidified regions in the Mach stem has also been ob-served in single-tube explosively compacted NdFeB magnets.9Formation of the Mach stem and resulting cavity can be eliminated by reducing the detonation pressure of explosive or by increasing the diameter of double-tube assembly to dissipate the shock pressure more effectively.

Consistent with the results of AUTODYN-2D com-puter simulations,the COMP-B sample subjected to shock pressure of 0.6–1GPA (substantially lower than 4–7GPa pressure in COMP-A)shows a more uniform densification without the deep cavity [Fig.4(c)].The original steel container of 51mm in diameter was con-stricted down to 41mm resulting in approximately 20%

deformation (which is slightly lower than that in COMP-A)and a uniform compact density of 97–98%TMD maintained throughout the length of the compact.The overall degree of densification was quite similar to that observed in our previous work on shock-consolidated samples prepared using the gas gun.16

The measured average Vickers microhardness of the shock compressed samples is approximately 11GPa,which is again similar to that measured on our gas-gun compacted samples.16Figure 5shows images of typical hardness indentations in an unpolished COMP-A sample.For the top region (4–7GPa medium pressure region),the cracks emanating from the tips of the indentation are observed,indicating the intrinsic brittleness of the melt-spun and shock compacted PrFeB alloy compact.This characteristic is also observed for the COMP-B sample.For the bottom region (12GPa high pressure region),no emanated cracks are observed,indicating a better

cohesion.

FIG.4.Cross section of regions located nearby (a)top and (b)bottom of COMP-A;(c)cross section of

COMP-B.

FIG. 5.Microphotographs of (a)top and (b)bottom region of COMP-A showing typical hardness indentation in the compacted samples.

J.Mater.Res.,Vol.20,No.3,Mar 2005

603

C.Microstructural characteristics of compacts

Figure 6compares the XRD patterns of starting pow-der materials,explosively consolidated samples,and heat-treated samples following shock consolidation.It can be seen that the original nanocomposite structure (mixture of hard 2:14:1phase and soft ?–Fe)is retained upon explosive compaction as revealed by traces b (COMP-B)and d (COMP-A).However,the shock-compressed sample shows broadened peaks,which is more evident for the high-pressure compact (COMP-A)as seen from trace d.Broadening of x-ray diffraction peaks has also been observed in SmCo 5magnets shocked compacted at moderate pressures,21and been correlated to grain refinement or the existence of retained plastic strain.16In our case,the shock induced strain was found to be around 0.3–0.5%calculated using the Williamson –Hall method based on the peak broadening in comparison with nearly-zero strain value of starting materials.An-nealing of the shock consolidated compacts at 750°C for 3min does not significantly change the microstructure except for narrowing of the diffraction peaks (as shown by traces c and e in Fig.6)due to strain relaxation and/or a slight grain growth,as revealed by TEM analysis (shown in Sec.III.D).

Figure 7shows results of DTA analysis performed on the as-received and the two shock-consolidated samples

COMP-A and COMP-B.While the starting ribbon pow-der trace [Fig.7(a)]shows no thermal activity except for endothermic peaks indicating melting of hard-phase Pr 2Fe 14B and soft-phase iron,a small exothermic bump is visible around 620°C (as marked by the arrow)in the two shock compacted samples.The exothermic tempera-ture is very close to the crystallization temperature of 2:14:1amorphous phase.22It is believed that the crystal-lization event observed in the DTA traces of the shock-consolidated samples corresponds to the amorphous phase formed during the shock compaction process,al-though its presence was not detected in XRD patterns.Figures 8(a)and 8(b)show the typical scanning elec-tron microscope (SEM)micrographs for COMP-A and COMP-B.It can be seen that the individual flaky pow-ders are substantially compressed and deformed to fill the interstices,thereby resulting in an irrevocably altered configuration produced due to explosive shock compac-tion.Both compacts are found to undergo nearly com-plete consolidation as revealed by intimate bonding be-tween the particles and absence of any interparticle cracking/separation.However,some transparticle macro-cracks are also observed [Fig.8(b)]in the samples and are believed to have been formed due to radial loading and release wave interactions.

During shock compression,the deformation and den-sification energy is converted to thermal energy,which can significantly increase the mean-bulk (residual)tem-perature.However,due to rapid densification

achieved

FIG.6X-ray diffraction patterns of (a)starting materials,(b)as-compacted,and (c)annealed COMP-B;(d)as-compacted,and (e)annealed COMP-A.The annealing temperature is 700°

C.

FIG.7.DTA analysis on the (a)starting materials,(b)COMP-A,and (c)COMP-B.

J.Mater.Res.,Vol.20,No.3,Mar 2005

604

by the passage of shock waves of sufficient magnitude within time duration of microseconds followed by the rapid heat dissipation rates of 109K/s,21thermally in-duced microstructural changes and grain growth can be minimized.The effect of shock compaction on interpar-ticle morphology was studied in detail using TEM analy-sis performed on top and bottom regions of the as-compacted and annealed samples of COMP-B.As shown in Fig.9,a very fine microstructure with grain size around 10?15nm and 15?20nm was observed for the top [Fig.9(a)]and bottom [Fig.9(b)]regions of the com-pact,respectively.Furthermore,the grain size was ob-served to be quite homogeneous.The retention of a stable ultrafine grain size is an important characteristic of the shock compaction process.In fact,even upon annealing the shock consolidated samples at a temperature of ap-proximately 750°C for 3min,little grain growth was

observed as shown in Figs.9(c)and 9(d),with most grains being 15?20nm in size,although some grains 25nm in size are also present.The retention of nanoscale grain size provides the possibility of optimal magnetic properties through exchange coupling between the hard magnetic Pr 2Fe 14B and soft magnetic ?–Fe phases.High-resolution TEM (HRTEM)[Fig.10(a)]shows that the fine nanoscale morphology of magnetic nanocompos-ites consists of multiple magnetic phases.The presence of an amorphous phase is also clearly evident in the shock compacted samples,consistent with the results of DTA analysis indicating presence of a small exotherm corresponding to crystallization of amorphous phase (Fig.7).HRTEM analysis of the annealed shock-consolidated sample shows no presence of the amor-phous phase indicating its crystallization into Pr 2Fe 14B and ?–Fe phases upon heat treatment [Fig.10(b)].

Shock compression of brittle materials at pressures exceeding the Hugoniot-elastic limit generally introduces defects such as macro-and micro-cracks,dislocations,twinning,phase transformation,and even shear band-ing in compacts of microcrystalline powders.23–25In the present work on explosively shock compacted samples,HRTEM analysis confirmed the presence of defects in the form of twinning and dislocations within Pr 2Fe 14B grains.Figures 11(a)and 11(b)show HRTEM images of these structural defects,most preferentially observed in Pr 2Fe 14B grains,but are limited in extent and number.Formation of shear banding has also been observed in our previous work on the gas-gun compaction of Pr 2Fe 14B/?–Fe nanocomposite magnets.26

D.Magnetic properties of compacts

The magnetic properties were measured on small samples of several cubic millimeters,sectioned from various regions of the shock-consolidated compacts.Figure 12shows the hysteresis loops of different regions of shock compacted samples COMP-A and COMP-B.Both the top and bottom regions of the low-pressure shock consolidated COMP-B samples show smooth hys-teresis loops with larger coercivity H c and remanence M r as shown in Figs.12(a)and 12(b).The best magnetic properties with remanence M r of 0.98T,coercivity H c of 533kA/m,and maximum energy product (BH )max of 142kJ/m 3,were obtained in the area near the bottom region of the COMP-B sample.Consistent magnetic properties of H c around 509?533kA/m and (BH )max around 119?131kJ/m 3are also obtained through the mid-length regions of the cylindrical samples.The maxi-mum energy products measured are superior than those of commercially available resin-bonded nanocomposites (96kJ/m 3)in which nonmagnetic resins result in not only the decrease of density (<80%TMD)but also the reduc-tion of magnetization and thereby the degradation of magnetic properties.Of more importance is the fact

that

FIG.8.SEM image of (a)fracture surface of COMP-A,(b)enlarged image of localized regions in COMP-A showing deformation,(c)frac-ture surface of COMP-B,and (d)enlarged image of localized regions in COMP-B showing deformation.

J.Mater.Res.,Vol.20,No.3,Mar 2005

605

the optimal magnetic properties are closely associated with the retention of nanostructure and strong exchange coupling between hard and soft magnetic phases.It is well known that for optimum exchange coupling,the size of the soft magnetic ?–Fe grains should be approxi-mately twice that of the effective exchange range L ex .27,28A larger grain size above 2L ex results in hyster-esis loops of contracted shape,and corresponding dete-rioration of magnetic properties.The optimum grain size 2L ex has been found to be around 15nm in Nd 2Fe 14B/?–Fe nanocomposites,which is very similar to the grain size of ?–Fe phase observed via HRTEM analysis of the shock-compacted samples.The present results thus illus-trate that the optimum magnetic properties are obtained in as-compacted sample by proper control of the shock compaction pressure.Further grain refinement would be expected to provide more significant improvement in magnetic properties.

The high-pressure (4?7GPa)compact COMP-A shows a low coercivity for the top region [Fig.12(c)]and even a complete magnetic softening behavior for the bottom region [Fig.12(d)]where a calculated pressure of 12GPa occurs as result of reflections from the bottom

plug.The shock pressure is actually lower than the 28?38GPa pressure required for complete demagnetization of Nd 2Fe 14B magnets occurring via ferromagnetic-to-paramagnetic phase transformation due to high velocity impact.23,29

The magnetic softening behavior of the COMP-A sample can be explained in terms of the magnetization reversal mechanism of nanocomposites.30The coercivity H c of nanocomposite is usually related to nucleation field H n ,which can be expressed as

H c ??H n ?N eff M s .31

In this expression,?and N eff are microstructure-dependent parameters,M s is the saturation magnetiza-tion,and

H n ?2[f s K s +(1?f s )K h ]/?0M s

where f s is volume fraction of soft phases (?–Fe plus amorphous soft phases in our cases),and K h and K s are anisotropy constants of hard and soft phases,respec-tively.Previous calculation has shown that the anisotropy constants K h and K s decrease with the reduction of grain sizes of both hard and soft magnetic phases.32The

grain

FIG.9.TEM images of (a)top and (b)bottom region of as-compacted COMP-B,(c)top and (d)bottom region of COMP-B annealed at 700°C for 3min.

J.Mater.Res.,Vol.20,No.3,Mar 2005

606

refinement has been confirmed by XRD and TEM ob-servation in our work.This grain refinement apparently leads to the increase of number of reversal nucleation centers at grain boundary,which may result in a lowered reversal field.Anisotropy constants are also

associated

FIG.12.Hysteresis loops of explosively compacted samples:(a)top and (b)bottom region of COMP-B,(c)top,and (d)bottom region of

COMP-A.

FIG.10.HRTEM images of (a)as-compacted and (b)annealed COMP-B.?,?,and AM denote Pr 2Fe 14B,?–Fe and amorphous phases,

respectively.

FIG.11.HRTEM of COMP-B showing the (a)twinning structure and (b)dislocation in Pr 2Fe 14B crystallites.

J.Mater.Res.,Vol.20,No.3,Mar 2005

607

with the crystal structure 33and the site preference of the transition metal ions in the crystal lattice in some cases.34The structural defects,such as dislocation or planar de-fect (twinning)regions introduced by the shock wave,will lead to the local changes in anisotropy constants.However,it is still not quite clear how these defects affect the intrinsic magnetic properties of nanocompos-ites.For the nanocomposite compacts,the structure de-fects are limited in the extent and amount in the present work.Undoubtedly,more deliberate works are necessary to address this important issue so as to help with the further optimization of shock compaction parameters.Additionaly,shock-induced amorphorization leads to the increase of soft phase fraction,and as pointed previously,the nucleation field H n decreases monotonically with the increase of soft phase content.30It is believed that all these factors are responsible for the change in coercivity even the occurrence of zero value in the as-compacted sample COMP-A.

Post-shock heat treatments were used to investigate the effect of annealing temperature on magnetic proper-ties of the compacted samples.Figure 13shows the mag-netic properties of a sample from the bottom region of an annealed COMP-A compact.The saturation magnetiza-tion M s was extracted from the hysteresis loop measure-ments by plotting the curve of M versus 1/H 2and ex-trapolating the curve to infinite H .The saturation mag-netization M s is slightly higher in the annealed samples,which may be attributed to the crystallization of amor-phous phase and precipitation of ?–Fe having high mag-netization.The coercivity H c and maximum energy prod-uct (BH )max is also observed to increase up to 533kA/m and 127kJ/m 3,which is close to those values of as-compacted COMP-B samples.The increase of magnetic

properties relates to the crystallization of amorphous phase in the explosively compacted samples and to the retention of nanostructure.Further increase in annealing temperature,however leads to the decrease of magnetic properties.The temperature dependence of (BH )max is same as the temperature dependence of M r ,revealing that the (BH )max is more sensitive to the remanence M r rather than the coercivity H c .The annealed sample of COMP-B shows slightly lower values of (BH )max (104?111kJ/m 3)compared to as-compacted sample due to the decrease of remanence M r with annealing treatment,although the co-ercivity does not change significantly as shown in Fig.14.This implies that optimal magnetic properties can be di-rectly obtained from the as-compacted samples by prop-erly designation of the explosion parameters (such as explosive type and explosion compaction assembly size).The magnetic softening behavior of hard magnetic nanocomposites due to overloading of shock energy can be recovered by subsequent thermal treatment.

IV.SUMMARY

Explosive compaction has been shown to be an effec-tive method to produce bulk nanocomposite magnets with nearly full density.Explosive compaction not only results in the extensive deformation and introduction of microstructural defects,like twinning and dislocation generation,but also the retention of the original nano-structure,and even a refinement of the grain size.The magnetic properties of bulk compacts are sensitive to shock pressure,which can be controlled by varying the shock compaction geometry (size of double-tube assem-bly and type of explosive used)and using numerical simulations to predict those desired shock-compaction conditions.The relatively lower pressure is better for the retention and even improvement of magnetic

properties.

FIG.13.The magnetic properties of bottom region of samples COMP-A annealed at different temperatures for 3

min.

https://www.wendangku.net/doc/9111641661.html,parison of hysteresis loops of COMP-B before and after heat treatment at 700°C for 3min.

J.Mater.Res.,Vol.20,No.3,Mar 2005

608

Although,magnetic properties have yet to be further im-proved,this study provides a step forward in illustrating

that bulk nanocomposites with higher H

c and(BH)

max

than that of the starting powders can be fabricated by shock compaction.

ACKNOWLEDGMENT

The work was supported by the United States Depart-ment of Defense/The Defense Advanced Research Projects Agency through Army Research Office under Grant No.DAAD19-03-1-0038.

REFERENCES

1.J.Wecker,K.Schnitzke,H.Cerva,and W.Grogger:Nanostruc-

tured Nd–Fe–B magnets with enhanced remanence.App.Phys.

Lett.67,563(1995).

2.R.Coehoorn, D.B.de Mooij,J.P.W.B.Duchateau,and

K.H.J.Buschow:Novel permanent magnetic-materials made by rapid quenching.J.Phys.C49,669(1988).

3.E.F.Kneller and R.Hawig:The exchange-spring magnet—A

new material principle for permanent-magnets.IEEE Trans.

Magn.27,3588(1991).

4.D.Goll,M.Seeger,and H.Kronmüller:Magnetic and microstruc-

tural properties of nanocrystalline exchange coupled PrFeB per-manent magnets.J.Magn.Magn.Mater.185,49(1998).

5.Z.C.Wang,H.A.Davies,and C.L.Harland:Crystallization be-

havior and magnetic properties of melt-spun Pr

x (Fe

0.8

Co

0.2

)

94?x

B

6

alloys.IEEE Trans.Magn.38,2967(2002).

6.J.P.Liu,C.P.Luo,Y.Liu,and D.J.Sellmyer:High energy prod-

ucts in rapidly annealed nanoscale Fe/Pt multilayers.Appl.Phys.

Lett.72,483(1998).

7.H.Zeng,J.Li,J.P.Liu,Z.L.Wang,and S.H.Sun:Exchange-

coupled nanocomposite magnets by nanoparticles self-assembly.

Nature420,395(2002).

8.Z.Q.Jin,B.Z.Cui,J.P.Liu,Y.Ding,Z.L.Wang,and N.N.Thadhani:

Controlling the crystallization and magnetic properties of melt-

spun Pr

2Fe

14

B/?–Fe nanocomposites.Appl.Phys.Lett.84,4382

(2004).

9.S.Guruswamy,M.K.McCarter,J.E.Shield,and V.Panchanathan:

Explosive compaction of magnequench Nd–Fe–B magnetic pow-ders.J.Appl.Phys.79,4851(1996).

10.M.Leonowicz,W.Kaszuwara,E.Lezierska,D.Januszewski,

G.Mendoza,H.A.Davies,and J.Paszula:Application of the

shock compaction technique for consolidation of hard magnetic powders.J.Appl.Phys.83,6634(1998).

11.H.Oda,H.Hirai,K.Kondo,and T.Sato:Magnetic-properties of

shock-compacted high-coercivity magnets with a nanometer-sized microstructure.J.Appl.Phys.76,3381(1994).

12.T.Saito:Production of bulk materials of an Nd

4Fe

77.5

B

18.5

alloy

and their magnetic properties.IEEE Tran Magn.37,2561(2001).

13.W.H.Gourdin:Dynamic consolidation of metal powders.Prog.

Mater.Sci.31,39(1986).

14.S.Ando,Y.Mine,K.Takashima,S.Itoh,and H.Tonda:Explo-

sive compaction of Nd-Fe-B powder.J.Mater.Process.Technol.

85,42(1999).

15.T.Mashimo,X.Huang,S.Hirosawa,K.Makita,Y.Kato,

S.Mitsudo,and M.Motokawa:Magnetic properties of fully dense

Sm

2

Fe

17

N

x

magnets prepared by shock compression.J.Magn.

Magn.Mater.210,109(2000).

16.Z.Q.Jin,K.H.Chen,J.Li,H.Zeng,S-F.Cheng,J.P.Liu,

Z.L.Wang,and N.N.Thadhani:Shock compression response of magnetic nanocomposite powders.Acta Mater.52,2147(2004).

17.K.H.Chen,Z.Q.Jin,J.Li,G.Kennedy,Z.L.Wang,N.N.Thadhani,

H.Zeng,S-F.Cheng,and J.P.Liu:Bulk nanocomposite magnets

produced by dynamic shock compaction.J.Appl.Phys.96,1276 (2004).

18.M.A.Meyers and S.L.Wang:An improved method for shock con-

solidation of powders.Acta Metall.36,925(1988).

19.AUTODYN-2D/2.8,Non-Linear dynamic modeling software

(Century Dynamics Inc.,Oakland,CA,1995).

20.W.Hermann:Constitutive equation for the dynamic compaction

of ductile porous materials.J.Appl.Phys.40,2490(1969). 21.R.Chau,M.B.Maple,and W.J.Nellis:Shock compaction of

SmCo

5

particles.J.Appl.Phys.79,9236(1996).

22.Z.Q.Jin,H.Okumura,J.S.Mu?oz,Y.Zhang,H.L.Wang,and

G.C.Hadjipanayis:Multi-step crystallization evolution in

nanocomposite Pr

8

Fe

86

B

6

alloys.J.Phys.D:Appl.Phys.35,2893 (2002).

23.S.I.Shkuratov,E.F.Talantsev,J.C.Dickens,M.Kristiansen,and

J.Baird:Longitudinal-shock-wave compression of Nd

2

Fe

14

B high-energy hard ferromagnet:The pressure-induced magnetic phase transition.Appl.Phys.Lett.82,1248(2003).

24.M.A.Meyers:Dynamic Behavior of Materials(John Wiley&

Sons,New York,1994),p.382.

25.N.N.Thadhani:Shock-induced and shock-assisted solid-state

chemical-reactions in powder mixtures.J.Appl.Phys.76,2129 (1994).

26.J.Li,Z.Q.Jin,J.P.Liu,Z.L.Wang,and N.N.Thadhani:Amor-

phization and ultrafine-scale recrystallization in shear bands

formed in shock-consolidated Pr

2

Fe

14

B/?–Fe nanocomposite magnets.Appl.Phys.Lett.85,2223(2004).

27.X.K.Sun,J.Zhang,Y.L.Chu,W.Liu,B.Z.Cui,and Z.D.Zhang:

Dependence of magnetic properties on grain size of alpha-Fe in

nanocomposite(Nd,Dy)(Fe,Co,Nb,B)

5.5

/?–Fe magnets.Appl.

Phys.Lett.74,1740(1999).

28.H.Kronmüller,R.Fischer,M.Seeger,and A.Zern:Micromag-

netism and microstructure of hard magnetic materials.J.Phys.D: Appl.Phys.29,2274(1996).

29.S.I.Shkuratov,E.F.Talantsev,J.C.Dickens,and M.Kristiansen:

Transverse shock wave demagnetization of Nd

2

Fe

14

B high-energy

hard ferromagnetics.J.Appl.Phys.92,159(2003).

30.Z.H.Chen,J.X.Zhang,and H.Kronmüller:Magnetically soft

phase in magnetization reversal processes of nanocomposite

Sm

2

Fe

15

Ga

2

C

x

/?–Fe permanent magnetic materials.Phys.Rev.B 68,144417(2003).

31.J.Bauer,M.Seeger,A.Zern,and H.Kronmüller:Nanocrystalline

FeNdB permanent magnets with enhanced remanence.J.Appl.

Phys.80,1667(1996).

32.R.W.Gao,W.C.Feng,H.Q.Liu,B.Wang,W.Chen,G.B.Han,

P.Zhang,H.Li,W.Li,Y.Q.Guo,W.Pan,X.M.Li,M.G.Zhu, and X.Li:Exchange-coupling interaction,effective anisotropy and coercivity in nanocomposite permanent materials.J.App.

Phys.94,664(2003).

33.B.M.Moskowitz:Micromagnetic study of the influence of crystal

defects on coercivity in magnetite.J.Geophys.Res-Solid Earth.

98,18011(1993).

34.M.M.Abdelaal:Magnetic-behavior of Y

2

Fe

14?x

T

x

B compounds,

where T?Al,Ti,V,Cr,Mn,Co or Ni.J.Magn.Magn.Mater.

131,148(1994).

J.Mater.Res.,Vol.20,No.3,Mar2005609

砌筑工程及墙体抹灰工程标准化做法

砌筑工程及墙体抹灰工程标准化做法(附图参考) 一、砌筑说明: 1、砌体工程的顶层和底层应设置通长现浇钢筋混凝土窗台梁,高度不宜小于120㎜,纵向配筋不少于4φ10,箍筋φ6@200;其他层在窗台标高处,应设置通长现浇钢筋混凝土板带,板带的厚度不小于60mm,混凝土强度等级不应小于C20,纵向配筋不宜少于3φ8 ; 2、顶层门窗洞口过梁宜结合圈梁通长布置,若采用单独过梁时,过梁伸入两端墙每边不少于600mm,且应在过梁上的水平灰缝设置2~3道不小于2φ6@300通长焊接钢筋网片。 3、顶层及女儿墙砌筑砂浆的强度等级不应小于M7.5。粉刷砂浆中宜掺入抗裂纤维或采用预拌砂浆。 二、住宅工程质量通病控制标准 混凝土小型空心砌块、蒸压加气混凝土砌块等轻质墙体,当墙长大于5m时,应增设间距不大于3m的构造柱;每层墙高的中部应增设高度为120mm,与墙体同宽的混凝土腰梁,

砌体无约束的端部必须增设构造柱,预留的门窗洞口应采取钢筋混凝土框加强。当框架顶层填充墙采用灰砂砖、粉煤灰砖、混凝土空心砌块、蒸压加气混凝土砌块等材料时,墙面粉刷应采取满铺镀锌钢丝网等措施。屋面女儿墙不应采用轻质墙体材料砌筑。当采用砌体结构时,应设置间距不大于3m的构造柱和厚度不少于120mm的钢筋混凝土压顶。洞口宽度大于2m时,两边应设置构造柱。墙体砌筑15天以上可砌筑斜砖或塞缝;斜砖角度60度,留缝为40~50mm; 三、砌体工程材料的控制 1、砌筑砂浆应采用中、粗砂,禁使用山砂和混合粉。 2、蒸压灰砂砖、粉煤灰砖、加气混凝土砌块的出釜停放期不应小于28d,不宜小于45d;混凝土小型空心砌块的龄期不应小于28d。 四、砌筑施工质量控制 1、填充墙砌至接近梁底、板底时,应留有一定空隙,填充墙砌筑完并间隔15d以后,可将其补砌挤紧;补砌时,对双侧竖缝用高强度等级的水泥砂浆嵌填密实。 2、框架柱间填充墙拉结筋应满足砖模数要求,不应折弯压入砖缝。拉结筋宜采用预埋法留置。 3、填充墙采用粉煤灰砖、加气混凝土砌块等材料时,框架柱与墙的交接处宜用15㎜×15㎜木条预先留缝,在加贴网片前浇水湿润,再用1︰3水泥砂浆嵌实。 4、通长现浇钢筋混凝土板带应一次浇筑完成。 5、砌体结构砌筑完成后宜60d后再抹灰,并不应少于30d。

放假说说心情短语

放假说说心情短语 导读:1、哎,放完假后又该开学了。 2、再忍两个月,又是一个可爱的寒假。 3、三个人的友情,总有一个是被冷落的。 4、现在担心的不应该是你的寒假作业吗? 5、五一假期,鲜花献给辛勤的劳动人民。 6、老师我不想写作业,那样一点都不酷。 7、元旦过去啦,是该收收心准备过寒假了。 8、我和寒假分手了,都是因为开学那贱人。 9、其实我也不想跟作业相亲,都是老师逼的! 10、中国的放假原则——欠了的终归是要还的! 11、老师,毕业那天的试卷您还没有给我们讲。 12、查个分比表白还紧张查完了比失恋还难过! 13、暑假真的很短,在两次大姨妈中就没有了。 14、对我们来说,放假就是换了个地方写作业。 15、放假了,逃脱了老师严厉眼神的扫射范围。 16、祖国尚未统一,我却放假无聊,惭愧惭愧! 17、放假就像做无痛人流开始了吗?已经结束了。 18、我和暑假手拉手中间却夹着一条叫作业的狗! 19、所谓放假就是在家挨骂,出门没钱,一天特闲。 20、我对暑假的概念就是:我的充电器从来没闲过。

21、放假开学前一天晚上,我国用电量将直线上升。 22、我真是个花心的人,暑假刚走了我就想着寒假。 23、都在改变只能沉默只能向前前往成熟大人世界。 24、你若军训,便是晴天,你若放假,便是作业连连。 25、我的灵魂和身体已不在一起去,灵魂早已到了家! 26、所谓放假就是,家里遭嫌,出门没钱,每天特闲。 27、要是明天就放假,我就回去吧我家的猪痛亲一顿。 28、放假了才发现,只有爱你的人才会和你保持联系。 29、中国的放假告诉了我一个道理,欠了的总是要还的! 30、“你的作业怎么样”“活得挺好的,养的白白的。” 31、男生见过女生放假在家的样子还喜欢那一定是真爱。 32、上学的时候总想玩电脑,放假了只能对着电脑发呆。 33、放个寒假才20几天,这年头,连失个恋都得33天呢。 34、与暑假先森约会的时候,总会出现一个叫作业的**。 35、“哇,下雪了!”“不,是上帝在撕他的寒假作业。” 36、这年头,放假真不容易,清明节放假还是沾老祖宗的光。 37、告诉你比鬼片还**的事:你们的暑假已经过了一半啦。 38、老师一点也不酷,一点儿也不给力,还布置那么多作业。 39、老师,作业在手里攒一寒假了,有感情了,咱不交了成吗? 40、放假以后,学神在刷难题,学霸在刷作业,学渣在刷动态。 41、暑假作业写完请按写了一半请按写了一点请按一点没写请按

建筑工程主体结构及专项工程质量标准化图集(图文并茂)ser

《质量标准化图集(第一版)》编制组 主任: 副主任:刘 编制组: 1

前言 为了进一步加强公司标准化体系建设,推动现场整体技术质量管理水平,公司依据中国建筑第二工程局有限公司《混凝土结构工程施工典型做法》及公司优秀项目做法,特编制《中建二局东北分公司质量标准化图集(第一版)》(以下简称《图集》)。 《图集》共包括钢筋工程、模板工程、混凝土工程、砌筑工程、专项工程五大分部,旨在突出现场细部节点做法及规范中未表述或表述不清的地方。在编写过程中公司相关领导、专家及部分项目管理人员提供了许多相关资料并提出了宝贵的意见和建议,在此表示由衷的感谢。 2

目录 一、钢筋工程 (6) 1.1箍筋加工 (7) 1.2钢筋直螺纹加工 (8) 1.3墙体定位钢筋、柱定位箍 (10) 1.4线盒预埋施工 (12) 1.5预制垫块 (13) 二、模板工程 (14) 2.1轮扣式脚手架 (15) 2.2对拉螺杆 (16) 2.3洞口模板搭设 (17) 2.4阴角控制 (18) 2.5墙体定位线 (19) 3

中建二局东北分公司质量标准化图集 三、混凝土工程 (20) 3.1混凝土浇筑标高及收面控制 (21) 3.2施工缝处理 (22) 3.3混凝土试块标养室 (23) 3.4混凝土试块制作 (24) 四、砌筑工程 (25) 4.1卫生间防水坎台 (26) 4.2构造柱模板 (27) 4.3马牙槎做法 (28) 4.4砌体混凝土腰带及圈过梁模板做法 (29) 4.5过梁模板做法 (30) 4.6机电线管开槽 (31) 4.7砌体顶部砌块斜砌 (32) 4

4.8二次结构墙体验线以及排砖图 (33) 4.9抗裂网片铺设基本规定 (34) 4.10砌体墙与墙侧连接 (35) 4.11砌体墙开槽处网片铺设做法 (36) 五、专项工程 (37) 5.1后浇带 (38) 5.2梁柱接头不同等级混凝土控制 (39) 5.3下沉板 (40) 5.4楼梯施工要点 (41) 5.5定型钢楼梯 (42) 5.6外墙、电梯井接茬 (43) 5.7框架柱模板支设 (44) 5

会计账簿管理规定

Q/CT 湖北东神楚天化工有限公司企业标准 Q/CTGL-JY-029-2014 会计帐薄管理规定 2014-03-20发布2014-04-01实施湖北东神楚天化工有限公司发布

会计账簿的管理规定 1、范围 本规定适用于本公司财务,可参照执行 2、术语和定义 会计账簿是以会计凭证为依据,由具体一定格式的账页组成的,全面、连续记录一个单位经济活动全部过程的簿籍,是会计信息形成的重要环节,是编制会计报表的重要依据。3、职责 计财部:负责装订、立卷后暂管两年。 4、管理内容 4.1序时账 4.1.1总账科目日记表 编制说明: 4.1.1.1 本表为表示每日会计事项变动情况的汇总表,代替序时账簿,并作为过入总分类账 的凭证。 4.1.1.2每日根据出纳部门送返的现金收入及支出凭证,连同当日转账凭证,按科目分别汇 总记入本表的各栏。 4.1.1.3 凭证的总编号,应先将国科目归集后,再按科目排列次序编号。 4.1.1.4各种凭证的起讫号数,应分别填入“编制本表根据”栏内。 4.1.1.5本表编制完成时,应经各有关人员的签章后,作为过入总分类账的依据。各科目过 入总分类账时,借方合计金额过入借方,贷方合计金额过入贷方。 4.1.2现金及银行存款日记账 编制说明: 4.1.2.1本表为表示每日现金及银行存款变动情况的明细账,采用订本式账页。 4.1.2.2每日出纳部门根据当日现金及银行存款变动的收入、支出、现金转账凭证,将“摘 要”、“行号”及“银行存款”、“现金”的金额逐笔填入各该栏,并于每日收支终了后结总,于次日上午将凭证送交会计部门。 4.1.2.3每日若变动笔数不止一张篇幅时,可作序连号过页使用。 4.1.3销货簿 编制说明: 4.1.3.1凡有关销货收入的会计事项,均应逐日依照开立发票登录本簿。 4.1.3.2有关“客户名称”、“品名”、“规格”、“单位”、“数量”、“单价”、“折扣”、“金额”

放假了心情说说短语

放假了心情说说短语 【篇一:放假了心情说说短语】 关于放假说说心情短语 说说心情:放假就像摘除了孙悟空的紧箍咒,又可以无法无天的玩 耍了!关于放假说说心情短语,放假就像卸去了心中的千金的重担,终于可以享清闲了! 1、一年之中最喜欢两个假期,一个叫寒假,一个叫暑假!关于放假说说心情短语 2、这次放假最想去夏威夷,太远;所以,我去了三亚,好好放松! 3、所谓放假就是在家挨骂,出门没钱,一天特闲。 4、讨厌放假、作业多那是借口、只是因为不能再每天看见你。这你都不懂吗。 5、所谓放假,家里遭嫌,出门没钱,每天特闲~哎,放完假后又该 开学了,徘徊在兴奋与失落中。 6、在接下来的一个月里,你将听到七大姑八大姨各种亲戚各种家长的深情问候:考试考多少分啊?班里多少名啊? 7、放假了,是否激动? 恩,可作业会让你更激动! 8、放假的意义就在于,一个说不起就不起的早晨,一个说不睡就不睡的深夜和一个说不出门就不出门的白天。 9、躺在床上玩手机,一想到放假了好久了还没有碰过书,我就啪的抽了自己一耳光,tm的玩个手机还分心。 10、关闭放假模式,正式开启学霸模式! 对不起,您的配置太低, 无法启动该功能关于放假说说心情短语 11、现在的放假,暑假放得和寒假一样,寒假放得和国庆一样,国 庆放得和五一一样,五一放得和周末一样,周末放得和没放一样, 总结,放假就跟放屁一样。 12、放假了才发现,只有爱你的人才会和你保持联系。 13、感觉自己和放假之前一样轻盈啊说人话作业没写 14、放假在家每天必做三件事 [ 吃饭睡觉挨骂 ] 15、暑假到了快乐到,乘着夏风乐逍遥,休闲娱乐安排好,外出旅 游注安全,起居科学要规律,锻炼学习莫忘记。祝暑假快乐无忧、 平安健康。 16、暑假来临,不怕高温:空调吹吹,燥热逃掉,感觉美妙;冰糕吃吃,凉度增加,惬意留下;短信阅读,清凉假期,心情冰舞!假期快乐!

新《会计基础工作规范》

一、单项选择题(本类题共15小题,每小题2分,共30分。单项选择题(每小题备选答案中,只有一个符合题意的正确答案,请选择正确选项。) 1.下列各项中,属于主管代理记账业务的负责人应具有的职称是()。 A.具有初级会计师以上专业技术职务资格 B.具有中级会计师以上专业技术职务资格 C.具有高级会计师以上专业技术职务资格 D.以上都不对 A B C D 2.下列各项中,属于主管全国企业会计信息化工作的部门是()。 A.国务院 B.证监会 C.国资委 D.财政部 A B C D 答案解析:财政部主管全国的企业会计信息化工作。 3.下列各项中,属于对会计凭证、会计账簿、报表等会计核算流程和基本方法进行规范的制度是()。 A.内部牵制制度 B.账务处理程序制度 C.财产清查制度 D.稽核制度

A B C D 4.下列各项中,不符合会计账簿装订要求的是()。 A.对于活页账簿,去除空白页 B.一般每月装订一次 C.不同格式的活页账不得混装 D.会计账簿的封口处要加盖有关印章 A B C D 5.下列各项中,属于以账目间的相互核对为主要内容并实施岗位分离,以确保所有账目正确无误的一种控制机制是()。 A.内部牵制制度 B.账务处理程序制度 C.定额管理制度 D.稽核制度 A B C D 6.下列各项中,属于会计核算软件核心模块的是()。 A.账务处理模块 B.报表模块 C.成本核算模块 D.固定资产核算模块 A B C D

答案解析:会计核算的功能模块包括:账务处理、工资核算、固定资产核算、存货核算、销售核算、应收/应付款核算、成本核算、会计报表生成与汇总、财务分析等。其中,账务处理模块是整个会计核算软件的核心。 7.下列各项中,不符合《企业会计信息化工作规范》规定的是()。 A.应当提供符合国家统一会计准则制度的会计科目分类和编码功能 B.应当提供不可逆的记账功能 C.会计软件应当提供符合国家统一会计准则制度的会计凭证、账簿和报表的显示和打印功能 D.鼓励软件供应商在会计软件中集成可扩展商业报告语言(XBRL)功能 A B C D 答案解析:《企业会计信息化工作规范》第六条至第十四条对会计软件进行了规范。 8.下列各项中,属于会计档案年以终了可以由会计机构保管的最长期限是()。 A.1年 B.2年 C.3年 D.6个月 A B C D 答案解析:单位会计机构可临时保管一年。最长不超过三年。 9.下列各项中,属于总分类账簿采用的格式是()。 A.订本式 B.活页式

放假的心情说说_一句话的简单心情说说

放假的心情说说_一句话的简单心情说说 放假的心情说说_一句话的简单心情说说 1.这年头,放假真不容易,清明节放假还是沾老祖宗的光。 2.上课是为了下课,上学是为了放假。没有这么伟大的心念支持着,都不敢想象我是怎么有勇气来学校。 3.放假时,我醒了,不代表我起床了;上学时,我起床了,不代表我醒了。 4.中国的放假原则,欠了的终归是要还的! 5.放假的时候发烧都会坚持上网,上课的时候打个喷嚏都会觉得是癌症晚期。 6.世界上最近的距离,放假到开学;世界上最远的距离,开学到放假。 7.“上学你带了什么”?“一颗随时准备放假的心” 8.大家都在研究开学怎样进门最帅,我已经在研究什么时候

放假了。 9.五四运动为什么爆发?因为五一放假只有三天。 10.放假的意义就在于,一个说不起就不起的早晨,一个说不睡就不睡的深夜和一个说不出门就不出门的白天。 11.从前有群人一起放假,现在这群人放假的时间都不一样了。 12.放假靠祖宗,停课靠台风。 13.最鄙视那些一放假就出去玩的人,我只想送给他们四个字:请带上我。 14.你若军训,便是晴天,你若放假,便是作业连连。 15.躺在床上玩手机,一想到放假了好久了还没有碰过书,我就啪的抽了自己一耳光,TM的玩个手机还分心。 16.我对放假的概念就是:我的充电器从来没闲过。 17.读书的时候觉得不怎么擅长学习,放假以后发现原来玩也不太在行。

18.“放假你快乐吗?”“只有快,没有乐。” 19.留几年的长发五分钟就剪完,学几年的知识一放假就忘光。 20.“关闭放假模式,正式开启学霸模式!”“对不起,您的配置太低,无法启动该功能” 21.放假以后,学神在刷难题,学霸在刷作业,学渣在刷动态。 22.作业加载失败,请学校重新放假。 23.放假再无聊,我也不愿上学;就像爱你再无助,我也不愿放手。 24.“放假了,是否激动?”“恩,可作业会让你更激动!” 25.现在的放假,暑假放得和寒假一样,寒假放得和国庆一样,国庆放得和五一一样,五一放得和周末一样,周末放得和没放一样,总结,放假就跟放屁一样。 26.放假了才发现,只有爱你的人才会和你保持联系。

会计基础规范

1.中华人民共和国会计法》明确规定,管理全国会计工作的是(C )。 A国务院B全国人大C财政部D中国注册会计师协会 2.会计基础工作规范》的章数和条数是(B )。 A七章一百零一条B六章一百零一条C六章一百条D五章一百零一条 3.对会计人员继续教育实行定期检查制度,原则上(B )。 A一年一次B两年一次C三年一次D五年一次 4.会计机构负责人主管一个单位或者单位内一个重要方面的财务会计工作时间不少于()。A两年B一年C三年D五年 5.实行会计电算化的单位,用计算机打印出来的会计账簿(D )。 A可以不连续编号B编号随意拟定C不用编号D必须连续编号 6.账簿中书写的文字和数字上面要留有适当空格,不要写满格,一般应占格距的(D )。 A三分之一B五分之一C四分之一D二分之一 7.原始凭证和记账凭证的相同点是(C )。 A编制时间相同B经济责任的当事人相同C反映经济业务的内容相同D所起作用相同 8.会计工作的国家监督不包括(C )。 A财政机关的监督B税务机关的监督C会计机构的监督D审计机关的监督 9.计量验收制度的主要内容不包括(B )。 A计量检测手段和方法B对财产清查中发现问题的处理办法 C计量验收人员的责任和奖惩办法D计量验收管理的要求 10.会计人员工作调动或者因故离职,必须将本人所经管的会计工作(B )。 A全部或部分交给接替人员B全部交给接替人员C部分交给接替人员D负责到年末再交接 11.以下关于会计工作岗位设置的说法,正确的是(D )。 A不得轮岗B出纳人员兼任其他岗位C设置所有岗位D按需设岗 12.对账工作每年至少进行(B )。 A十二次B一次C两次D四次 13.实行会计电算化的单位,用计算机打印出来的会计账簿(D )。 A不用编号B编号随意拟定C可以不连续编号D必须连续编号 14.可以对企业的总会计师进行提名的是(C )。 A企业员工B政府C本单位主要行政领导D会计主管

关于寒假作业的说说心情短语句子

关于寒假作业的说说心情短语句子 一、有些老师真是过瘾,我抄作业,她说我抄别人作业干什么?还不如空着.我空着作业交上去,她说我空着还交上来 二、老师一点也不酷,一点儿也不给力,还布置那么多作业。 三、在与寒假先森约会的时候总会出现一个叫寒假作业的小三 四、对不起,作业先森。我们不合适、我爱的只有他——寒假先森。 五、抄作业,偶尔需要偷工减料 六、当我埋着头苦苦写着作业的时候,我真想捏死班主任。 七、今天我们的挑战是一边嚼着炫迈口香糖一边写作业,过一段时间再看作业很多根本停不下来。 八、现在担心的不应该是你的寒假作业吗?!!! 九、作业我们分手吧,我感觉我们不适合。 十、作业烧不尽,老师吹又生。

十一、我学会了说脏话,学会了早恋,学会了攀比,学会了叛逆,学会了抄作业,知道是在哪儿吗?是在学校。 十二、老师我不想写作业,那样一点都不酷。 十三、每次我做作业的时候看到不会的题就自动跳过,可是这一跳就像嚼了炫迈一样,根本停不下来。 十四、作业小三,请你自重,我是个有寒假的人 十五、“为什么寒假比暑假短?”“热胀冷缩啊。”“那为什么作业一样多?”“因为质量不变嘛。” 十六、祖宗啊我烧点作业给你多帮我做做题有不会的把我们老师叫过去问问 十七、与寒假先森约会的时候,总会出现一个叫寒假作业的小三、 十八、本来有种要把寒假作业一口气写完的冲动还好我自制力强 十九、“你觉得作业是个什么样的人?”“是个破坏别人寒假的人!”

二十、扔硬币:正面就去上网、反面就去睡觉,立起来就去写作业。 二十一、待寒假来临,只等作业成山。https://www.wendangku.net/doc/9111641661.html, 二十二、其实我也不想跟作业相亲,都是老师逼的! 二十三、这年头,不早恋,不犯贱,不作弊,不叛逆,不抄作业,不玩手机,都没人相信你是学生。 二十四、作业快到火里来,你才到火里去,就不能找个大一点的火吗,作业这么多怎么烧的完。

万科集团建筑构造与细部做法统一标准

万科集团建筑构造与细部做法统一标准

万科集团建筑构造与细部做法统一标准 第一部分:建筑做法 第一节:卫生间细部做法 1.1 卫生间细部防水节点做法: 1.1.1穿卫生间烟道节点防水做法: 1.1.2沉箱式卫生间侧排地漏防水做法:

1.1.3卫生间地漏泄水孔节点 1.2卫生间其它主要事项: 1)卫生间建筑完成面应低于室外建筑完成面至少50mm;

2)卫生间地漏、穿楼板管道根部四周须用聚氨酯防水材料嵌缝填实加强处理,沿管道上反不低于建筑完成面100mm高度; 3)地面防水在卫生间门口处外伸不小于100mm宽,门坎石下与卫生间地面交接处须采用沥青油膏或聚氨酯密封填实(见图1.2.1); 4)卫生间木门框底部建议落于门坎石上(见图1.2.2)或采用石材做防水护角(见图1.2.3),以防木门框底部腐烂; 5)在卫生间混凝土顶板上固定吊顶螺杆时须防止打穿或打裂楼板,导致楼板渗漏; 6)卫生间地面防水完成后必须进行不低于48小时蓄水试验,蓄水高度不低于卫生间外结构面高度50mm。 图1.2.1卫生间木门框采用石材底部做护角示意

第二节:花池、外墙悬挑构件 2.1室外悬挑花池 1)1:3水泥砂浆保护层。 2)1.5mm厚聚合物水泥防水涂料(JS-Ⅱ型)防水层(花池内满做); 3)混凝土整体浇筑,根据花池大小应预留1-2个Ф32排水管;2.2空调板、凸窗板等悬挑板的防水做法: 第三节:墙体面层施工做法 3.1 内墙面 3.1.1 水泥砂浆抹灰

1)8mm厚1:2水泥砂浆面层抹平; 2)12mm厚1:2.5水泥砂浆打底; 3)暗埋管线槽补平后挂镀锌钢丝网,挂网宽度为超出管线槽边50mm,管线比较密集而无法砌筑时,采用细石砼塞填密实,再挂钢丝网。 4)抗裂、抗脱落网片:不同墙体材料交接处每边150mm,砌筑墙体需满挂镀锌钢丝网(网孔小于15×15mm,丝径大于1mm); 4)墙体。 3.1.2 乳胶漆墙面 1)乳胶漆面层,不少于2遍; 2)墙面满刮腻子找平; 3)下同3.1.1各条 3.1.3 内墙砖(地砖贴墙需用专用粘接剂或云石胶满铺粘贴) 1)内墙砖,颜色相近水泥擦缝 2)5mm厚素水泥浆摻8%108胶粘贴或采用专用粘结剂 3)下同3.1.1各条 1.4管井内壁抹灰 1)12mm厚1:3水泥砂浆; 2)墙体 3.2 外墙面 3.2.1涂料外墙: 1)涂料封闭底漆不少于1道,面漆不少于2道; 2)专用外墙水泥腻子打磨找平,不得采用石膏腻子;

关于生活感悟的心情说说短语

关于生活感悟的心情说说短语 1)总有那么一天,有一个人,会走进你的生活,让你明白,为什么你和其他人都没有结果. 2)一直都不想说其实孙浣琪孙慧芳孙淇琦孙锦纯孙悦容刘玉鑫彭超你们一直在我生活圈里 3)我们没有资格去逃避生活. 4)带着你的为我好滚出我的生活 5)爱是与生活勾结一起的幻术!直到最后才会发现我们相信自己胜过相信爱情!爱自己,胜过爱对方。 6)暑假君,你别走啊别走,我不要和上学先生生活在一起,不要啊你别走呜呜呜 7)生活比电影难过多了。 8)也许我只是你生活中的一个很平常的过客,你或许不知道,你曾是我的全部。 9)再难受又怎样,生活还要继续,现实就是这样,没有半点留情,你不争就得输, 10)生活、像一把无情刻刀,改变了我们模样,未曾绽放就要枯萎吗,我有过梦想。 1)我愿和你齐飞,远走天涯,过属于我们自己的幸福生活 2)不知你是我敌友已没法望透被推着走跟着生活流来年陌生的是昨日最亲的某某。 3)-如今从容面对生活的人,却多是受过伤的人。 4)生活如此多娇

5)生活有进有退,输什么也不能输了心情. 6)其实我很想像爱情公寓那样和几个最要好的朋友生活在一栋房子里,有说有笑。 7)上天安排某个人进入你的生活是有原因的,让他消失是有理由的。? 8)好的生活就是不瞎想,做得多,要得少,常微笑,懂知足。 9)每天吃一颗糖然后告诉自己今天的生活又是甜的 10)对生命最佳的回应,是生活得很快乐 1)听说你在我背后乱嚼舌根是吧挑拨离间是吧你很讨厌我是吧亲爱的你好可怜生活没我精彩嫉妒了是吧 2)总有一个人一直住在我心里,却告别在生活里。 3)-凡事看得开,生活才能嗨。 4)自从放假后我的生活里就没有了上午 5)生活就是,,生下来活下去, 6)演出一場壹個人的童話,不必一直一路等候他,没戀愛出現不用生活嗎?無緣騎上白馬我自行回家。 7)我从没被谁知道,所以也没被谁忘记。在别人的回忆中生活,并不是我的目的 8)幸福是什么?幸福就是我和我爱的人快快乐乐的生活。 9)从此以后,各自天涯,彼此不再纠缠,生活于是归于平淡。 10)我不爱生活我没有那么假; 11)既然无法挽回,那就付诸一笑,生活就是要乐观一点! 12)现在的生活并不是我想要的,但确实是我自找的,所以活该,我认了

中建八局施工质量标准化图册(土建、安装、样板)30341

中建八局施工质量标准化图册(土建、安装、样板) 第一部分土建 1. 钢筋直螺纹连接 一、操作要点 1、钢筋下料要求端部平整,不得有马蹄形或挠曲,不得用气割下料,可现场用砂轮锯或无齿锯下料。 2、加工钢筋螺纹时,应采用水溶性切削润滑液;不得用机油润滑液或不加润滑液套丝。 3、自检合格的丝头,应由质检员随机抽样进行检验,以一个工作班加工的丝头为一个验收批,随机抽检10%,当合格率小于95%时,应加倍抽检,复检中合格率仍小于95%时,应对全部丝头进行逐个检验。合格者方可使用。 4、加工的钢筋丝头的直径和长度应用螺纹量规检查,已检验合格的丝头,应戴上保护帽加以保护。标准型接头的丝头有效螺纹长度应不小于1/2 连接套筒长度,且允许误差为+2P。 5、钢筋规格与连接套筒的规格一致,钢筋螺纹的型式、螺距、螺纹外经应与连接套筒匹配。并确保钢筋连接套筒的丝扣干净、完好无损。 6、连接钢筋时应对准轴线将钢筋拧入连接套筒,接头拼接完成后,应使两个丝头在套筒中央位置互相顶紧,两端外露丝扣不超过 2 个完整丝扣。 7、为了防止接头漏拧,每个接头拧紧之后,一定要在接头上做红漆标记,不合格的做白色标记以便检查。 二、质量效果

2. 墙柱板钢筋定位 一、操作要点 1、据图纸及规范要求,绘制梯形定位筋、柱钢筋定位框、马镫、水泥撑等加工图,由技术负责人审核后加工制作或购置成品。 2、钢筋绑扎前,应先对竖向钢筋进行调直、校正到位。墙体钢筋与梯形筋的梯档筋需绑扎固定,竖向梯形筋设置间距不大于 2 米且每段墙不少于 2 个,梯形筋位置宜避开钢筋搭接长度范围内。

3、墙体钢筋网片绑扎完毕后,即可加设水泥撑和保护层垫块,水泥撑与墙体钢筋用绑丝绑牢,间距不宜超过80cm,梅花形布置(或设水平梯子筋,间距不大于 2 米且每段墙不少于 2 个);保护层垫块均匀固定在钢筋网片上,间距不超过100cm。 4、框架柱钢筋绑扎关键在于控制纵向主筋垂直和相对位置,在高出楼板顶面5cm 处和50cm 处分别加设一道钢筋定位框,在箍筋绑扎前利用定距框来限制立筋位置,定距框与脚手架间临时进行固定,保证定距框水平及与柱边线对应。 5、现浇板底层钢筋铺设完放置马镫,其间距不大于500mm,与上层板筋绑扎牢固。 二、质量效果

会计基础工作规范2_j

第四讲记账凭证规范 一、记账凭证的基本概念 记账凭证,俗称传票,是会计人员根据审核无误的原始凭证按照经济业务事项的内容加以归类,确定会计分录,并据以登记会计账簿的凭证。 《规范》第五十条规定:“会计机构、会计人员要根据审核无误的原始凭证填制记账凭证。” 二、记账凭证的内容和种类 (一)记账凭证的内容〈规范〉第五^一条 为了概括地反映经济业务的基本情况,满足登记账簿的需要,《规范》第五十一条规定, 记账凭证必须具备下列内容要素:以通用记账凭证为例 1. 填制凭证的日期; 2. 凭证的名称和编号; 3. 经济业务的摘要; 4. 应记会计科目(包括一级科目、二级科目和明细科目)、方向及金额; 5. 记账符号; 6. 所附原始凭证的张数; 填制人员、稽核人员、记账人员和会计主管人员(收款凭证和会款凭证还应增加出纳人员)的签名或印章 (二)记账凭证的种类〈规范〉第五十条 1、按用途分类 (1)专用记账凭证 通常采用收款凭证、付款凭证和转账凭证就是这类记账凭证。适用于大中型企业。收款凭证;专门用于登记现金和银行存款收入的业务。销售商品收到一张支票。 付款凭证;专门用于登记现金和银行存款支出的业务。购买商品用银行汇票支付款项。 转账凭证;专门用于登记现金和银行存款收付业务外的转账业务。 女口:领料生产产品,购料未付款。 (2)通用记账凭证 为各类经济业务共同使用的凭证,亦称作标准凭证。业务比较单纯、业务量也较少的小企业,适宜使用这类记账凭证。 2、按其填制方法划分 (1)复式记账凭证 将一项经济业务所涉及到的各有关会计科目都集中在一起填制的凭证。 复式记账凭证能够集中反映账户之间的对应关系,便于了解有关经济业务的全貌,还可以减少凭证的数量,但不便于汇总每一会计科目的发生额和进行分工记账。 (2)单式记账凭证 按一项经济业务所涉及到的各个会计科目分别填制的凭证。 由于一张凭证只填列一个会计科目,因此使用单式记账凭证便于汇总每个会计科目的发生额和进行分工记账,但填制工作量大,在一张凭证上反映不出经济业务的全貌,不便于查账。 (3)汇总记账凭证 将许多同类记账凭证逐日或定期(3天、5天、10天等)加以汇总后填制的凭证。 如将收款凭证、付款凭证或转账凭证按一定的时间间隔分别汇总,编制汇总收款凭证、汇总付款凭证或汇总转账凭 证;又如,将一段时间的记账凭证按相同会计科目的借方和贷方 分别汇总,编制记账凭证汇总表等等。 三、记账凭证的填制要求 (一)记账凭证填制的基本要求〈规范〉第五十条

2020砌墙规范标准化详细做法

2020砌墙规范标准化详细做法 一、砌体组成形式 砌筑材料±0.000以上外墙为加气混凝土砌块,内墙为空心砌块砌筑。±0.000以下用混凝土空心砌块墙(如涉及节能要求墙体可选用Mb5加气混凝土专用砂浆砌A5加气混凝土砌块)。 1、实行工序质量控制管理办法 技术负责人对砌墙工序向施工班组及相关管理人员进行技术交底,栋号施工员、观砌、项目质量员跟踪控制及过程检查,负责砌体实测偏差控制,对不符合规范要求的予以拆除。各相关人员要努力做到以工作质量保证工序质量,以工序质量保证产品质量。 2、严格执行首件样板制度 砌体工程要做好如下几项的首件样板,由栋号施工员和质量员负责实施: a、地下室混凝土空心砖填充墙,上部结构加气混凝土砌块及混凝土空心砖 b、混凝土导墙、构造柱、过梁混凝土 3、工程质量及隐蔽工程验收严格执行“三级”管理验收制 先由操作班组方自行检查,报栋号施工员检验,质量员复检,合格后再报监理最终验收,验收通过合格后,才能进行下一道工序施工。砌体工程的隐蔽工程项目:墙拉结、构造柱。 二、技术措施 砌体砌筑: 1、混凝土空心砖、加气混凝土砌块强度必须符合设计要求,并具有质量保证资料。砖块进场时必须严格验收,要求尺寸正确、表面平整、无凹凸弯曲变形、无缺楞掉角、无裂纹,对几何尺寸偏差控制在2mm以内,对偏差大的坚决予以退回,这是保证砌体工程质量的前提,由材料员、质量员负责把关。 2、加气混凝土砌块应防止雨淋,由材料员负责材料保护。

3、观砌要严格控制砌体的放线精度,放线允许偏差+5mm,栋号施工员、技术负责人负责对砌体放线进行技术复核。 4、砌筑前应先弹出水平线和墙身线,所有线必须考虑内外立面观系,各种线经复核后方可使用。扫清墙身部位浮灰,冲水湿润。 5、砂加气混凝土砌块砌筑时,用专用粘结剂砌筑严禁浇水。 6、观砌根据砌体高度立皮数杆,在皮数杆上划出每皮砌块、灰缝厚度和圈过梁位置,栋号施工员、技术员负责对皮数杆进行技术复核。砌筑时先砌转角及砌体交接处,然后在其间拉基准线砌中间部分,组砌方法应统一。 7、混凝土实心砖宜采用“一铲灰、一块砖、一挤揉”的“三一”砌砖法。砌砖时砖要放平。里手高,墙面就要张;里手低,墙面就要背。砌砖一点要跟线,“上跟线,下跟棱,左右相邻要对平”。在操作过程中,要认真进行自检,如出现由偏差,应随时纠正,严禁事后砸墙。此项由栋号施工员、观砌负责过程控制。 8、砌筑质量允许偏差;砌体灰缝的砂浆应横平竖直、厚薄均匀。其中:混凝土空心砖10mm,但不应小于8mm,也不应大于12mm;加气混凝土砌块为2-4mm,水平灰缝的砂浆饱满度不得小于80%,竖缝要刮浆适宜,并加浆灌缝,不得由透明缝、瞎缝、假缝;加气灰缝及垂直灰缝的砂浆饱满度均不得小于80%。由观砌负责过程控制,质量员负责过程检查监督并应及时向项目经理、技术负责人反映问题。 9、加气混凝土砌块砌筑墙体时,墙底部应浇注200mm厚的混凝土导墙。 10、砌体砌筑应上下错缝,加气混凝土砌块搭接长度不应小于砌块长度的1/3,上述要求不能满足时应在灰缝中设置拉结筋或网片;由栋号施工员、观砌负责过程控制。 11、混凝土结构与砌体连接处应沿墙高按设计要求和规范规定设在拉结,每边伸入墙内不宜小于1000mm,拉结筋末端应由90o弯钩。为确保本工程二次结构的质量,墙体拉筋不在结构施工时预留,采用化学植筋法,位置由观砌根据皮数杆准确定位,种植必须牢固,由栋号施工员、质量员负责种植质量控制。 12、砌体临时断处应沿墙高每隔500-600mm设2φ6拉结,每边伸入墙内不宜小于1000mm,拉结筋末端应有90 o弯钩。 13、砂加气混凝土砌块砌筑时不得与其他类型的砌块混砌。 14、砌体靠柱边用砂浆嵌实,填充墙砌至接近梁、板底时,应留一定空隙,等填充墙砌筑完并应至少间隔7天后,再补砌挤紧;砂加气砌体砌至接近梁板底时应留一定30-50mm空隙,等填充墙砌筑完并应至少间隔7天后,再补细石混凝土填补捣实。 15、混凝土实心砖砌筑时,砌体顶部与上部结构接触处应用专门的异性砌块挤紧砌筑,倾斜度宜为60 o,砌筑中洞口大于300mm应设置过梁。

回家的空间说说心情短语

回家的空间说说心情短语 离家的路有千万条,回家的路只有一条。想知道更多关于回家的空间说说吗?今天在这里分享一些回家的空间说说心情短语,希望大家喜欢。 回家的空间说说心情短语【精选篇】1.回老家的,每年最痛苦了,今年又大着肚子,尤其要困难。 2.回家的感觉真好!但在路途中真累! 3.在车上想着母亲现在可都会忙些什么农活,想着一回去就可以吃好多的东西。其实,我在城里随便可以买到,只是偏爱家里的好吃。现在想想那些游子思家之心,在异乡的思家情缘了。家,想你了。 4.想家多了。特别是周末,想着想着就有股冲动要回家看看。果不其然,化冲动为行动。上完课后就马上搭车回家。 5.每每想家心切之时,便大有舍弃人生一切的勇气。那种想家的心情就宛如街头遇雨时,偶得雨伞,雨过天晴,则随手一放,跟天边的彩虹一般,转眼便消失得无影无踪。 6.家是什么,家,是一间房一盏灯一张柔软的床。有了房,不再担心风吹和雨打,有了灯,不再害怕夜晚没有星星和月亮,有了床,累了困了可以睡上甜甜的觉做个美美的梦。家是什么,家是一轮太阳,爸爸妈妈欢乐的笑容,合成一缕温暖的阳光。 7.让我时时魂牵梦绕的家乡,其实是一个风景秀美的小山村,山

村四周连绵起伏的山峦手挽手呵护着这里的人们,如同一个慈祥的母亲深情的凝视着怀中的孩子。多少次趟过记忆的长河,多少回穿越时空的邃道,跋山涉水,梦回这山清水秀的故乡。 8.真想有个随意门,开门就到家了。 9.有钱没钱(有分没分)回家过年~ 10.欣喜,激动,还是有点无措。。 回家的空间说说心情短语【经典篇】1.想回又不想回... 2.我傻傻的望着车窗,脑中却是家的投影! 3.离家的距离一点点近了,心也一点点活了过来。 4.来两斤幸福,拿回家 5.君自故乡来。应知故乡事。 6.家是身后的山牵着思念的线。家里有爱让我永远享不完。 7.家就在眼前,而家人在哪里? 8.家,是每一个人脚步最终的落脚点。 9.回家是固执的守候。 10.回家的路很远、很累,但是很踏实。 11.回家的感觉,真好! 12.回家啊,你的名字叫做执着! 13.回家、回家,过年回家! 14.好开心、放假回家过年咯 15.归心似箭。 16.该如何回家,这幅模样。。。。

《会计基础工作规范》

《会计基础工作规范》 篇一:新《会计基础工作规范》讲解 新《会计基础工作规范》讲解 第二讲 新《会计基础工作规范》讲解 第四讲 新《会计基础工作规范》讲解 第六讲 新《会计基础工作规范》讲解 第八讲 新《会计基础工作规范》讲解 第十讲 篇二:《会计基础工作规范》2011 试题 《会计基础工作规范》 一、单项选择题、 1、《会计基础工作规范》的章数和条数是(六章一百零一条)。 2、《会计基础工作规范》发布的时间是(一九九六年六月十七日)。 3、当前,在我国会计法规体系中居于最高地位的是(《会计法》 )。 4、 会计人员办理移交手续前已经受理的经济业务尚未填制会计凭证的, 应当 (填制完毕) 。 5、实行代理记账的单位,代理的范围可以是(会计工作的整个过程)。 6 代理机构为委托单位编制和报送会计报表,会计报表的签章是(委托单位和代理机构 共同签章)。 7、未取得会计证的人员(不得从事会计工作)。 8、会计人员办理交接手续,对移交工作的监督(很有必要)。 9、单位领导人的直系亲属不可以担任本单位的(会计主管人员)。 10、会计人员工作调动或者因故离职,必须将本人所经管的会计工作(全部交给接替人 员)。 11、可以对企业的总会计师进行提名的是(本单位主要行政领导)。 12、总会计师是(主管本单位财务会计工作的行政领导)。 13、对会计人员继续教育实行定期检查制度,原则上(两年一次)。 14、移交人员在办理会计工作交接时,银行存款账户余额要与银行对账单核对,如不一 致,应当(编制银行存款余额调节表调节相符)。 15、 没有条件设置会计机构, 只配备专职会计人员的单位 (需要建立健全财务会计制度) 。 16、定期对批准设立的会计人员继续教育培训单位的培训工作进行检查、考核和评估的 是(财政部门)。 17、登记账簿要用(蓝黑墨水或者碳素墨水)书写。 18、会计凭证登账后的整理、装订和归档称为(会计凭证的保管)。 19、以银行存款归还银行借款的业务,应编制(付款凭证)。 20、账簿中书写的文字和数字上面要留有适当空格,不要写满格,一般应占格距的(二 1 / 11

放假搞笑说说经典句子,幽默放假说说心情短语

放假搞笑说说经典句子,幽默放假说说心情短语 导读:1、“放假你快乐吗?”“只有快,没有乐。” 2、留几年的长发五分钟就剪完,学几年的知识一放假就忘光。 3、所谓放假就是,家里遭嫌,出门没钱,每天特闲。 4、“关闭放假模式,正式开启学霸模式!”“对不起,您的配置太低,无法启动该功能” 5、讨厌放假、作业多那是借口、只是因为不能再每天看见你。这你都不懂吗。 6、放假靠祖宗,停课靠台风。 7、所谓放假就是在家挨骂,出门没钱,一天特闲。 8、“放假了,是否激动?”“恩,可作业会让你更激动!” 9、对我们来说,放假就是换了个地方写作业。 10、放假了才发现,只有爱你的人才会和你保持联系。 11、“感觉自己和放假之前一样轻盈啊”“说人话”“作业没写” 12、放假以后,学神在刷难题,学霸在刷作业,学渣在刷动态。 13、放假了,又想上学;开学了,又想放假;有木有? 14、我对放假的概念就是,我的充电器从来没闲过。 15、中国的放假原则,欠了的终归是要还的! 16、放假没意思想上学,上学太痛苦想放假,尼玛太纠结。 17、中国的放假告诉了我一个道理,欠了的总是要还的! 18、这年头,手上没有几十张试卷都不好意思跟别人说学校放假。

19、哎,放完假后又该开学了 20、放假在家每天必做三件事 21、放假再无聊,我也不愿上学;就像爱你再无助,我也不愿放手。 22、作业加载失败,请学校重新放假。 23、放假有什么好的,还不是一个人过,而且还见不到最想见到的人。 24、从前有群人一起放假,现在这群人放假的时间都不一样了。 25、这年头,放假真不容易,清明节放假还是沾老祖宗的光。 26、读书的时候觉得不怎么擅长学习,放假以后发现原来玩也不太在行。 27、上课是为了下课,上学是为了放假。没有这么伟大的心念支持着,都不敢想象我是怎么有勇气来学校。 28、放假的意义就在于,一个说不起就不起的早晨,一个说不睡就不睡的深夜和一个说不出门就不出门的白天。 29、现在的放假,暑假放得和寒假一样,寒假放得和国庆一样,国庆放得和五一一样,五一放得和周末一样,周末放得和没放一样,总结,放假就跟放屁一样。 30、你若军训,便是晴天;你若放假,便是雨天;你若发奋写作业,便是开学前一天。 31、放假时,我醒了,不代表我起床了;上学时,我起床了,不

会计基础工作规范解读模板

会计基础工作规范 解读

单项选择题 ( 共1题) 1 《会计基础工作规范》的章数和条数是( ) 。 七章一百零一条 六章一百零一条 六章一百条 五章一百零一条 判断题 ( 共1题) 2 国家机关、社会团体、企业、事业单位、个体工商户和其它组织的会计基础工作, 应当 符合《会计基础工作规范》的规定。( ) 正确 错误 单项选择题 ( 共1题) 1 对违反职业道德的会计人员, 情节严重的, 应该( ) 。 批评 吊销其会计证 进行继续教育 进行检讨 判断题 ( 共1题) 2 会计主管作为单位行政领导成员, 是单位财务会计工作的主要负责人。( ) 正确 错误 单项选择题 ( 共1题)

1 外来原始凭证属于会计凭证中的( ) 。 汇总原始凭证 一次凭证 转账凭证 累计凭证 判断题 ( 共1题) 2 在中国, 会计记录文字应当使用中文。( ) 错误 正确 单项选择题 ( 共1题) 1 会计工作的国家监督不包括( ) 。 财政机关的监督 税务机关的监督 会计机构的监督 审计机关的监督 判断题 ( 共1题) 2 对伪造、变造会计账簿或者账外设账行为, 会计机构、会计人员能够适当参与。( ) 错误 正确 单项选择题 ( 共1题)

组织分工 有关岗位的职责和权限 对财产管理人员的奖惩办法 判断题 ( 共1题) 2 制定单位内部会计管理制度的首要原则是执行法律、法规和国家统一的财务会计制度。 ( ) 错误 正确 单项选择题 ( 共5题) 1 没有条件设置会计机构, 只配备专职会计人员的单位( ) 。 视单位规模大小考虑是否建立财务会计制度 不需要建立健全财务会计制度 需要建立健全财务会计制度 不必实行严格的财务手续 2 会计工作的社会监督主要是指( ) 。 审计机关的监督 财政机关的监督 注册会计师审计 税务机关的监督 3 记账凭证上记账栏中的”√”记号表示( ) 。 此凭证编制正确 此凭证作废 不需登记入账 已经登记入账 4 定期对批准设立的会计人员继续教育培训单位的培训工作进行检查、考核和评估的是 ( ) 。

《建筑构造》课程实用标准

《建筑构造》课程标准 一、课程基本信息 课程名称:建筑构造学分:3 课程代码:F030100075 学时:48 先修课程:《建筑制图》、《建筑材料》、《建筑力学》等 后续课程:《建筑施工技术》、《施工组织》、《建筑设备》、《建筑工程计量与计价》等 适用专业:建筑工程技术、工程造价编制人: 审核人:制订时间:2010年 1月11 日 二、课程性质 专业必修课;专业基础课 三、课程设计 (一)课程目标设计 1、能力目标: (1)专业能力:能够查阅有关建筑规范、建筑图集等资料;能够读懂建筑施工图;能进行现场构造施工指导,建筑构造处理;能够理解设计理念,进行简单的建筑设计。 (2)社会能力:具备良好的沟通能力和职业道德,严格的纪律观念;具备建筑工程质量安全意识、环保节能意识,严格遵守操作规程,严把质量关;树立与其他人员配合工作的团队意识,具有协作精神。 (3)方法能力:具备独立学习、尝试建筑构造新理论、新方法和新技术的创新意识。 2、知识目标: 了解民用与工业建筑的构造组成、理论和方法;掌握一般民用和工业建筑构造的做法;理解民用建筑的基本知识。 (二)课程教学活动设计 1、课程内容设计(一般指一级项目编号及名称、内容)

注:课程进行中教师根据学校附近施工工地的联系情况安排1、2次工地认识实习。

(四)第一次课设计梗概 拟用设问法展开绪论的内容,以期提高学生的学习兴趣和对本课程的关注,问题的设置如下: 1、什么是建筑?——建筑的范围和分类; 2、你对你家的住宅满意吗?——建筑构造的设计原则;

3、试评价城建学院校园建筑。——建筑的构成要素; 4、建筑由哪些部件构成?——建筑的构造组成; 5、你家的房子能用多少年?——建筑的等级(从一条新闻谈起)。 用第一堂课提问,并发动学生自由讨论,适当地加以引导;在第二堂课进行归纳。 同时在第一堂课说明本门课程的考核模式。 四、教学组织形式 在课程教学的每个单元,教师首先简单地介绍该项目的基本知识,然后直接给出任务,在学生完成任务的过程中,再以与任务相关的知识为核心,较全面地讲述专业内容。学生完成任务60%在课外,40%在课堂,课堂完成任务时教师起辅导作用。这样的课堂组织改变了教师一言堂讲到底的传统做法,强调了教、学、做一体化,充分体现学生的主体地位。教师的角色从单一的传授者改变为传授、辅导加伙伴三位一体的综合体。有利于改变学生被动接受教学的局面,学生的能动性得到充分发挥,提高了学生分析解决问题的能力,培养了学生探索和创新意识,提升了教学效果。 五、课程考核方式和考核标准

相关文档