文档库 最新最全的文档下载
当前位置:文档库 › 城市污水生物处理的微生物学原理

城市污水生物处理的微生物学原理

城市污水生物处理的微生物学原理
城市污水生物处理的微生物学原理

城市污水生物处理的微生物学原理

参与污废水处理的生物主要有四类:

1.细菌类:在污水处理所利用的生物群中,细菌是体型最微小的一种,它具有在好氧及厌氧条件下分解吸收各种有机物的能力。对污水生物处理起作用的细菌有.菌胶团.球衣细菌.硝化菌.脱氮菌.聚磷菌等几种。

2.原生动物:原生动物具有吞食污水中的有机物,细菌,在体内迅速氧化分解的能力,因此在活性污泥法和生物膜中。它除了能除去的有机物,加快有机物的分解速度外,还能使生物膜的表面附着能力再生,原声动物是单细胞的好氧性生物。

3.藻类:藻类是植物,含有叶绿素,当叶绿素吸收二氧化碳和水进行光合作用而产生碳水化合物时将放出大量的氧于水中,稳定塘就是利用这种氧来氧化污水的有机物。

4:后生动物,以上所介绍的生物都是单细胞构成,体内还有各种器官,参与污水处理的后生动物,包括从形态较小的轮虫到栖息于生物滤池的甲壳虫,昆虫,幼虫等体形较大的种种类型。

现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。

整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。曝气池和沉淀池

1 曝气池:曝气池通俗的将就是给池子进行曝气来对污水进行净化。因为池内维持一定的污泥浓度,曝气可以为大量的好氧微生物生长提供良好的环境,进而

为这些微生物处理污水提供条件。曝气过程实际是空气氧化水,发生如下反应:Fe2+ + O2 + H2O =FeO(OH)沉淀+ O2 + H2O =Fe(OH)3沉淀。分离了曝气池中的亚铁、锰等,同时砷等会发生共沉淀,经分离后达到净化水质目的。曝气池是污水的生化处理阶段. 污水的生化处理段是污水处理的最重要的一环. 在曝气处理过程中,水池中的好氧细菌可以将污水中的有机污染物降解消化从而使污水得到净化. 好氧细菌在水生要生存就需要氧气.曝气的目的就是要提高水中溶解氧的含量从而提高好氧细菌的活性。

2 沉淀池:沉淀池一般是在生化前或生化后泥水分离的构筑物,多为分离颗粒较细的污泥。在生化之前的称为初沉池,沉淀的污泥无机成分较多,污泥含水率相对于二沉池污泥低些。位于生化之后的沉淀池一般称为二沉池,多为有机污泥,污泥含水率较高。应注意避免短流,正确投加混凝剂,及时排泥,防止藻类滋生。在给水处理中的沉淀池,当原水藻类含量较高时,会导致藻类在池中滋生。

三在污水处理的过程中,根据环境可以分为好氧处理和厌氧处理两个过程:

1 好氧处理

在有氧条件下,有机物在好氧微生物的作用下氧化分解,有机物浓度下降,微生物量增加。在这一过程中,有机物的降解、微生物的增殖、溶解O2的消耗这三个过程是同步进行的,也是控制好氧生物处理成功与否的三个关键过程。

图为好氧污泥的微生物群落:

微生物细菌原生动物其他微生物

生物组成游离细菌,菌胶团,

活性污泥絮状体鞭毛虫,肉足虫,游泳型

纤毛虫固着型纤毛虫

霉菌,单胞藻,病毒,

立克次氏体

功能净化和稳定污,废水

水质促进絮凝,净化作用,指

示作用

促进絮凝体形成毒害

作用

2 厌氧处理

在厌氧条件下,利用多种厌氧或兼性厌氧微生物的代谢活动,将有机物转化为无机物和少量细胞物质的过程。厌氧生物处理一般分为四个阶段:水解,发酵,产

乙酸,产甲烷。这些无机物质主要是大量的生物气体即沼气。沼气的主要成分是CH4和CO2

(1)水解阶段

复杂有机物首先在发酵性细菌产生的胞外酶作用下分解为溶解性的有机分子。通常缓慢,是限速阶段。

(2)发酵(酸化)阶段

溶解性小分子有机物进入发酵菌(酸化菌)细胞内,在胞内酶作用下分解为VFA,同时合成细胞物质。

(3)产乙酸阶段

发酵酸化阶段的产物丙酸、丁酸、乙醇等,在此阶段经产氢产乙酸菌作用下转化为乙酸、H2、CO2。

(4)产甲烷阶段

产甲烷菌产生甲烷:CO2+H2——〉CH4+H2OCH3COO-——〉CH4+CO2

3 在实际应用中,微生物一般主要对污水有害化合物中的有机物质起降解,转化的作用.有机物的转化广义上可定义为两种:矿化,共代谢:

(1)矿化:将有机物完全无机化的过程,是与微生物的生长过程相关的过程。

(2)共代谢:有些合成的有机化合物不能被微生物降解,但若有另一可供作碳源和能源的辅助基质存在,它们则可被部分降解,这个作用称为共代谢。共代谢不仅包括微生物在正常生长代谢过程中对非生长基质的共同氧化(或其他反应),而且也包括了休止细胞(resting cell)对非生长基质的转化。共代谢的机理目前尚不十分清楚,认为是由非专一性的酶促反应完成的。共代谢现象的存在已得到普遍证实。

目前,污水的微生物处理主要有活性泥法,生物膜法,厌氧处理法,氧化塘法。1生物膜法:生物膜法是利用生物滤池处理污水,处理污水时,水从顶上洒下,各种微生物随污水通过滤床时吸附与石块上,不断生长繁殖成一层微生物膜。这一层膜对不断通过的污水中的有机物由很强的吸附,吸收和降解能力。

2厌氧处理法:厌氧处理法通常用于不溶性有机物质,如纤维素含量高的污水,或高浓度的工业废水,也经常用于处理剩余污泥。

3 氧化塘法:这个方法是利用自然水生生态系统处理污水,将一块较大的,阳光充足的场地开辟为一个大而浅的池塘,便于风浪对水层的搅动,有利通气。氧化塘中同时可以进行好氧和厌氧性分解作用和光合作用,三种作用互相影响。

污水处理中的微生物原理

污水处理中的微生物原理 编辑说明:此章在很多书上都有涉及,但深层次讲解的少,编写此章的目标是,使入门者真正理解各类微生物特点和会用生物相分析系统环境,使本章作为中控室、化验室观测生物相的必要知识。编写时要注意多涉猎专业书籍,结合微生物学和一些论文,力图达到不仅知道结论,还要深究原因。 我们在第三章已经说过: 生物处理方法的核心(或者说城镇污水处理厂的运行核心)是,使用设施、设备,控制曝气量、水量、污泥量、营养物质等,创造出适宜微生物存活和生长的环境,并有意的引导微生物的生长向我们需要去除的污染物性质方向发展,最终达到污水处理的目的。所以,凡是采用了微生物处理方法的城镇污水处理厂,微生物原理是污水处理的核心知识,一个好的运营师,可以通过微生物的状态和变化就可判断外部环境、部环境的各种变化,并提前采取措施将出现的问题苗头消灭。 在活性污泥法中,微生物生活于活性污泥中,在生物膜法中,微生物生活于生物膜中,存在地方虽不一样,但生物种群是基本一致的。另:微生物种群非常多,按世代期(可理解为生长周期)分,从几个小时长一代到几十天长一代不等,活性污泥是由人为控制泥龄的,一般在10~25天之间,不会超过30天,所以种群是人为遴选优化过的,具有去除污染物针对性更强,但难以降解的污染物去除效果不好的特点;而生物膜法的污泥变化是由生物自行生长脱落决定的,所以各种世代期不同的种群在理论上均有存在,具有去除污染物更彻底,但处理量有限制的特点。 在微生物学领域里,习惯将动胶菌属形成的细菌团块称为菌胶团。在水处理工程领域,则将所有具有荚膜或粘液或明胶质的絮凝性细菌互相絮凝聚集成的菌

胶团块也称为菌胶团,这是广义的菌胶团。如上所述,菌胶团是活性污泥(绒粒)的结构和功能的中心,表现在数量上占绝对优势(丝状膨胀的活性污泥除外),是活性污泥的基本组分。它的作用表现在: 1、有很强的生物吸附能力和氧化分解有机物的能力。一旦菌胶团受到各种因素的影响和破坏,则对有机物去除率明显下降,甚至无去除能力。 2、菌胶团对有机物的吸附和分解,为原生动物和微型后生动物提供了良好的生存环境,例如去除毒物、提供食料、溶解氧升高。 3、为原生动物、微型后生动物提供附着场所。 4、具有指示作用:通过菌胶团的颜色、透明度、数量、颗粒大小及结构的松紧程度可衡量好氧活性污泥的性能。例如新生菌胶团颜色浅、无色透明、结构紧密,则说明菌胶团生命力旺盛,吸附和氧化能力强,即再生能力强。老化的菌胶团,颜色深,结构松散,活性不强,吸附和氧化能力差。 第一节活性污泥中的微生物(要求化验室强记,中控室熟悉)在污水处理中,活性污泥中的微生物形成了一个类似于社会的环境,各个种群的微生物均在生长,并在污水处理的过程中各自发挥着作用,这是一个奇妙的属于微物的世界。有偏好,有的喜欢氮、有的喜欢磷;有特点,有的对污水处理发挥巨大作用,有的反起到了破坏作用;有等级,根据食物链的规律形成了食物链的金字塔。了解这些特点、规律,能为技术人员的工艺控制起到举足轻重的作用。

污水处理技术之常见的污水处理工艺计算公式(精选.)

污水处理技术之常见的污水处理工艺计算公式 北极星环保网讯:本文收集了最常见的AO脱氮工艺的计算书,工艺流程为格栅—调节池—AO—二沉池,每一个流程都有相应的计算书汇总,仅供大家参考! 格栅 1、功能描述 格栅由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎石、毛发、木屑、果皮、蔬菜、塑制品等,以便减轻后续处理构筑物的处理负荷,并使之正常运行。按照栅栅条的净间隙,可分为粗格栅(50~100mm)、中格栅(10~40mm)、细格栅(3~10mm)。 2、设计要点 设置格栅的目的是拦截废水中粗大的悬浮物,首先废水的水质选择栅条净间隙,然后废水的水量和栅条净间隙来计算格栅的一些参数(B、L),得到的这些参数就可以选择格栅的型号。工业废水一般采用e=5mm,如造纸废水、制糖废水、制药废水等。采用格栅的型号一般有固定格栅、回转式机械格栅。 3、格栅的设计 (1)栅槽宽度

(2)过栅的水头损失:

式中: h1——过栅水头损失,m ; h0——计算水头损失,m ; g ——重力加速度,9.81m/s2 k ——系数,格栅受污染堵塞后,水头损失增大的倍数,一般k=3; ξ ——阻力系数,与栅条断面形状有关,,当为矩形断面时,β= 2.42。(其他形状断面的系数可参照废水设计手册) (3)栅槽总高度: 为避免造成栅前涌水,故将栅后槽底下降h1作为补偿。 式中: H ——栅槽总高度,m ; h0 ——栅前水深,m ; g ——栅前渠道超高,m,一般用0.3m。 (4)栅槽总长度:

调节池 1、功能描述 调节池主要起到收集污水,调节水量,均匀水质的作用。 2、设计要点 调节池的水力停留时间(HRT)一般取4-6h;其有效高度一般取4-5m,设计时,按水力停留时间计算池容并确定其规格。 3、调节池设计计算:

污水处理常见微生物高清晰照片说明

活性污泥中常见微生物 微生物在调试过程中起着很重要的指示左右,通过镜检而根据活性污泥中的微生物可以发现该活性污泥的好差,其指示作用有: (1) 着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2) 小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3) 如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4) 大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5) 如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6) 根足虫的大量出现,往往是污泥中毒的表现。 (7) 如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8) 而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9) 在石油废水处理中钟虫出现是理想的效果。 (10) 过量的轮虫出现,则是污泥要膨胀的预兆。 (11) 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。

如何根据活性污泥中的微生物来判断污泥的状况? (1)活性污泥净化性能良好时出现的微生物有钟虫、累枝虫、楯纤虫、盖纤虫、聚缩虫及各种后生动物及吸管虫类等固着性生物或匍匐型生物,当这些生物的个数达到1000个/mL以上,占整个生物个体数80%以上时,可以断定这种活性污泥具有较高的净化效果。 (2)活性污泥净化性能恶化时出现的生物有多波虫、侧滴虫、屋滴虫、豆形虫等快速游泳的生物。这时絮体很碎约100um大小。严重恶化时只出现多波虫、屋滴虫。极端恶化时原生动物和后生动物都不出现。 (3)活性污泥由恶化状态进行恢复时出现的生物为漫泳虫、斜叶虫、斜管虫、尖毛虫等缓慢游泳型或匍匐型生物。 (4)活性污泥分散解体时出现的生物为蛞蝓简变虫、辐射变形虫等肉足类。这些生物出现数万个以上时絮体变小,使处理水浑浊。当发现这些生物剧增时可通过减少回流污泥量和送气量,能在某种程度上抑制这种现象。 (5)活性污泥膨胀时出现的微生物为球衣菌、各种霉菌等,这些丝状微生物引起污泥膨胀,当SVI在200以上时,这些丝状微生物呈丝屑状。膨胀污泥中的微型动物比正常污泥少。 (6)溶解氧不足时出现的微生物为贝氏硫黄细菌等。这些微生物适于溶解氧浓度低时生存。这些微生物出现是,活性污泥呈黑色、腐败发臭。 (7)曝气过量时出现的微生物,若过曝气时间持续很长时,各种变形虫和轮虫为优势生物。 (8)废水浓度过低时大量出现的微生物为游仆虫等。 (9)BOD负荷低时出现的微生物。表壳虫、鳞壳虫、轮虫、寡毛虫等为优势生物,这些生物多时也是硝化进行的指标。 (10)冲击负荷和毒物流入时出现的生物。因为原生动物对环境条件的变化反应比细菌为快,所以可通过观察原生动物的变化情况来看冲击负荷和毒物对活性污泥的影响。原生动物中对冲击负荷和毒物反映最灵敏的楯纤虫,当楯纤虫急剧减少时,说明发生了冲击负荷和流入少量毒物。

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

污水处理常见微生物高清晰照片及说明

请教一下如何提高活性污泥活性? 作者: kevin-ww 发布日期: 1970-01-01 取自污水处理厂二沉池的回流活性污泥,请教一下有什么简便易行的提高活性的方法? 相关回复: 作者: mistjo 发布日期: 2008-12-03 加大曝气量,增加处理水中营养物含量,要注意CNP的比例。 作者: guoyc1978 发布日期: 2008-12-03 投加些营养,闷爆 作者: zhaowu_81 发布日期: 2008-12-03 添加微量元素,调节C、N、P的比例,连续曝气1周,当絮凝效果好停止。 就可以用具体废水进行驯化了。 作者: whthongtao 发布日期: 2008-12-04 1.这个问题在于是否需要提高污泥的活性,来自二沉池的污泥,一般来说,活性是很高的,如果确实需要提高活性,也就是提高污泥中的MLVSS,按按100:5:1配置CNP比例即可。如果是SBR反应器,曝气时间不要太长,一次运行3、4个小时就好了。 2.2楼提到了加大曝气量,不知道和谁比较。曝气过度肯定是不利的,注意CNP的比例是比较恰当的, 3.3楼说闷爆是不对的,闷爆主要是适用于培养污泥开始的情况。 4.微量元素是否需要添加值得商榷,生活污水中就含有大量的微量元素,自来水中也是一样很多。连续曝气一周的后果,污泥基本失去活性了。 作者: ysqlym 发布日期: 2008-12-05 用低强度的超声波处理一下。呵呵,我跟导师以前做过的课题。 作者: hktk001653 发布日期: 2008-12-05 超声波,适当曝气,只要把活性调到合适就成, 看MLSS和mLVSS的比例,后者越高,可近似表示污泥里面的微生物越多。前者越高,说明污泥含的无机物越高,那么肯定污泥的活性就不好

污水处理中泥龄的计算

泥龄 指曝气池中工作着的活性污泥总量与每日的剩余污泥数量的比值,单位:。由于在稳定运行时,剩余污泥量也就是新增长的污泥量,因此污泥龄就是污泥在曝气池中的平均停留时间,或污泥增长一倍平均所需要的时间。 污泥龄-概述 污泥龄 污泥龄是指活性污泥在整个系统内的平均停留时间一般用SRT表示也是指微生物在活性污泥系统内的停留时间。控制污泥龄是选择活性污泥系统中种类的方法。 某种微生物的期比活性污泥系统长,则该类微生物在繁殖出下一代微生物之前,就被以剩余活性污泥的方式排走,该类微生物就不会在系统内起来。反之如果某种微生物的世代期比活性污泥系统的泥龄短,则该种微生物在被以剩余活性污泥的形式排走之前,可繁殖出下一代,因此该种微生物就能在活性污泥系统内存活下来,并得以繁殖,用于污水。 SRT直接决定着活性污泥系统中微生物的大小,一般年轻的活性污泥,分解代谢有机污染物的能力强,但凝聚沉降性差,年长的活性污泥分解能力差,但凝聚性较好。用SRT排泥,被认为是一种最可靠,最准确的排泥方法,选择合适的泥龄(SRT)作为控制 排泥的目标。一般处理效率要求高,出水水质要求高SRT应控制大一些,温度较高时,SRT可小一些。 分解有机的决大多数微生物的世代期都小于3天。 将NH3-N硝化成NO3—-N的的世代期为5天。 污泥龄-A131的应用 ①进水的COD/BOD5≈2,TKN/BOD5≤; ②出水达到废水VwV的规定。 对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于: ①希望达到的脱氮效果;

②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值; ③曝气池进水中易降解BOD5占的比例; ④泥龄ts; ⑤曝气池中的浓度X; ⑥污水温度。 由氮平衡计算NDN/BOD5: NDN=TKNi-Noe-Nme-Ns A131应用 式中TKNi——进水总凯氏氮,mg/L Noe——出水中有机氮,一般取1~2mg/L Nme——出水中无机氮之和,包括氨氮、和,是排放控制值。按德国标准控制在18mg/L以下,则设计时取×18=12mg/L Ns——剩余污泥排出的氮,等于进水BOD5的倍,mg/L 由此可计算NDN/BOD5之值,然后从表查得VDN/VT。 表:晴天和一般情况下设计参考值 反硝化 前 置 周 步 VDN/VT能力,以kgNDN/kgBOD5计,(t=10℃) 计算方式 计算公式泥龄ts是活性污泥在曝气池中的平均停留时间,即

污水处理常见微生物照

污水处理常见微生物照片 微生物在调试过程中起着很重要的指示左右,通过镜检而根据活性污泥中的微生物可以发现该活性污泥的好差,其指示作用有: (1) 着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2) 小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3) 如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4) 大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5) 如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6) 根足虫的大量出现,往往是污泥中毒的表现。 (7) 如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8) 而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9) 在石油废水处理中钟虫出现是理想的效果。 (10) 过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 相关微生物的图片提供如下: 1、变形虫(阿米巴)amoeba. 顾名思义,变形虫是能变形的。不过这种变形也是有限度的。 一些种类的变形虫能向四外伸出假足,以探查水中的化学成分,决定移动方向。而有些种类根本没有假足。他们猎食时覆盖它的猎物,把猎物裹起来,这样就产生了一个食物泡,食物泡可以消化吸收猎物。 大多数变形虫对人体无害,但有几种变形虫能产生人类疾病:阿米巴痢疾,主要发生在贫穷国家。 变形虫食性广,单细胞藻类,细菌,小原生动物,真菌,有机碎片等皆是它们的食物. 变形虫生命力强,在条件不好时,可以形成一个包囊(休眠体)度过难关.

污水处理中微生物种类的指示

在自然水体中,鞭毛虫喜在多污带和α-中污带生活。在污水生物处理系统中,活性污泥培养初期或在处理效果差时鞭毛虫大量出现,可作污水处理效果差时的指示生物。 变形虫喜在α-中污带或β-中污带的自然水体生活。在污水生物处理系统中,则在活性污泥培养中期出现。 纤毛纲中的游泳型纤毛虫多数是在α-中污带和β-中污带,少数在寡污带中生活。在污水生物处理中,在活性污泥培养中期或在处理效果差时出现。扭头虫、草履虫等在缺氧或厌氧环境中生活,它们耐污能力极强,而漫游虫则喜在较清洁水中生活。固着型纤毛虫,尤其是钟虫,喜在寡污带中生活。钟虫类在β-中污带中也能生活,如累枝虫耐污能力极强。它们是水体自净程度高、污水生物处理效果好的指示生物。吸管虫多数在β-中污带,有的也能耐α-中污带和多污带。在污水生物处理效果一般时出现。 在一般的淡水水体中出现的轮虫有旋轮虫属、轮虫属和间盘轮虫属,轮虫要求较高的溶解氧量。轮虫是寡污带和污水生物处理效果好的指示生物。由于它们吞食游离细菌,所以可起到提高处理效果的作用。但在污水生物处理过程中,有时候会出现猪吻轮虫大量生长繁殖的现象,一旦它们大量繁殖会将活性污泥蚕食光,造成污水处理失败。为避免此类现象发生,当镜检到猪吻轮虫有大量繁殖的趋势时,为了保持正常运行,可暂时停止曝气,制造厌氧环境抑制猪吻轮虫生长。 线虫是水净化程度差的指示生物。 在生活污水生物处理脱氮工艺中,在20℃左右,供氧充分的条件下,红斑颤体虫大量生长,把活性污泥蚕食光,使出水的水质急剧下降。为了恢复处理效果,必须停止曝气,继续连续进污水,使处于缺氧状态,可有效抑制红斑颤体虫的生长。 浮游甲壳动物是水体污染和自净的指示生物。剑水蚤和水蚤。水体中含氧量低,水蚤的血红素含量高;水体中含氧量高,水蚤的血红素含氧量低。由于在污染水体中溶解氧含量低,清水中氧的含量高,所以,在污染水中水蚤颜色比在清水中的红些。

污水处理设计计算

第三章 污水处理厂工艺设计及计算 第一节 格栅 。 1.1 设计说明 栅条的断面主要根据过栅流速确定,过栅流速一般为0.6~1.0m/s ,槽内流速0.5m/s 左右。如果流速过大,不仅过栅水头损失增加,还可能将已截留在栅上的栅渣冲过格栅,如果流速过小,栅槽内将发生沉淀。此外,在选择格栅断面尺寸时,应注意设计过流能力只为格栅生产厂商提供的最大过流能力的80%,以留有余地。格栅栅条间隙拟定为25.00mm 。 1.2 设计流量: a.日平均流量 Q d =45000m 3/d ≈1875m 3/h=0.52m 3/s=520L/s K z 取1.4 b. 最大日流量 Q max =K z ·Q d =1.4×1875m 3/h=2625m 3/h=0.73m 3/s 1.3 设计参数: 栅条净间隙为b=25.0mm 栅前流速ν1=0.7m/s 过栅流速0.6m/s 栅前部分长度:0.5m 格栅倾角δ=60° 单位栅渣量:ω1=0.05m 3栅渣/103m 3污水 1.4 设计计算: 1.4.1 确定栅前水深 根据最优水力断面公式221ν B Q =计算得: m Q B 66.07.0153 .0221=?= = ν m B h 33.02 1== 所以栅前槽宽约0.66m 。栅前水深h ≈0.33m 1.4.2 格栅计算 说明: Q max —最大设计流量,m 3/s ; α—格栅倾角,度(°); h —栅前水深,m ; ν—污水的过栅流速,m/s 。 栅条间隙数(n )为 ehv Q n αsin max = =)(306 .03.0025.060sin 153.0条=??? ? 栅槽有效宽度(B )

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

污水处理常见微生物照片

污水处理常见微生物照片 微生物的指示作用 (1) 着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2) 小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3) 如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4) 大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5) 如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6) 根足虫的大量出现,往往是污泥中毒的表现。 (7) 如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8) 而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9) 在石油废水处理中钟虫出现是理想的效果。 (10) 过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 变形虫(阿米巴)amoeba. 顾名思义,变形虫是能变形的。不过这种变形也是有限度的。 一些种类的变形虫能向四外伸出假足,以探查水中的化学成分,决定移动方向。而有些种类根本没有假足。 他们猎食时覆盖它的猎物,把猎物裹起来,这样就产生了一个食物泡,食物泡可以消化吸收猎物。 大多数变形虫对人体无害,但有几种变形虫能产生人类疾病:阿米巴痢疾,主要发生在贫穷国家。 变形虫食性广,单细胞藻类,细菌,小原生动物,真菌,有机碎片等皆是它们的食物. 变形虫生命力强,在条件不好时,可以形成一个包囊(休眠体)度过难关.

水处理微生物-知识点总结

1.微生物:微生物是肉眼难以看清需要借助光学显微镜或电子显微镜才能观察到的一切微小生物的总称。 2.微生物的特点 (1)体积大、面积大(比面积大)。 (2)种类多,目前已知的微生物种类有10万多种而且这一类数目还在不断增加。 (3)分布广。广泛分布于土壤、空气和水等自然环境以及高温、高盐等极端环境。 (4)生长旺,繁殖快。大多数微生物在几十分钟内可繁殖一代,即由一个分裂为两个。如果条件适宜,10h就可以繁殖为数亿个。 (5)适应强,易变异。这一特点使微生物较适应外界环境条件的变化。 3.水中常见微生物种类:细菌、放线菌、酵母菌、霉菌、病毒。 4.原核微生物:是一类细胞核无核膜包裹只存在称为核区的裸露的DNA,无细胞器的原始单细胞生物。 5.革兰氏染色:丹麦医生(革兰)于1884年发明了一类不同类型细菌的染色方法,根据此染色法,细菌可以分为革兰氏阳性菌和革兰氏阴性菌。 6.菌落:单个细胞在固体培养基生长繁殖时产生大量细胞排序便以此母细胞为中心而聚集到一起形成一个肉眼可见的具有一定形态结构的子细胞群。 7.菌胶团:有些细菌由于其遗传特性决定,细菌之间按一定的排列方式互相粘集在一起,被一个公共荚膜包围形成一定形状的细菌基团。 8.芽孢:某些细菌(特别是杆菌)在生活史中的一个阶段,细胞内会形成一个圆型或椭圆型的对不良环境条件具有较强抗性的休眠体。 9.酵母菌:单细胞出芽生殖的真菌总称。 10.真核微生物:是一类细胞核具有核膜与核仁分化的较高等的微生物,细胞质中有线粒体等多种细胞器的生物。 11.硝化作用:由氨氧化成硝酸的过程。 12.生物监测:利用水生生物个体,种群,群落对水体污染或变化所产生的状况的一种监测方法。 13.体内积累速率=吸收速率-(体内分解速率+排泄速率) 14.余氯:氯加入水中后,一部分被能与氯结合的杂质消耗掉,剩余的部分称为余氯。 15.培养基:由人工配制的适合微生物生长繁殖或产生代谢产物的混合营养物。 16.生物浓缩系数(富集因子):BCF=物质在生物体内的浓度/物质在环境介质中的浓度。 17.烈性噬菌体:大多数噬菌体感染细菌细胞后产生大量的子噬菌体并能使细菌细胞裂解。1.试述微生物在给排水工程的应用。 (1)污染水体。了解水中的致病菌并设法去除,防止传染病的蔓延使水生色或者产生气味。(2)阻塞作用。影响水厂的正常运行:冷却器、凝结器阻塞。 (3)利用微生物处理废水:利用有益微生物分解污水中的有机污染物。 (4)利用微生物进行自净:自然生态系统利用细菌和藻类互生的原理让细菌分解有机污染物,即氧化塘法。

污水处理中微生物的指示作用

(1)活性污泥净化性能良好时出现的微生物有钟虫、等枝虫、楯纤虫、盖纤虫、聚缩虫及各种后生动物及吸管虫类等固着性生物或匍匐型生物,当这些生物的隔数达到1000个/mL 以上,占整个生物个体数80%以上时,可以断定这种活性污泥具有较高的净化效果。 (2)活性污泥净化性能恶化时出现的生物有多波虫、侧滴虫、屋滴虫、豆形虫等快速游泳的生物。这时絮体很碎约100um大笑。严重恶化时只出现多波虫、屋滴虫。极端恶化时原生动物和后生动物都不出现。 (3)活性污泥由恶化状态进行恢复时出现的生物为漫泳虫、斜叶虫、斜管虫、尖毛虫等缓慢游泳型或匍匐型生物。曾观察到这些微生物成为优势生物继续一个月左右。 (4)活性污泥分数解体时出现的生物为蛞蝓简变虫、辐射变形虫等肉足类。这些生物出现数万个以上时絮体变小,使处理水浑浊。当发现这些生物剧增时可通过减少回流污泥量和送气量,能在某种程度上抑制这种现象。 (5)活性污泥膨胀时出现的微生物为球衣菌、各种霉菌等,这些丝状微生物引起污泥膨胀,当SVI在200以上时,这些丝状微生物呈丝屑状。膨胀污泥中的微型动物比正常污泥少。(6)溶解氧不足时出现的微生物为贝氏硫黄细菌等。这些微生物适于溶解氧浓度低时生存。这些微生物出现是],活性污泥呈黑色、腐败发臭。 (7)曝气过量时出现的微生物,若过曝气时间持续很长时,各种变形虫和轮虫为优势生物。(8)废水浓度过低时大量出现的微生物为游仆虫等。 (9)BOD负荷低时出现的微生物。表壳虫、鳞壳虫、轮虫、寡毛虫等为优势生物,这些生物多时也是硝化进行的指标。 (10)冲击负荷和毒物流入时出现的生物。因为原生动物对环境条件的变化反应比细菌为快,所以可通过观察原生动物的变化情况来看冲击负荷和毒物对活性污泥的影响。原生动物中对冲击负荷和毒物反映最灵敏的楯纤虫,当楯纤虫急剧减少时,说明发生了冲击负荷和流入少量毒物。 标题:污水处理中微生物的指示作用 着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。这些缘毛目微生物(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)都固定在絮状物上,并随之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明活性污泥是优质而成熟的活性污泥。小口钟虫在生活污水和工业废水处理效果很好时往往就是优势菌种。如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。如主要出现有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。根足虫的大量出现,往往是污泥中毒的表现。如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。在石油废水处理中钟虫出现是理想的效果。过量的轮虫出现,则是污泥要膨胀的预兆。另外在一些原生动物不宜生长的污泥中,主要用菌胶团的大小和数量来判断处理效果。 微生物在调试过程中起着很重要的指示左右,通过镜检而根据活性污泥中的微生物可以发现该活性污泥的好差,其指示作用有: (1) 着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。 如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫,这些缘毛目

污水处理常见微生物及指示

八、微生物 8.1、微生物指示 活性污泥主要由四部分组成: ①具有代谢功能的活性微生物群体; ②微生物内源呼吸自身氧化的残留物; ③被污泥絮体吸附的难降解有机物; ④被污泥絮体吸附的无机物。 具有代谢功能的活性微生物群体包括细菌、真菌、原生动物、后生动物等,而其中细菌承担了降解污染物的主要作用。 活性污泥中的细菌以异养型的原核细菌为主,对正常成熟的活性污泥,每毫升活性污泥中的细菌数大致在10^7~10^9个。细菌是以溶解性物质为食物的单细胞微生物。在活性污泥中形成优势的细菌与污水中的污染物性质和活性污泥法运行操作条件有关。活性污泥中常见的优势苗种有;产碱杆菌属、芽孢杆菌属、黄杆菌属、动胶杆菌属、假单胞菌属、丛毛单胞菌属、大肠埃氏杆菌屑等。活性污泥中一些细菌,如枝状动胶杆菌、腊状芽孢杆菌、黄杆菌、放线形诺卡亚氏菌、假单胞苗等细菌具有分泌黏着性的物质能力,这些黏着性的物质提供了使细菌互相黏结、形成菌胶团的条件。菌胶团对污水中微小颗粒和可溶性有机物有一定的吸附和黏结作用,促进形成活性污泥絮体。 真菌是多细胞的异养型微生物,属于专性好氧微生物,以分裂、芽殖及形成孢子等方式生存。真菌对氮的需求仅为细菌的一半。活性污泥法中常见的真菌是微小的腐生或寄生的丝状菌,它们具有分解碳水化合物、脂肪、蛋白质及其他含氮化合物的功能。如果大量出现,会产生污泥膨胀现象,严重影响活性污泥系统的正常工作。真菌在活性污泥法中出现往往与水质有关。 肉足类、鞭毛类、纤毛类是活性污泥中常见的三类原生动物。原生动物为单细胞生物,以二分裂法繁殖,大多为好氧化能异养型菌,它们的主要食物对象是细菌。因此,处理水的水质和活性污泥中细菌的变化直接影响原生动物的种类和数量的变化。在活性污泥法的运行初期,以肉足虫类、鞭毛虫类为主,然后是自由游泳的纤毛虫类,当活性污泥成熟,处理效果良好时,匍匐型或附着型的纤毛虫类占优势。原生动物个体较大,通过显微镜能够观察到,可作为指示生物,在活性污泥法的应用中,常通过观察原生动物的种类和数量,间接地判断污水处理的效果。因此,活性污泥原生动物生物相的观察,是活性污泥质量评价的重要手段之一。此外,原生动物捕食细菌的作用也确保活性污泥系 第145页

泥龄的确定

泥龄的确定:泥龄是根据理论同时又参照经验的累积确定的,按照处理要求和处理厂规模的不同而采用不同的泥龄,德国ATV标准中单级活性污泥工艺污水处理厂的最小泥龄数值见表1。 表中对规模小的污水厂取大值,是考虑到小厂的进水水质变化幅度大,运行工况变化幅度大,因而选用较大的安全系数。 泥龄反映了微生物在曝气池中的平均停留时间,泥龄的长短与污水处理效果有两方面的关系:一方面是泥龄越长,微生物在曝气池中停留时间越长,微生物降解有机污染物的时间越长,对有机污染物降解越彻底,处理效果越好;另一方面是泥龄长短对微生物种群有选择性,因为不同种群的微生物有不同的世代周期,如果泥龄小于某种微生物的世代周期,这种微生物还来不及繁殖就排出池外,不可能在池中生存,为了培养繁殖所需要的某种微生物,选定的泥龄必须大于该种微生物的世代周期。最明显的例子是硝化菌,它是产生硝化作用的微生物,它的世代周期较长,并要求好氧环境,所以在污水进行硝化时须有较长的好氧泥龄。当污水反硝化时,是反硝化菌在工作,反硝化菌需要缺氧环境,为了进行反硝化,就必须有缺氧段(区段或时段),随着反硝化氮量的增大,需要的反硝化菌越多,也就是缺氧段和缺氧泥龄要加长。上述关系的量化已体现在表1中。 无硝化污水处理厂的最小泥龄选择4~5?d,是针对生活污水的水质并

使处理出水达到BOD=30?mg/L和SS=30?mg/L确定的,这是多年实践经验的积累,就像污泥负荷的取值一样。 有硝化的污水处理厂,泥龄必须大于硝化菌的世代周期,设计通常采用一个安全系数,以确保硝化作用的进行,其计算式为: θc=F(1/μo)(7) 式中θc——满足硝化要求的设计泥龄,d F——安全系数,取值范围2.0~3.0,通常取2.3 1/μo——硝化菌世代周期,d μo——硝化菌比生长速率,d-1 μo=0.47×1.103(T-15)(8) 式中T——设计污水温度,北方地区通常取10?℃,南方地区可取11~12?℃ 代入式(8)得: μo=0.47×1.103(10-15)=0.288/d 再代入式(7)得: θc=2.3×1/0.288=7.99?d

微生物在污水处理中的作用

微生物的生长规律、生长环境和其在污水处理 过程中的作用 随着生物工程的发展,微生物对污水处理的作用越来越引起人们的重视,微生物利用废水中存在有机污染物,作为营养源进行好氧代谢。这些高能位的有机物质经过一系列的生化反应,逐级释放能量,最终以低能位的无机物稳定下来,达到无害化的要求以便返回自然环境或进一步处理。 1、微生物的生长规律 微生物的生长规律一般是以生长曲线来反映,这条曲线表示了微生物在不同培养环境下生长情况及其生长过程。按微生物生长速度,其生长可分为四个生长期,即停滞器(调整期)、对数期(生长旺盛期)、静止期(平衡器)和衰老期(衰亡器)。在废水处理中,微生物是一个混合群体,他们也有一定的生长规律。有机物多时,以有机物为食料的细菌占优势,数量最多;当细菌很多时,出现以细菌为食料的原生动物;而后出现以细菌和原生动物为食料的后生动物。 在污水生物处理过程中,如果条件适宜,活性污泥的增长过程与纯种单细胞微生物的增长过程大体相仿,也存在停滞器、对数期、静止期和衰老期。但由于活性污泥是多种微生物的混合群体,其生长受废水水质、浓度、水温、PH 值、溶解氧等多种因素隐形,因此,在处理构筑物中通常仅出现生长曲线中的某一、二个阶段。且处于不同阶段的污泥,其特性也有很大的区别。活性污泥的这些特性对废水系统运行有一定的指导意义。

2、微生物生长的环境需求 微生物生长与环境关系极大,在废水处理过程中,应设法创造良好的环境让微生物很好的生长、繁殖、以达到令人满意的处理效果季经理效益。 影响微生物的生长的因素很多,一般来讲,主要为营养、温度、PH值、溶解氧。有毒物质。 一般来说,肺水中大多含有微生物能利用的碳源,但是有些工业废水含碳量较少,需要另加碳源,如生活污水、米泔水、淀粉浆料、葡萄糖等。微生物除了碳源之外还需要氮、磷等营养物质,他们之间的比例一般为好氧BOD5:N:P=100:5:1,厌氧200:5:1.生活污水氮磷含量高在生化处理时无需另外投加营养。工业废水含氮磷量低,不能满足微生物需要,需额外投加尿素、硫酸铵、磷酸钠、磷酸钾等氮磷营养盐。 各类微生物生长的温度范围不同,约在5——80摄氏度之间,可分为最低生长温度、最高生长温度、最适合生长温度。依微生物适应的温度范围,微生物可分为(中温性20-45、好热性45以上、好冷性20以下)三类。废水好氧处理中以中温细菌为主,其生长繁殖最适宜的温度为20-37摄氏度。当温度超过最高生长温度时,会使微生物的蛋白质迅速变性及酶系统遭到破坏而失去活性,严重者可使微生物死亡。低温会使微生物代谢活力降低,进而处于生长繁殖停滞状态,但仍保存其生命力。厌氧微生物中的中温性甲烷菌最适合温度范围25-40摄氏度,厌氧生物处理常采用温度为33-38摄氏度。 不同的微生物有不同的PH值适应范围,细菌、放线菌、藻类和原生动物的PH值适应范围是4-10之间。大多数细菌适宜中性和偏碱性(6.5-7.5)环境。在废水处理过程中保持合适的PH值范围,是十分重要的。如活性污泥法,曝

污泥龄计算

德国是世界上环境保护工作开展较好的国家,在污水处理的脱氮除磷方面积累了很多值得借鉴的经验。现将德国排水技术协会(ATV)最新制定的城市污水设计规范A131中关于生物脱氮(硝化和反硝化)的曝气池设计方法介绍给大家,以供参考。 A131的应用条件: ①进水的COD/BOD5≈2,TKN/BOD5≤0.25; ②出水达到废水规范VwV的规定。 对于具有硝化和反硝化功能的污水处理过程,其反硝化部分的大小主要取决于: ①希望达到的脱氮效果; ②曝气池进水中硝酸盐氮NO-3-N和BOD5的比值; ③曝气池进水中易降解BOD5占的比例; ④泥龄ts; ⑤曝气池中的悬浮固体浓度X; ⑥污水温度。 图1为前置反硝化系统流程。 1 计算NDN/BOD5和VDN/VT NDN表示需经反硝化去除的氮,它与进水的BOD5之比决定了反硝化区体积VDN占总体积VT的大小。 由氮平衡计算NDN/BOD5: NDN=TKNi-Noe-Nme-Ns 式中 TKNi——进水总凯氏氮,mg/L Noe——出水中有机氮,一般取1~2mg/L Nme——出水中无机氮之和,包括氨氮、硝酸盐氮和亚硝酸盐氮,是排放控制值。按德国标准控制在18mg/L以下,则设计时取0.67×18=12mg/L Ns——剩余污泥排出的氮,等于进水BOD5的0.05倍,mg/L 由此可计算NDN/BOD5之值,然后从表1查得VDN/VT。 表1 晴天和一般情况下反硝化设计参考值 反硝化前置周步 VDN/VT 反硝化能力,以kgNDN/kgBOD5计,(t=10℃) 0.20 0.70 0.05 0.30 0.10 0.08 0.40 0.12 0.11 0.50 0.14 0.14 2 泥龄 泥龄ts是活性污泥在曝气池中的平均停留时间,即 ts=曝气池中的活性污泥量/每天从曝气池系统排出的剩余污泥量 tS=(X×VT)/(QS×XR+Q×XE) 式中 tS——泥龄,d X——曝气池中的活性污泥浓度,即MLSS,kg/m3 VT——曝气池总体积,m3 QS——每天排出的剩余污泥体积,m3/d XR——剩余污泥浓度,kg/m3 Q——设计污水流量,m3/d XE——二沉池出水的悬浮固体浓度,kg/m3

污水处理厂活性污泥微生物照片

污水处理厂活性污泥中常见微生物照片 微生物的指示作用 (1) 着生的缘毛目多时,处理效果良好,出水BOD5和浊度低。(如小口钟虫、八钟虫、沟钟虫、褶钟虫、瓶累枝虫、微盘盖虫、独缩虫)这些缘毛目的种类都固定在絮状物上,并随窗之而翻动,其中还夹杂一些爬行的栖纤虫、游仆虫、尖毛虫、卑气管叶虫等,这说明优质而成熟的活性污泥。 (2) 小口钟虫在生活污水和工业废水处理很好时往往就是优势菌种。 (3) 如果大量鞭毛虫出现,而着生的缘毛目很少时,表明净化作用较差。 (4) 大量的自由游泳的纤毛虫出现,指示净化作用不太好,出水浊度上升。 (5) 如出现主要有柄纤毛虫,如钟虫、累枝虫、盖虫、轮虫、寡毛类时,则水质澄清良好,出水清澈透明,酚类去除率在90%以上。 (6) 根足虫的大量出现,往往是污泥中毒的表现。 (7) 如在生活污水处理中,累枝虫的大量出现,则是污泥膨胀、解絮的征兆。 (8) 而在印染废水中,累枝虫则作为污泥正常或改善的指示生物。 (9) 在石油废水处理中钟虫出现是理想的效果。 (10) 过量的轮虫出现,则是污泥要膨胀的预兆。 另在一些对原生动物不宜生长的污泥中,主要看菌胶团的大小用数量来判断处理效果。 变形虫(阿米巴)amoeba. 顾名思义,变形虫是能变形的。不过这种变形也是有限度的。 一些种类的变形虫能向四外伸出假足,以探查水中的化学成分,决定移动方向。而有些种类根本没有假足。 他们猎食时覆盖它的猎物,把猎物裹起来,这样就产生了一个食物泡,食物泡可以消化吸收猎物。 大多数变形虫对人体无害,但有几种变形虫能产生人类疾病:阿米巴痢疾,主要发生在贫穷国家。 变形虫食性广,单细胞藻类,细菌,小原生动物,真菌,有机碎片等皆是它们的食物. 变形虫生命力强,在条件不好时,可以形成一个包囊(休眠体)度过难关.

污水生物处理原理

原理:微生物在酶的催化作用下,利用微生物的新陈代谢功能,对污水中的污染物质进行 分解和转化。 发酵:微生物将有机物氧化释放的电子直接交给底物本身未完全氧化某种中间产物,同时释放能量并产生不同的代谢产物。 呼吸:微生物在降解底物的过程中,将释放的电子交给辅酶Ⅱ、FAD或FMN等电子载体 再经电子传递系统传给外源电子受体,从而生成水或其他还原型产物并释放能量的过程。1、好氧呼吸: 有机物最终被分解为CO2,氨和水等无机物,并释放出能量。 2、缺氧呼吸。 好氧生物处理:污水中有分子氧存在的情况下,利用好氧微生物(包括兼性微生物、 主要是好氧微生物)降解有机物,使其稳定、无害化的处理方法。主要有活性污泥法和生物膜法两种。通过代谢活动约有1/3被分解、稳定,并提供生理所需能量,2/3被转化合成新的细胞物质即污水生物处理中的活性污泥或生物膜的增长部分,通常称为剩余活性污泥或生物膜,又称为生物污泥。优点:反应速率较快,所需反应时间较短,处理构筑物容积较小且处理过程中散发的臭气较少。 厌氧生物处理:在没有分子氧和化合态氧的条件下,兼性细菌与厌氧细菌降解和稳定 有机物的生物处理方法。有机物转化分为三个部分:1、甲烷,2、二氧化碳、水、氨、硫化氢等无机物,3、合成新的细胞质。厌氧段污泥增长率较少。优点:运行费用低,剩余污泥量少,可回收能量(甲烷)。缺点:反应速率较慢,时间长,处理构筑物容积大。有机污泥和高浓度有机废水(一般BOD5大于2000mg/l)均可采用厌氧生物处理法。 生物脱氮 1、氨化反应: 微生物分解有机氮化合物产生氨的过程。(好氧、厌氧条件均可) 2、硝化反应: 在亚硝化菌和硝化菌的作用下,将氨态氮转化为亚硝酸盐和硝酸盐的过程。 3、反硝化反应: 在缺氧条件下,硝酸根离子和亚硝酸根离子在反硝化作用下被还原为氮气的过程。 生物除磷 利用聚磷微生物有厌氧释磷,好氧(缺氧)超量吸磷的特性,使好氧或缺氧段中混合液磷的浓度大大降低,最终通过排放含有大量富磷污泥而达到从污水中除磷的目的。 微生物的生长环境: 1、微生物的营养:碳、氮、磷比例为BOD5:N:P=100:5:1(好氧),BOD5:N:P=250-300: 5:1(厌氧)。 2、温度 3、PH:当污水PH变化较大时应设置调节池。

相关文档
相关文档 最新文档