文档库 最新最全的文档下载
当前位置:文档库 › 电磁场与电磁波 第二版 冯恩信 第五章 课后习题答案

电磁场与电磁波 第二版 冯恩信 第五章 课后习题答案

电磁场与电磁波 第二版  冯恩信 第五章 课后习题答案
电磁场与电磁波 第二版  冯恩信 第五章 课后习题答案

Goule.

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+? B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

线性代数第五章 课后习题及解答教学提纲

线性代数第五章课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332? ?? ? ??-- 解:,0731 3 3 2 2=--=--= -λλλλλA I 2 37 3,237321-=+= λλ ,00 13 36 37 123712 137 1??? ? ??→→??? ? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,00 13 36 37 12371237 12??? ? ??→→??? ? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 11 121 13--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ??? ? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ??? ? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

大学物理课后习题解答(第五章) 北京邮电大学出版社

习题五 5-1 振动和波动有什么区别和联系?平面简谐波动方程和简谐振动方程有什么不同?又有什么联系?振动曲线和波形曲线有什么不同? 解: (1)振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,系统离开平衡位置的位移是时间的周期性函数,即可表示为)(t f y =;波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动,因此介质中任一质元离开平衡位置的位移既是坐标位置x ,又是时间t 的函数,即),(t x f y =. (2)在谐振动方程)(t f y =中只有一个独立的变量时间t ,它描述的是介质中一个质元偏离平衡位置的位移随时间变化的规律;平面谐波方程),(t x f y =中有两个独立变量,即坐标位置x 和时间t ,它描述的是介质中所有质元偏离平衡位置的位移随坐标和时间变化的规律. 当谐波方程 ) (cos u x t A y -=ω中的坐标位置给定后,即可得到该点的振动方程,而波源持续不断地振动又是产生波动的必要条件之一. (3)振动曲线)(t f y =描述的是一个质点的位移随时间变化的规律,因此,其纵轴为y ,横轴为t ;波动曲线),(t x f y =描述的是介质中所有质元的位移随位置,随时间变化的规律, 其纵轴为y ,横轴为x .每一幅图只能给出某一时刻质元的位移随坐标位置x 变化的规律,即只能给出某一时刻的波形图,不同时刻的波动曲线就是不同时刻的波形图. 5-2 波动方程y =A cos [ω( u x t - )+0?]中的u x 表示什么?如果改写为y =A cos (0?ωω+-u x t ),u x ω又是什么意思?如果t 和x 均增加,但相应的[ω( u x t - )+0?]的值不变,由此能从波动方程说明什么? 解: 波动方程中的u x /表示了介质中坐标位置为x 的质元的振动落后于原点的时间;u x ω则表示x 处质元比原点落后的振动位相;设t 时刻的波动方程为 ) cos(0φωω+-=u x t A y t 则t t ?+时刻的波动方程为 ] ) ()(cos[0φωω+?+-?+=?+u x x t t A y t t 其表示在时刻t ,位置x 处的振动状态,经过t ?后传播到t u x ?+处.所以在 ) (u x t ωω-中,当t ,x 均增加时, ) (u x t ωω-的值不会变化,而这正好说明了经过时间t ?,波形即向前传播了t u x ?=?的距离,说明) cos(0φωω+-=u x t A y 描述的是一列行进中的波,故谓之行 波方程. 5-3 波在介质中传播时,为什么介质元的动能和势能具有相同的位相,而弹簧振子的动能和势能却没有这样的特点? 解: 我们在讨论波动能量时,实际上讨论的是介质中某个小体积元dV 内所有质元的能量.波动动能当然是指质元振动动能,其与振动速度平方成正比,波动势能则是指介质的形

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

单片机原理及应用课后习题答案第5章作业

第五章中断系统作业 1. 外部中断1所对应的中断入口地址为()H。 2. 对中断进行查询时,查询的中断标志位共有、_ _、、 _ 和_ 、_ _ 六个中断标志位。 3.在MCS-51中,需要外加电路实现中断撤除的是:() (A) 定时中断 (B) 脉冲方式的外部中断 (C) 外部串行中断 (D) 电平方式的外部中断 4.下列说法正确的是:() (A) 同一级别的中断请求按时间的先后顺序顺序响应。() (B) 同一时间同一级别的多中断请求,将形成阻塞,系统无法响应。() (C) 低优先级中断请求不能中断高优先级中断请求,但是高优先级中断请求 能中断低优先级中断请求。() (D) 同级中断不能嵌套。() 5.在一般情况下8051单片机允许同级中断嵌套。() 6.各中断源对应的中断服务程序的入口地址是否能任意设定? () 7.89C51单片机五个中断源中优先级是高的是外部中断0,优先级是低的是串行口中断。() 8.各中断源发出的中断申请信号,都会标记在MCS-51系统中的()中。 (A)TMOD (B)TCON/SCON (C)IE (D)IP 9. 要使MCS-51能够响应定时器T1中断、串行接口中断,它的中断允许寄存器 IE的内容应是() (A)98H (B)84H (C)42 (D)22H 10.编写出外部中断1为负跳沿触发的中断初始化程序。 11.什么是中断?其主要功能是什么? 12. 什么是中断源?MCS-51有哪些中断源?各有什么特点? 13. 什么是中断嵌套? 14.中断服务子程序与普通子程序有哪些相同和不同之处? 15. 中断请求撤除的有哪三种方式? 16. 特殊功能寄存器TCON有哪三大作用? 17. 把教材的P82页的图改为中断实现,用负跳变方式,中断0(INT0)显示“L2”,中断1(INT1)显示“H3”。(可参考第四章的电子教案中的例子) 18.第5章课后作业第9题。 第五章中断系统作业答案 1. 外部中断1所对应的中断入口地址为(0013)H。 2. 对中断进行查询时,查询的中断标志位共有 IE0 、_TF0_、IE1 、 TF1_ 和_TI 、_RI_六个中断标志位。【实际上只能查询TF0、TF1、TI、RI】 3.在MCS-51中,需要外加电路实现中断撤除的是:(D) (A) 定时中断 (B) 脉冲方式的外部中断 (C) 外部串行中断 (D) 电平方式的外部中断 4.下列说法正确的是:(A C D ) (A) 同一级别的中断请求按时间的先后顺序顺序响应。(YES)

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

第五章 课后练习题与答案

第五章练习题 一、单项选择题 1.建设有中国特色社会主义首要的基本理论问题是(D) A.正确处理改革、发展和稳定的关系 B.坚持以经济建设为中心 C.解放思想、实事求是 D.什么是社会主义,怎样建设社会主义 2.搞清楚什么是社会主义,怎样建设社会主义的关键是:( D )A.恢复党的思想路线B.正确理解邓小平理论 C.坚持四项基本原则D.正确认识社会主义本质3.邓小平多次指出,在改革中,我们必须坚持的两条根本原则是( D )A.不断发展生产、增加社会财富 B.扩大改革开放,增强综合国力 C.实行按劳分配,改善人民生活 D.坚持公有制为主体,实现共同富裕 4.发展生产力是社会主义的(B ) A.根本目的B.根本任务 C.发展动力D.根本特征 5.邓小平首次提出“社会主义本质”一词是在( D ) A.1980年B.1982年 C.1978年D.1992年 6.社会主义本质的理论指出了社会主义的根本目标是( D )A.解放和发展生产力B.消灭剥削 C.消除两极分化D.实现共同富裕 7.提出“三个主体.三个补充”思想的领导人是(C ) A.刘少奇 B.毛泽东C.陈云 D.周恩来 8.1980年5月,邓小平说:社会主义是一个很好的名词,但是如果搞不好,不能正确理解,不能采取正确的政策,那就体现不出( A )A.社会主义的本质 B.社会主义的特征 C.社会主义的目标 D.社会主义的原则 9.邓小平指出:“贫穷不是社会主义,社会主义要消灭贫穷。”这个论断

( C ) A.概括了社会主义建设的目标 B.指出了社会主义的根本任务 C.明确了社会主义的发展方向 D.体现了社会主义本质的要求 10、党执政举国的第一要务是:( A ) A、发展 B、创新 C、改革 D实践 二多项选择题 11.社会主义的本质是(ABD ) A.解放生产力,发展生产力B.消灭剥削,消除两极分化 C.不断进行改革D.最终达到共同富裕 E.实现按劳分配 12.社会主义本质的概括体现了社会主义(ABDE ) A.发展过程与最终目标的统一B.物质条件与社会条件的统一 C.民族特色与基本特征的统一D.生产力和生产关系的统一 E.根本任务与根本目标的统一 13.确立社会主义根本任务的依据是(ABCDE ) A.生产力是社会发展的最根本的决定性因素 B.社会主义本质的内在要求 C.解决社会主义初级阶段主要矛盾的要求 D.适应和平与发展这一时代主题的要求 E.总结历史的经验教训得出的正确结论 14.关于社会主义本质的论断中包含的价值目标是(.CDE ) A.解放生产力B.发展生产力 C.消灭剥削D.消除两极分化 E.实现共同富裕 15.邓小平提出的“发展是硬道理”是( ABCD ) A.符合马克思主义基本原理 B.巩固和发展社会主义制度的必然要求 C.对社会主义实践经验教训的深刻总结 D、适应时代主题变化的需要 16.发展之所以成为中国共产党执政兴国的第一要务,是因为(ABCD)A.由党的执政地位所决定的 B.由党所承担的历史使命和责任决定的

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

《电磁场与电磁波》仿真实验

《电磁场与电磁波》仿真实验 2016年11月 《电磁场与电磁波》仿真实验介绍 《电磁场与电磁波》课程属于电子信息工程专业基础课之一,仿真实验主要目的在于使学生更加深刻的理解电磁场理论的基本数学分析过程,通过仿真环节将课程中所学习到的理论加以应用。受目前实验室设备条件的限制,目前主要利用 MATLAB 仿真软件进行,通过仿真将理论分析与实际编程仿真相结合,以理论指导实践,提高学生的分析问题、解决问题等能力以及通过有目的的选择完成实验或示教项目,使学生进一步巩固理论基本知识,建立电磁场与电磁波理论完整的概念。 本课程仿真实验包含五个内容: 一、电磁场仿真软件——Matlab的使用入门 二、单电荷的场分布 三、点电荷电场线的图像 四、线电荷产生的电位 五、有限差分法处理电磁场问题 目录 一、电磁场仿真软件——Matlab的使用入门……………............................................... .4 二、单电荷的场分

布 (10) 三、点电荷电场线的图像 (12) 四、线电荷产生的电位 (14) 五、有限差分法处理电磁场问题 (17) 实验一电磁场仿真软件——Matlab的使用入门 一、实验目的 1. 掌握Matlab仿真的基本流程与步骤; 2. 掌握Matlab中帮助命令的使用。 二、实验原理 (一)MATLAB运算 1.算术运算 (1).基本算术运算 MATLAB的基本算术运算有:+(加)、-(减)、*(乘)、/(右除)、\(左除)、 ^(乘方)。

注意,运算是在矩阵意义下进行的,单个数据的算术运算只是 一种特例。 (2).点运算 在MATLAB中,有一种特殊的运算,因为其运算符是在有关算术运算符前面加点,所以叫点运算。点运算符有.*、./、.\和.^。两矩阵进行点运算是指它们的对应元素进行相关运算,要求两矩阵的维参数相同。 例1:用简短命令计算并绘制在0≤x≦6范围内的sin(2x)、sinx2、sin2x。 程序:x=linspace(0,6) y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2; plot(x,y1,x, y2,x, y3) (二)几个绘图命令 1. doc命令:显示在线帮助主题 调用格式:doc 函数名 例如:doc plot,则调用在线帮助,显示plot函数的使用方法。 2. plot函数:用来绘制线形图形 plot(y),当y是实向量时,以该向量元素的下标为横坐标,元素值为纵坐标画出一条连续曲线,这实际上是绘制折线图。 plot(x,y),其中x和y为长度相同的向量,分别用于存储x坐标和y 坐标数据。 plot(x,y,s)

相关文档