文档库 最新最全的文档下载
当前位置:文档库 › 遗传学重点

遗传学重点

遗传学重点
遗传学重点

遗传学复习重点

1、一、遗传学是研究生物遗传和变异的科学。遗传:是亲代与子代相似的现象变异:亲代与子代个体之间存在着不同的差异。

二、遗传与变异的关系:

遗传和变异是生物界最普遍和最基本的两个特征;

遗传与变异的对立统一关系(a 遗传是相对的保守的,而变异是绝对的发展的;b 没有遗传,不可能保持形状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。c 遗传和变异的表现都与环境具有不可分割的关系。d 遗传和变异组成生物多样性。)

遗传、变异、和选择是生物进化和新品种选育的三大因素。

三、遗传学发展简史:<1>萌芽:1800-1899 (拉马克用进废退学说,获得性状可遗传

<2>生物遗传学:1900 三大遗传规律

<3>细胞遗传学:基因论染色体(基因在染色体上呈线性排列)

<4>分子遗传学:基因工程

2、有丝分裂:通常指核分裂,特别是在遗传学中更主要讨论细胞核分裂)

减数分裂:又称成熟分裂,是性母细胞成熟时,配子形成过程中所发生的一种特殊的有

丝分裂。

有丝分裂、减数分裂解析

一、减数分裂是一种特殊的有丝分裂

二、有丝分裂和减数分裂过程的比较①减数分裂的简要过程②有丝分裂与减数分裂过程比较

三、有丝分裂和减数分裂的主要特征比较

四、细胞分裂中几个概念的分析

1、基本概念理解

(1)同源染色体:减数分裂第一次分裂过程中,相互配对(联会)的两条染色体,它们的形状和大小一般都相同(不同的一般指性染色体,如X、Y染色体),一条来自父方,一条来自母方。

减数分裂中精(卵)原细胞和初级精(卵)母细胞中含有同源染色体,在次级精(卵)母细胞、精子(卵细胞)和极体中不含有同源染色体,但在有丝分裂中同源染色体始终存在。

(2)染色单体:在间期染色体复制以后,每条染色体含有两条完全相同的染色质丝,连接在一个着丝点上,每条染色质丝成为一个染色单体。无论是有丝分裂还是减数分裂,染色单体都是形成于间期,但有丝分裂消失于后期,减数分裂消失于减数第二次分裂的后期。

(3)四分体:同源染色体两两配对的现象叫联会,联会后的每对同源染色体含有四条染色单体,称四分体2、几种数量关系

(1)染色体数:以染色体的着丝点数目为依据,有几个着丝点就有几个染色体。

(2)染色单体数:若有染色单体,则染色单体数是染色体数的2倍;若无染色单体则为零

(3)DNA分子数:若有染色单体,则DNA分子数是染色体数的2倍;若无染色单体,则DNA分子数等于染色体数。

(4)三者之间的关系

染色体复制后着丝点分裂前:染色单体数=2倍染色体数=DNA分子数

其他时期:染色体数=DNA分子数;染色单体数=0;

一个四分体=1对同源染色体=2个染色体=4个染色单体=4个DNA分子

(5)细胞数目关系

1个精原细胞1个初级精母细胞2个次级精母细胞4个精子细胞4个精子

1个卵原细胞1个初级卵母细胞1个初级精母细胞+1个极体1个卵细胞+3个极体

五、减数分别与遗传定律之间的关系

减数分裂是三大遗传规律的细胞学基础,三大遗传规律都是研究亲代的性状在子代中的表现问题。无论哪个规律研究什么性状,亲代性状要在子代中表现出来,都必须经减数分裂、受情作用和个体发育三个阶段,但受精作用与个体发育不过是性状表现必不可少的阶段,它们并不影响子代表现型与基因型的种类和比例。因此,性状在子代中如何表现的问题 要取决于减数分裂产生的配子的种类和比例。而与减数分裂产生的配子的种类有关的关键阶段在减数分裂中的同源染色体的分离时期。这就是遗传规律的实质所在。在减数第一次分裂的后期,由于同源染色体的分离.导致了位于同源染色体上等位基因的分离,表现出基因的分离定律;在等位基因随同源染色体分离的同时,非同源染色体之间表现为自由组合,导致了位于非同源染色体上非等位基因的自由组合,表现出基因的自由组合定律,由此一见,遗传定律是由于减数分裂过程中染色体的行为变化引起的。

六、一个基因型为AaBb 的生物体产生配子的配子(精子或卵细胞)种类与一个基因型为AaBb 的精(卵)原细胞产生的配子(精子或卵细胞)种类

七、减数分裂对于生物的遗传和变异是十分重要的

对于进行有性生殖的生物来说,减数分裂和受精作用,对于维持生物前后代体细胞染色体数目的恒定,以及生物的遗传和变异都是十分重要的。 八、有丝分裂和减数分裂各时期的图像

细胞分裂各时期图像的主要特征

3、植物雌雄配子的形成

高等植物雌雄配子的形成:

胚囊母细胞(

四个四分孢子(n8核胚囊

双受精作用的概念:指被子植物的雄配子体形成的两个精核,一个精核与卵融合形成二倍体的合子,将来发育成胚。另一个精核与中央细胞的极核(通常两个)融合形成初生胚乳核的现象

直感现象:已知胚乳细胞是3n,其中2n来自极核,n来自精核。如果在3n胚乳的性状上由于精核的影响而直接表现出父本的某些性状,这种现象称为胚乳直感或花粉直感。【一些单子叶植物的种子常出现这种胚乳直感现象。】如果果种皮或果皮组织在发育过程中由于花粉影响而表现出父本的某些性状,则称为果实直感。

4、核酸:

基本组成元素:C H O N P;基本单位:核苷酸。核苷酸由一个含N碱基,一个五碳糖,一个磷酸组成,由于五碳糖的不同,核苷酸分为脱氧核糖核苷酸及核糖核苷酸,脱氧核糖核苷酸组成脱氧核糖核酸即DNA,核糖核苷酸组成核糖核酸即RNA;

多样性:核苷酸由于所含碱基的不同而不同,碱基的种类共五种,即腺嘌呤A,鸟嘌呤G,胞嘧啶C,胸腺嘧啶T,尿嘧啶U;DNA有前四种碱基,无尿嘧啶,RNA也有四种碱基,但有尿嘧啶,无胸腺嘧啶。

五碳糖

核苷酸磷酸嘌呤(双环)

含氮碱基

嘧啶(单环)

5、DNA的双螺旋结构DNA分子是脱氧核苷酸的多聚体。因为构成DNA的碱基通常有四种,所以,脱氧核苷酸也有四种,即:脱氧腺嘌呤核苷酸(dATP)、脱氧胸腺嘧啶核苷酸(dTTP)、脱氧鸟嘌呤核苷酸(dGTP)、脱氧胞嘧啶核苷酸(dCTP)、

主要特点有:

○1两条多核苷酸以相同的旋转绕同一个公共轴形成右手双螺旋。螺旋的直径约为20A?(2nm)

○2两条多核甘酸链是反向平行的,两条链的极性相反。

○3两条多核苷酸链的糖─磷酸骨架位于双螺旋的外侧,碱基平面位于链的内部。

○4两条多核苷酸链之间按照A—T,C—G的碱基配对规律互补配对。

○5在双螺旋分子的表面大沟和小沟交替出现。

DNA双螺旋结构模型的意义:

DNA双螺旋模型结构同时表明:─DNA复杂的明显方式─半保留复制─基因和多肽成线性对应的一个可能的理由:DNA核苷酸顺序规定该基因编码蛋白质的氨基酸顺序:DNA中的遗传信息就是碱基序列:并存在某种遗传密码,将核苷酸序列译成蛋白质氨基酸顺序。

核苷酸在分子链中排列的位置和方向只有一下4种形式:

6、染色体分子结构─染色质核小体

DNA 分子:30% 组蛋白: H 1、H 2A 、 H 2B 、 H 3、 H 4 染色体成分 蛋白质: 66%

RNA 非组蛋白

核小体(八聚体+1.75) 染色体结构─串珠结构模型 连接丝

一个分子的组蛋白H 1

从染色质到染色体的结构模型:

一级结构:核小体、DNA 分子长度被压缩7倍 二级结构:螺线体、DNA 分子长度被压缩6倍 三级结构:超螺线体,DNA 分子长度被压缩40倍 四级结构:染色体,DNA 分子长度被压缩5倍

7、DNA 半保留复制的过程:一种双链脱氧核糖核酸(DNA )的复制模型,其中亲代双链分离后,每条单链均作为新链合成的模板。因此,复制完成时将有两个子代DNA 分子,每个分子的核苷酸序列均与亲代分子相同。子代DNA 分子中,一条链来自亲代,另一条链为新合成的链。

复制是从DNA 分子上的特定位点开始的,这一点叫复制原点;复制子是指在同一个复制起点控制下合成的一段DNA 序列;复制正在发生的位点叫复制叉。(DNA 复制可单向进行,也可双向进行,多数生物DNA 复制是双向复

制的。)

8、RNA 转录翻译过程

基因表达: DNA 转录为RNA ──RNA 再翻译成蛋白质。

(一)、mRNA(信使RNA) 功能是○

1把DNA 上遗传信息精确无误地转录下来 ○2负责将它携带的遗传信息翻译为蛋白质。

(二)、tRNA(转移RNA) :把氨基酸搬运到核糖体上,tRNA 能根据mRNA 的遗传密码依次准确的氨基酸连结呈多肽链。(tRNA 是最小的RNA 分子,大多数都能折叠成三叶草叶型)

(三)、rRNA (核糖体RNA)是核糖体的主要成分成分,而核糖体则是合成蛋白质的中心。

注:除了上述三种主要的RNA 外,还有小核RNA 【snRNA 】是真核生物转录后加工过程中RNA 剪接体的主要成分,在RNA 转录后加工中起重要作用; 端体酶RNA 与染色体末端的复制有关;反义RNA 参与基因表达的调控。

RNA 合成与DNA 合成的不同:○

1所用的原料为核苷三磷酸,而在DNA 合成时则为脱氧核苷三磷酸;○2只有一条DNA 链被用作模板,而DNA 合成时两条链分别用作模板;○

3RNA 链的合成不需要引物,可以直接起始合成,而DNA 合成一定要引物的引导。○

4与DNA 链的合成一样,RNA 链的合成也是从5’向3'端进行的,此过程由RNA 聚合酶催化。

转录合成的RNA 链,除了U 替换为T 以外,与用作模板的DNA 链互补,而与另一条非模板相同。 RNA 的转录:RNA 链的起始(启动子)──RNA 链的延长──RNA 链的终止及新链的释放

9、遗传密码概念: 遗传密码又称密码子、遗传密码子、三联体密码是指信使RNA (mRNA)分子上从5'端到3'端方向,由起始密码子AUG 开始,每三个核苷酸组成的三联体,它决定肽链上每一个氨基酸和各氨基酸的合成顺序,以及蛋白质合成的起始、延伸和终止。

遗传密码的主要基本特性:

1、遗传密码为三联体即三个碱基决定一个氨基酸。

2遗传密码间不能重复利用除近来发现的少数情况外,在一个mRNA上每个碱基只属于一个密码子。

3、遗传密码间五逗号即在翻译过程中,遗传密码的译读是连续的。

4、遗传密码间存在简并现象除了两个氨基酸为所有氨基酸都有一种以上的密码子编码。

5、遗传密码的有序性决定同一个氨基酸或性质相近的不同氨基酸的多个密码子,往往只是最后一个碱基发生变化。

6、遗传密码包含起始密码子和终止密码子蛋白质翻译的起始和终止有专门的密码子所定。

遗传密码的通用性除了线粒体等极少数情况外,遗传密码从病毒到人类是通用的。

10、中心法则:蛋白质合成过程,也就是遗传信息从DNA mRNA 蛋白质的转录和翻译的过程,以及遗传信息从DNA DNA的复制过程,这就是分子生物学的中心法则。由此可见,中心法则所阐述的是基因的两个基本属性:复制与表达

RNA的反转录

中心法则 RNA的自我复制

DNA指导蛋白质合成

11、染色体变异──缺失、重复、倒位、易位、

一、缺失指染色体的某一区段丢失顶端缺失顶端缺失染色体中间缺失中间缺失染色体又称断片

缺失的鉴定:检查二价体突出的环和瘤以外,还需参照染色体的正常长度、染色粒和染色节的正常分布,着丝粒的正常位置等进行比较鉴定。

缺失的遗传效应 1、缺失是有害的△1缺失区段的大小△2缺失区段所含基因的多少△3缺失基因的重要程度△4染色体倍性水平 2、缺失染色体是通过雌配子传递的 3、出现假显性现象

二、重复指染色体多了自己的某一区段顺接重复反接重复

重复的鉴定可以用检查缺失染色体的同样发法检查重复染色体。

重复的遗传效应剂量效应即细胞内基因出现的次数越多,表现型效应就越显著。

位置效应即重复区段的位置不同,表现性的效应不同。

三、倒位指染色体的某一区段的正常直线顺序颠倒。臂内倒位臂间倒位

倒位的鉴定根据倒位杂合体减数分裂的联会形象。

倒位的遗传效应△1改变了倒位染色体上的连锁基因的重组率,也改变基因与基因之间固有的相关关系。是物种进化的一个因素。△2降低了倒位杂合体的连锁基因的重组。导致倒位杂合体的部分不育。

四、易位指染色体的一个区段移接在非同源染色体上。相互易位简单易位

易位的鉴定根据杂合体在偶线期和粗线的联会形象。

易位的遗传效应△1导致易位杂合体的半不育△2造成染色体融合而导致染色体数的变异

△3与致癌基因的表达也有关系

12、基本染色体组的概念、特征、

生物一个属中二倍体种配子中具有的全部染色体称为该生物属的一个染色组。

染色体基数(X):一个物种染色体组的染色体数目。

染色体的基本特征:1 不同属往往具有独特的染色体基数。 2一个染色体组的各个染色体间形态、结构和载有的基因均彼此不同,并且构成一个完整而协调的整体。任何一个成员或其组成部分的缺少对生物都是有害的(生活力降低配子不育或性状变异)

13、基因突变

基因突变概念:指染色体上某一基因位点内部发生了化学性质的变化,与原来基因形成对性关系。

基因突变的一般特征:

【一】突变的重演性和可逆性同一突变可以在同种生物的不同个体间多次发生,这称为突变的重演性;基因突变像许多化学反应过程一样可逆的,即显性基因A可以突变为隐形基因a;而隐形基因又可以突变为显性基因A。前者通常称为正突变,后者称为反突变或回复突变。

【二】突变的方向性和复等位基因

【三】突变的有害性和有利性有害性:大多数基因的突变,对生物的生长和发育往往是有害的。因为现存的生物都是经历长期自然选择进化而来的,它们的遗传无质及其控制下的代谢过程,都已达到相对平衡和协调状态。如果某一基因发生突变,原有的协调关系不可避免地要遭到破坏或消弱,生物赖以正常生活的代谢关系就会打乱,从而引起程度不同的有害后果,一般表现为生育反常;极端的会导致个体死亡的突变,称为致死突变。例:隐形的白化突变。白化苗有利性:在一定条件下突变的效应可以转化,有害可以变为有利。例:在高杆作物群体中出现矮杆的图变体,在这种场合矮杆植株因受光不足,发育不良,表现为有害性。但在多风或高肥地区,矮杆植株因有较强的抗倒伏能力,生长更加茁壮,有害而变有利。突变的有害性和有利性对人类需要与生物本身有时是不一致的。

【四】突变的平行性亲缘关系相近的物种因遗传基础比较近似,往往发生相似的基因突变。这种现象称为突变的平行性。

基因突变的发生:在自然条件下广泛,大量存在。

──自然发生:自然界的因素新基因研究与利用、

──人工诱发:理化因素更高频率突变创造研究与利用、

基因突变形成的不同等位基因及相对性状差异是人们发现该基因(位点)存在的前提。是生物进化过程中自然选择的最基本基础,也是生物遗传育种的重要基础。

经典遗传学(基因论)认为:

基因就是一个"点",在染色体上具有一定的位置和互相排列关系,而基因突变就是一个点的改变,是从一个整体进行突变,因此从经典遗传学水平看,基因突变又称“点突变”。

基因突变意义:(1)、如果没有突变,就不可能进行遗传分析。

(2)、如果没有突变,环境变化,性状不变,生物不能进化。

(3)、如果没有突变,就不能育种。

新基因的产生──基因突变表现与鉴定,形成规律(机理)──突变的诱发,控制与应用。

突变可以发生在生物个体发育的任何时期,亦即体细胞和性细胞都能发生突变。实验表明,性细胞的突变频率比体细胞的高。(性母细胞比体细胞对环境因素更敏感。)

性细胞 (突变)突变配子后代个体

突变

体细胞 (突变)突变体细胞组织器官

基因突变类型:1、显性突变和隐性突变 2、正突变和发突变

由基因而表现突变性状的细胞和个体,称为突变体或突变型。

基因突变:突变产生的新基因对原来的基因表现为显性

显性突变:突变产生的新基因对原来的基因表现为显性。

可能是:○1原来无功能的位点产生了一个功能。○2原来有功能的位点产生了新的功能。

突变真实性的鉴定(植物):

原始材料 (自然与人为因素)发现变异体(突变体)

基因突变鉴定方法:

1原始材料与变异体在一致的环境条件下种植(培育)

2 对两类个体进行性状考察与比较分析

3 根据实验结果进行判定:(进行方差分析)

a、两类个体间没有差异不可遗传变异(环境变异)

b、差异仍然存在存在真实差异的为突变体显性突变或隐性突变杂交实验

4 分子水平鉴定方法:

a、蛋白质产物的差异分析

b、DNA(RFLP、RAPD等方法)

突变率:指生物在一个世纪中在特定条件下发生某一突变的概率。也就是突变体占该世代个体的比例。

基因突变的诱发:

电离辐射

物理因素

诱发因素非电离辐射:紫外线(126nm)

化学因素:碱基类似物

遗传学重点

遗传与变异是矛盾对立统一的两个方面:(关系) ①遗传是相对的、保守的,而变异是绝对的、发展的; ②没有变异生物界就失去了进化的源泉,遗传就成了简单的重复; ③没有遗传变异就没法积累,变异就失去了意义,生物就无法进化和发展。 4、遗传学研究:①经典遗传学;②细胞遗传学;③分子遗传学;④数量遗传学和群体遗传学; 5、孟德尔的著名论文:《植物杂交实验》 6、1900年荷兰的迪弗里斯,奥地利的切尔马克,德国的柯伦斯,发现孟德尔的论文,并将此定为遗传学形成和建立的开端。 第一章 3、常见染色体的种类:常染色体;性染色体;多线染色体;异染色体。 多线染色体是细胞内源有丝分裂形成的,染色体在间期进行正常复制,但未发生着丝粒分裂和染色单体分离,导致一条染色体的染色单体数目成倍的增加。 4、染色体组型:指一个个体或一组相关个体特有的染色体组,通常以有丝分裂中期染色体的数目和形态来表示。 5、染色体组型分析:对特定染色体组中染色体的数目、大小、形态等进行综合分析的方法。 6、染色体的形态学参数:相对长度、绝对长度、臂比、着丝粒指数、随体的有无、次缢痕。 7、细胞分裂:间期+分裂期间期的细胞核处于高度活跃的生理生化代谢状态。 8、有丝分裂:间期(G0期、G1期、S期、G2期)前期中期后期末期 10、减数分裂:间期Ⅰ(G1期、S期、G2期)前期Ⅰ(细线、偶、粗、双、终变期) 特点:①发生在性细胞形成过程中;②染色体复制一次,细胞连续分裂两次,形成四个子细胞; ③子细胞中染色体数目减半且功能与母细胞不同 意义:①是有性生殖生物配子形成过程的必要阶段; ②实现了雌雄配子染色体数目减半,保证亲代与子代染色体数目的恒定,为后代正常发育和性状遗传提供了物质基础,同时,保持了物种的遗传稳定性; ③同源染色体随机分向两极,非同源染色体自由组合,导致不同配子中染色体组合方式的多样性,使子代群体中产生遗传的多样性变异; ④同源染色体非姐妹染色单体同片段的交换使配子中遗传差异的多样性更加丰富,导致生物界出现丰富的变异类型; ⑤这对生物的适应及进化是非常有利的,同时也为动植物育种提供了丰富的变异材料。 11、减Ⅰ前期的五个阶段的主要特征: 细线期;偶线期(联会);粗线期(交换);双线期(交叉);终变期(交叉的端化) 12、染色体的微观结构:染色质丝包绕组蛋白构成的八聚体形成核心颗粒,核心颗粒与DNA连接部构成核小体即染色质的基本单位。 第三章 1、性状:生物表现出的形态特征和生理特征的总称。 2、单位性状:指生物某一形态特征或生理特征。 3、相对性状:指同一单位性状的相对差异。如豌豆花色的红花和白花 4、表现型:简称表型,指生物个体表现出来的可观察测量的某一种性状,表型是基因型与环境共同作用的结果。 5、基因型:指代表个体不同遗传组成的基因组合类型,基因型不能用肉眼识别,只能通过基因的遗传方式加以区别。 6、显性性状:当两个具有相对性状的纯合亲本杂交时,子一代出现的一个亲本性状。 7、隐形性状:具有相对性状的两个纯合亲本杂交后在子一代没有得到表现的那个亲本性状。 10适合度测验:O 代表实际观察数 e 代表理论预期数

遗传学期末考试试题及答案

遗传学试题一试卷 一、简答题(共20分) 1、同一物种不同基因型﹝如AA、Aa、aa﹞差异的本质是什么?试从分子水平上解释什么是纯合基因型、杂合基因型、显性基因、隐性基因。 2、牛和羊吃同样的草,但牛产牛奶而羊产羊奶,这是为什么?试从分子水平上加以说明。 3、已知Aa与Bb的重组率为25%,Cc的位置不明。AaCc的测交子代表型呈1:1:1:1的分离。试问怎样做才能判断Aa和Cc这两对基因是独立基因,还是具有最大重组率的连锁基因? 4、在细菌接合过程中,供体染色体DNA进入受体的长度不及全长的1/2,那么怎样才能用中断接合法定位染色体DNA上的全部基因? 三、填空题(共10分) 1、三价体存在于、等非整倍体的减数分裂中。 2、三联体密码中,属于终止密码的是、及。 3、把玉米体细胞的染色体数目记为2n,核DNA含量记为2c,那么玉米减数第一次分裂完成后产生的子细胞的染色体数目为,染色体DNA分子数目 为,核DNA含量为。 4、根据质核雄性不育的花粉败育的发生过程,可把它分成不育 和不育两种类型。 四、论述题(10分) 试说明遗传学三大定律的内容、其细胞学基础和各自的适用范围。 五、推理与计算题(共40分) 1、(8分)香豌豆花的紫颜色受两个显性基因C和P的控制,两个基因中的任何一个呈隐性状态时花的颜色是白色的。下列杂交组合后代花的颜色和分离比例将是怎样的? A、CcPp×CCPp B、CcPP×CCPp C、CcPp×ccpp D、ccPp×CCPp 2、(6分)基因a、b、c、d位于果蝇的同一染色体上,经过一系列杂交后得到以下交换值:

基因 a、c a、d b、d b、c 交换 值 40% 25% 5% 10% 试描绘出这四个基因的连锁遗传图。 3、(10分)两株皆开红花的三体烟草A×B时F1呈现5:1的红花与 白花的分离,反交则呈现4:1的红白分离。试分析A、B两个三体亲 本的基因型,基因的分离方式及配子的受精情况。 4、(8分)草履虫中,品系A是放毒型,品系B和C是敏感型,三者 皆为纯合基因型。品系A和B长时间接合,其子代再自体受精得若干 后代,皆为放毒型。当品系A和C长时间接合,经同样过程得到的后 代一半是放毒型,一半是敏感型。问这三个品系的基因型如何?细胞 质中是否均含有卡巴粒? 5、(8分)已知玉米芽鞘色泽差异是由一对基因决定的,在红芽鞘玉 米自交系隔离区内发现绿芽鞘株率为2.25%,而在绿芽鞘玉米自交系 隔离区内发现红芽鞘株率为13%。试分析哪个自交系种子的混杂程度 高。假定红芽鞘为显性,且两个自交系均为平衡群体。 六、名词解释(每题2分,共10分) 1、假显性 2、染色体组 3隐性上位作用 4、QTL 5、复等位基因 遗传学试题一答案 一、简答题 1、同一物种不同基因型差异的本质是其DNA分子结构上的不同。从分子水平来看,若基因同一位点的DNA分子结构相同,则为纯合基因型;不同,则为杂合基因型。在杂合状态下就可表达的DNA序列为显性基因,而只有在纯合状态下才表达的则为隐性基因。 2、牛、羊虽吃同样的食物,但产奶时由于其表达的基因不同,即其DNA 分子结构上的差异,使其合成的蛋白质等物质存在差异,结果牛产牛奶而羊产羊奶。 3、分析BbCc测交子代结果,看B、C是否连锁。

遗传学整理讲解

第一章遗传学与医学 掌握:1.遗传性疾病的分类 熟悉:1.健康与疾病的遗传基础 目前遗传学界普遍采用McKusick的分类方法,即将遗传病分为五大类。 a染色体病(chromosome disorders) 在生殖细胞发生和受精卵早期发育过程中发生了差错,就会导致染色体的数目或结构畸变,表现为先天发育异常。如Down综合征(21三体综合征),染色体病通常不在家系中传递,但也有可传递的。已知染色体病有300多种,染色体异常几乎占自然流产的一半,主要发生在出生前。 b 单基因病(single-gene disorders): 单个基因突变所致,如家族性高胆固醇血症,亨廷顿舞蹈病,苯丙酮尿症,低磷酸盐血症(抗维生素D佝偻病),假肥大性肌营养不良,按单纯的孟德尔方式遗传,通常呈现特征性的家系传递格局,主要发生在新生儿和幼儿阶段。 C 多基因病(polygenic disorders): 由多个基因突变的遗传因素和环境因素所致,包括一些先天性发育异常和一些常见病,如先天性心脏病,无脑儿,脊柱裂;糖尿病,哮喘,高血压等。有家族聚集现象,但无单基因病那样明确的家系传递格局。 D 线粒体病(mitochondrial genetic disorders): 线粒体染色体上基因突变所致,该病通常影响神经和肌肉的能量产生,在细胞衰老中起作用,以母系方式遗传。 E 体细胞遗传病(somatic cell genetic disorders): 该病只在特异的体细胞中发生。体细胞遗传病的一个范例是肿瘤,其恶性表型的发展通常是控制细胞生长的基因发生突变所致。 第三章人类基因组学(了解) 基因(gene):DNA的功能片段。它是一种化学分子,遗传信息的物质载体,传递支配生命活动的指令。 基因组(genome):有机体全部DNA序列。它是基因和非基因的DNA序列的总和。 基因组学(genomics):是20世纪90年代逐渐形成的以基因组为研究对象,在基因组水平研究基因和基因组的结构与功能,包括大量非基因DNA序列的结构与功能的学科。 第四章人类染色体和染色体病 掌握:1. 染色体的结构。2.染色体的分组。3.染色体的分类、命名和书写原则。4. 染色体畸变的类型。5. 人类染色体畸变的国际命名体制。6.常染色体病主要临床症状及核型。7.Lyon假设、性染色质和性染色体病主要临床症状及核型。 熟悉:1. 细胞遗传学研究和细胞的来源(检验专业掌握)2.染色体分析的显带技术及其他的技术应用(检验专业掌握)3.染色体微缺失综合征。4.两性畸形 1.染色体结构:着丝粒(Cen),端粒(Te),长臂(q),短臂(q) 主缢痕:位于两臂之间,染色体在此处凹陷,称主缢痕(着丝粒)。此处属于结构异染色质,转录不活跃。

《医学遗传学》期末重点复习题

2.与苯丙酮尿症不符的临床特征是(1)。 A 患者尿液有大量的苯丙氨酸 B 患者尿液有苯丙酮酸 C 患者尿液和汗液有特殊臭味 D 患者智力发育低下 E 患者的毛发和肤色较浅 3.细胞在含BrdU的培养液中经过一个复制周期,制片后经特殊染色的中期染色体()两条姊妹染色单体均深染 4.DNA分子中脱氧核糖核苷酸之间连接的化学键是()磷酸二酯键 5.HbH病患者的可能基因型是(5)。 A ――/―― B -a/-a C ――/aa D -a/aa E aacs/―― 6.下列不符合常染色体隐性遗传特征的是(4)。 A.致病基因的遗传与性别无关,男女发病机会均等 B.系谱中看不到连续遗传现象,常为散发 C.患者的双亲往往是携带者 D.近亲婚配与随机婚配的发病率均等 E.患者的同胞中,是患者的概率为1/4,正常个体的概率约为3/4 7.人类a珠蛋白基因簇定位于(5)。 A 11p13 B 11p15 C 11q15 D 16q15 E 16p13 8.四倍体的形成可能是由于(3)。

A 双雄受精 B 双雌受精 C 核内复制 D 不等交换 E 部分重复9.在蛋白质合成中,mRNA的功能是(3)。 A 串联核糖体 B 激活tRNA C 合成模板 D 识别氨基酸 E 延伸肽链10.在一个群体中,BB为64%,Bb为32%,bb为4%,B基因的频率为(4)。 A B C D E 11.一个个体中含有不同染色体数目的三种细胞系,这种情况称为(3)。 A 多倍体 B 非整倍体 C 嵌合体 D 三倍体 E 三体型 12.某基因表达的多肽中,发现一个氨基酸异常,该基因突变的方式是(5)。 A 移码突变 B 整码突变 C 无义突变 D 同义突变 E 错义突变13.一种多基因遗传病的群体易患性平均值与阈值相距越近(1)。 A 群体易患性平均值越高,群体发病率也越高 B 群体易患性平均值越低,群体发病率也越低 C 群体易患性平均值越高,群体发病率越低 D 群体易患性平均值越低,群体发病率迅速降低 E 群体易患性平均值越低,群体发病率越高 14.染色质和染色体是(4)。

遗传学重点

第一章遗传的细胞学基础 1.同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 2.减数分裂和有丝分裂的比较 相同点:1、分裂前都进行染色体的复制 2、分裂中都有纺锤丝的出现。 不同点: 项目有丝分裂减数分裂 发生部位体细胞性母细胞 分裂过程一次分裂连续两次分裂 同源染色体联会不发生发生 交换不发生发生 子细胞数2个4个 子细胞染色体数不变减半 3.双受精:1个精核(n)与卵细胞(n)受精结合为合子(2n),将来发育成胚。另1精核(n)与两 个极核(n+n受精结合为胚乳核(3n),将来发育成胚乳的过程。 4.联会:同源染色体相互靠拢配对。 5..交换:非姐妹染色单体间互换片段的现象。 6.高等动物的雌雄配子形成: 第二章:孟德尔遗传规律 一.等位基因:同源染色体上占据相同座位的两个不同形式的基因。 二.等位基因间的互作 1.完全显性:指F1代表现与亲本之一相同,而非双亲的中间型或表现双亲的性状。 2.不完全显性:指F1代表现介于双亲之间但偏向某一方。F2则表现: 父本类型、中间类型(新类型)和母本三种类型,呈1:2:1的比例。 3. 共显性或并显性:指F1代同时表现出双亲的性状其F2代也表现为三种表现型,其比例为1:2:1。人镰刀形贫血病遗传 4.镶嵌显性:指F1个体的不同部位分别表现出双亲的性状,形成镶嵌图式。大豆籽粒颜色

遗传F2表现型为1/4黄色、2/4黑黄镶嵌、1/4黑色 5.致死基因:生物体不能存活的等位基因。 6.复等位基因:一个基因存在三个或三个以上等位形式。 7.基因间的互作 A.致死基因(等位基因上的) ①显性致死:基因的致死作用在杂合子中即可表现的称为...正常显性纯合 ②隐形致死:基因在杂合状态下不影响生物的生活力,但在纯合状态下有致死效应。 B.非等位基因及表型比率 ①互补作用:两对独立遗传的基因共同控制一个性状,两对基因都是显性时是一种表型,分别只有一对基因是显性或完全没有显性时,则表现为另一种性状。(2显*非2显)F2 9:7 F t (测交后代)1:3 ②积加作用:两对独立遗传的基因共同控制一个性状,两对基因都是显性时是一种表型,只有一对显性基因时为一种性状,完全没有显性时,则表现为另一种性状。(2显1显无显)F29:6:1 F t:1:2:1 ③重叠作用:两对独立遗传的基因共同控制一个性状,只要显性基因存在,不论多少对显性基因都是相同表型,完全没有显性时,则表现为另一种性状(有显无显)F215:1 F t3:1 ④显性上位作用:两对独立遗传的基因共同控制一个性状,其中一对显性基因掩盖另一对基因的显性表现,前者对后者有遮盖作用。F212:3:1 F t2:1:1 ⑤隐性上位作用:两对独立遗传的基因共同控制一个性状,其中一对隐性基因掩盖另一对基因的作用。F29:3:4 F t:1:1:2 ⑥抑制作用:两对独立遗传的基因共同控制一个性状,其中一对基因本身对性状表达不起作用,但显性基因能抑制另一对基因的显性作用。F213:3F t3:1. 许多基因影响同一单位性状的现象称为“多因一效 另一方面,一个基因也可以影响许多性状的发育,称为“一因多效( 第三章连锁遗传规律 1.连锁遗传:位于同一染色体的2个或2个以上基因的遗传 2. 性连锁:指性染色体上基因所控制的某些性状总是伴随性别而遗传的现象。∴又称伴性遗传。 3.计算重点 第四章数量性状的遗传 1.多基因假说 a.数量性状的遗传是由多基因系统控制的。单个基因对表型的作用比较小并且效应相等可以累加,呈剂量效应。 b.微效基因与主效基因一样遵从孟德尔遗传法则,具有分离和重组、连锁和交换、突变等性质。 c..各个等位基因间表现为无显性或不完全显性,或表现为增效和减效作用。 d.微效基因往往具有多效性。 e.由于基因的重组和交换,在杂种后代中由微效基因控制的数量性状可以出现超亲遗传现象。 2.遗传力计算 广义狭义 近亲繁殖:血缘或亲缘关系相近的个体间的交配繁殖。 近交系数 第五章结构变异

《遗传学》期末考试题(A卷)-2006无答案

华南农业大学期末考试试卷(A卷) 2006学年第一学期 考试科目:遗传学 考试类型:(闭卷) 考试时间:120分钟学号姓名年级专业 题号一二三总分 得分 评阅人 (注意事项:试题共6面。答案请写在答卷纸上,不要写在试卷上。答卷纸上要写上姓名和班级。要求保持卷面整洁。考试时间为120分钟) 一、选择题(共45题,每题1分,共45分;选择答案可以多个) 1 遗传学(Genetics)是研究的科学: A 生物遗传 B 变异 C 生殖发育 D 新陈代谢 2 Mendel 1866年首次提出: A 分离规律 B 独立分配规律 C 连锁遗传规律 D 获得性状遗传规律 3 DNA分子双螺旋结构模式是于1953年提出的: A Watson(美国)和Crick(英国) B Mendel C Morgan D Johannsen 4植物细胞的组成是: A 细胞壁 B 细胞膜 C 细胞质 D 细胞核 5 原核细胞(prokaryotic cell)含有: A 核物质 B 核膜 C 核糖体 C 诸如线粒体和高尔基体等细胞器 6 以下哪些生物是原核生物? A 细菌 B 蓝藻 C SAS病毒 D 禽流感病毒 7 染色质是: A 细胞处于分裂间期一种形态 B 核内由于碱性染料而染色较深的、纤细的网状物 C 细胞处于分裂时而卷缩形成具一定形态结构的物质 D 细胞内可染色的物质 8 染色体一般含有: A 一个着丝粒 B 2个被着丝粒分开的臂 C 端粒 D 核仁 9 同源染色体(homologous chromosome)是指: A 形态和结构相似的一对染色体 B 来源相同的一对染色体 C 其中之一来自父本, 之二来自母本的一对染色体 D 形态和结构不同的一对染色体

遗传学整理

思考题 第1章绪论 1、遗传病有什么特点 ①一般以垂直方式传播②数量分布:患者与正常成员之间有一定的数量关系③先天性特点如白化病,少数不是先天的如huntington 舞蹈病④家族性特点⑤遗传病一般不能传染,但朊蛋白病是一种既能遗传又能传染的疾病 2、遗传病可分为几类 ①单基因病(常显AD,常隐AR,XD,XR,Y)②多基因病③染色体病④体细胞遗传病⑤线粒体遗传病 3、遗传病对人类有何危害 第3、4章基因突变及其细胞分子生物学效应 基因突变(gene mutation):基因内部碱基对组成或排列顺序发生改变。 点突变:指DNA分子中一个碱基被另一个不同的碱基所替换。 同义突变(Synonymous mutation):由于密码子具有简并性,单个碱基置换后密码子所编码的是同一种氨基酸,表型不改变 无义突变(Nonsense mutation):是指DNA中碱基被置换后,使编码一个氨基酸的密码子变为不编码任何氨基酸的终止密码(UAA、UAG、UGA),肽链合成提前终止,产生短的、没有活性的多肽片段。 错义突变(Missense mutation):DNA分子中的碱基置换后,形成新的密码子,从而导致所编码的氨基酸发生改变,产生活性降低、无活性或无功能的蛋白质。移码突变:DNA编码序列中插入或缺失一个或几个(不是3的倍数)碱基,其下游阅读框发生改变,导致氨基酸顺序及蛋白质异常或无活性,称为移码突变。动态突变:邻近基因或位于基因序列中的三核苷酸重复拷贝数,在一代代传递过程中会发生明显的增加,如(CGG)n、(CAG)n等,从而使(导致)某些遗传病发病。如Hutington舞蹈病 原发性损害(primary abnormalities):突变影响、干扰了RNA的正常转录以及转录后的修饰、剪辑;或直接改变了被编码的多肽链中氨基酸的组成和顺序,从而使其正常功能丧失。 继发性损害(secondary abnormalities):突变并不直接影响或改变某一条多肽链正常的氨基酸组成序列,而是通过干扰该多肽链的翻译合成过程;或翻译后的修饰、加工;甚至通过对蛋白质各种辅助因子的影响,间接地导致某一蛋白质功能的失常。 分子病(molecular disease):由于遗传上的原因而造成的非酶蛋白质分子结构或合成量的异常所引起的疾病。 大题: 1、基因突变如何导致蛋白质功能改变? 2、酶缺陷如何引起各种代谢紊乱并导致疾病? 3、各种代谢病的发病机制

遗传学重点总结

遗传学 第一章 (一) 名词解释: 1.原核细胞: 没有核膜包围的核细胞,其遗传物质分散于整个细 胞或集中于某一区域形成拟核。如:细菌、蓝藻等。 2.真核细胞:有核膜包围的完整细胞核结构的细胞。多细胞生物 的细胞及真菌类。单细胞动物多属于这类细胞。 3.染色体:在细胞分裂时,能被碱性染料染色的线形结构。在原 核细胞内,是指裸露的环状DNA分子。 4.姊妹染色单体:二价体中一条染色体的两条染色单体,互称为 姊妹染色单体。 5.同源染色体:指形态、结构和功能相似的一对染色体,他们一 条来自父本,一条来自母本。 6.超数染色体:有些生物的细胞中出现的额外染色体。也称为B 染色体。 7.无融合生殖:雌雄配子不发生核融合的一种无性生殖方式。认 为是有性生殖的一种特殊方式或变态。 8.核小体(nucleosome):是染色质丝的基本单位,主要由DNA 分子与组蛋白八聚体以及H1组蛋白共同形成。 9.染色体组型 (karyotype) :指一个物种的一组染色体所具有的 特定的染色体大小、形态特征和数目。 10.联会:在减数分裂过程中,同源染色体建立联系的配对过程。

11.联会复合体:是同源染色体联会过程中形成的非永久性的复合 结构,主要成分是碱性蛋白及酸性蛋白,由中央成分(central element)向两侧伸出横丝,使同源染色体固定在一起。 12.双受精: 1个精核(n)与卵细胞(n)受精结合为合子(2n),将 来发育成胚。另1精核(n)与两个极核(n+n)受精结合为胚乳核 (3n),将来发育成胚乳的过程。 13.胚乳直感:在3n胚乳的性状上由于精核的影响而直接表现父 本的某些性状,这种现象称为胚乳直感或花粉直感。 14.果实直感:种皮或果皮组织在发育过程中由于花粉影响而表现 父本的某些性状,则另称为果实直感。 简述: 2.简述细胞有丝分裂和减数分裂各自的遗传学意义? 答:细胞有丝分裂的遗传学意义:(1)每个染色体准确复制分裂为二,为形成两个子细胞在遗传组成上与母细胞完全一样提供了基础。(2)复制的各对染色体有规则而均匀地分配到两个子细胞中去,使两个细胞与母细胞具有同样质量和数量的染色体。 细胞减丝分裂的遗传学意义:(1)雌雄性细胞染色体数目减半,保证了亲代与子代之间染色体数目的恒定性,并保证了物种相对的稳定性;(2)由于染色体重组、分离、交换,为生物的变异提供了重要的物质基础。 第四章孟德尔遗传 (一) 名词解释:

医学遗传学整理复习资料

第四章单基因病 单基因病:由某一等位基因突变所引起的疾病 遗传方式:常染色体显性遗传性染色体:X连锁显性遗传从性遗传限性遗传 隐性遗传X连锁隐性遗传 Y连锁遗传 常染色体显性遗传:某种性状或疾病受显性基因控制,这个基因位于常染色体上,其遗传方式为AD 常染色体显性遗传病的系谱特点: ①患者双亲之一有病,多为杂合子 ②男女发病机会均等 ③连续遗传 完全显性:杂合子的表现型与显性纯合子相同 不完全显性(中间型显性、半显性):杂合子的表现型介于显性纯合子与隐性纯合子之间 共显性:杂合子的一对等位基因彼此间无显、隐之分,两者的作用都同时得以表现。 复等位基因(I A、I B 、i ):在群体中,同一同源染色体上同一位点的两个以上的基因。不规则显性:带致病基因的杂合子在不同的条件下,可以表现正常或表现出不同的表现型。 不外显(钝挫型):具显性致病基因但不发病的个体 外显率:一定基因型个体所形成的相应表现型比率 不同表现度:同一基因型的不同个体性状表现程度的差异 表现度:指在不同遗传背景和环境因素的影响下,相同基因型的个体在性状或疾病的表现程度上产生的差异 延迟显性:带显性致病基因的杂合子在个体发育的较晚时期,显性基因的作用才表现出来。-------------------------------------------------------------------------------------------------------------------------------- 常染色体隐性遗传:某种性状或疾病受隐性基因控制,这个基因位于常染色体上,其遗传方式为 AR 常染色体隐性遗传病的系谱特点:①患者的双亲无病,为携带者 ②男女发病机会均等 ③散发 X 连锁显性遗传:某种性状或疾病受X染色体上的显性基因所控制,其遗传方式为XD。XD遗传病系谱特点:①患者双亲之一有病,多为女性患者 ②连续遗传 ③交叉遗传(男性患者的女儿全发病) X 连锁隐性遗传:某种性状或疾病受X染色体上的隐性基因所控制,其遗传方式为XR。 交叉遗传:男性X染色体上的致病基因只能来自母亲,也必定传给女儿 XR遗传病系谱特点:①患者双亲无病②多为男性患者。③交叉遗传 从性遗传:位于常染色体上的一类基因,基因的效应随着个体性别的不同而有差异(即杂合子的表型在不同性别个体中表现不同) 限性遗传:常染色体或性染色体上的一类基因,由于性别限制,只在一种性别中表达。 (即男性表达,女性不表达。或反之。)

医学遗传学重点归纳

第一章人类基因与基因组 第一节、人类基因组的组成 1、基因是遗传信息的结构和功能单位。 2、基因组是是细胞内一套完整遗传信息的总和,人类基因组包含核基因组和线粒体基因组 单拷贝序列串联重复序列 按DNA序列的拷贝数不同,人类基因组高度重复序列 反向重复序列 重复序列短分散核元件 中度重复序列 长分散核元件 3、多基因家族是指由某一祖先经过重复和所变异产生的一组基因。 4、假基因是基因组中存在的一段与正常基因相似但不能表达的DNA序列。 第二节、人类基因的结构与功能 1、基因的结构包括:(1)蛋白质或功能RNA的基因编码序列。(2)是表达这些结构基因所需要的启动子、增强子等调控区序列。 2、割裂基因:大多数真核细胞的蛋白质编码基因是不连续的编码序列,由非编码序列将编码序列隔开,形成割裂基因。 3、基因主要由外显子、内含子、启动子、增强子、沉默子、终止子、隔离子组成。 4、外显子大多为结构内的编码序列,内含子则是非编码序列。 5、每个内含子5端的两个核苷酸都是GT,3端的两个核苷酸都是AG,这种连接方式称为GT--AG法则。 6、外显子的数目等于内含子数目加1。 7、启动子分为1类启动子(富含GC碱基对,调控rRNA基因的编码)、2类启动子(具有TATA 盒特征结构)、3类启动子(包括A、B、C盒)。 第三节、人类基因组的多态性 1、人类基因组DNA多态性有多种类型,包括单核苷酸多态性、插入\缺失多态性、拷贝数多态性。 第二章、基因突变 突变是指生物体在一定内外环境因素的作用和影响下,遗传物质发生某些变化。基因突变即可发生在生殖细胞,也可发生在体细胞。 第一节、基因突变的类型

园林植物遗传学期末考试复习

植物遗传学第一章、绪论 1. 名词解释 遗传学:研究生物体遗传和变异规律的科学。 遗传:有性繁殖过程中亲代与子代以及子代不同个体之间的相似性。 变异:同种生物亲代与子代间以及不同个体间的差异称为变异。 基因型:指生物体遗传物质的总和,这些物质具有与特殊环境因素发生特殊反应的能力,使生物体具有发育成性状的潜在能力。 表型:生物体的遗传物质在环境条件的作用下发育成具体的性状,称为表现型。 遗传物质:是存在于生物器官中的“泛子/泛生粒”;遗传就是泛子在生物世代间传递和表现 个体发育:生物的性状是从受精卵开始逐渐形成的,这就是个体发育的过程。 细胞分化:在一个生物体的生命周期中,形态逐渐发生变化,这就是细胞分化的过程。 形态建成:指构成一个结构和功能完美协调的个体的过程 阶段发育的基本规律:顺序性、不可逆性、局部性 2. 简述基因型和表现型与环境和个体发育的关系。 3. 简述生物发育遗传变异的途径。 (1)基因的重组和互作:生物体变异的重要来源 (2)基因分子结构或化学组成上的改变(基因突变) (3)染色体结构和数量的变化 (4)细胞质遗传物质的改变 4. 简述观赏植物在遗传学研究中的作用。 1)园林植物种类的多样性; 2)园林植物变异的多样性(多方向、易检测、可保留); 3)园林植物栽培繁殖方式的多样性; 4)保护地栽培; 5)生命周期相对较短。 个体发育 外界环境条件作用 (外因)

第二章遗传的细胞学基础 2.1 细胞 1 组成: ? 1)结构单位——形态构成,细胞的全能性 2)功能单位——新陈代谢,生命最基本的单位 3)繁殖单位——产生变异的基本单位 2 类型 根据构成生物体的基本单位,可以将生物分为 非细胞生物:包括病毒、噬菌体(细菌病毒); 细胞生物:以细胞为基本单位的生物; 根据细胞核和遗传物质的存在方式不同又可以分为:原核生物(无丝分裂,转录,翻译在同一地点) 如:细菌、蓝藻(蓝细菌) 真核生物(有丝分裂,转录,翻译不在同一地点) 如:原生动物、单细胞藻类、真菌、高等植物、动物、人类

遗传学材料整理(自整)

遗传学材料整理 1、同源染色体:指形态、结构和功能相似的一对染色体,他们一条来自父本,一条来自母本。 2、基因:基因是遗传物质的最小功能单位,是DNA分子链中具有特定遗传功能的一段核苷酸序列。 3、遗传平衡、基因平衡定律(哈德——魏伯格定律):在一个完全随机交配群体内,如果没有其他因素(如突变、选择、遗传漂移和迁移)干扰时,则基因频率和基因型频率常保持一定。 4、部分二倍体:既带有自身完整的基因组,又有外源DNA片段的细胞或病毒,称部分二倍体。 5、孢子体不育:指花粉的育性受孢子体(植株)基因型所控制,而与花粉本身所含基因无关。 6、纯系:由遗传上均一的纯结合个体所组成的系统的总称。 7、中断杂交实验:研究细菌接合过程中基因转移状况的一种遗传学实验方法。 8、遗传:指生物亲代与子代相似的现象,即生物在世代传递过程中可以保持物种和生物个体各特性不变。 9、变异:指生物在亲代与子代之间,以及子代与子代之间表现出一定差异的现象。 10、非同源染色体:形态、结构和功能彼此不同的染色体互称为非同源染色体。 11、作用子:表示一个起作用的单位,一个作用子所包括的一段DNA与一个多肽链的合成相对应。 12、结构基因:指可编码RNA或蛋白质的一段DNA序列。 13、内含子:编码的间隔序列称为内含子(intron),内含子是在信使RNA被转录后的剪接加工中去除的区域。 14、外显子:可以编码蛋白质的基因序列称为外显子。 15、重叠基因:指同一段DNA编码顺序,由于阅读框架的不同或终止早晚的不同,同时编码两个或两个以上多肽链的基因。 16、隔裂基因:编码顺序由若干非编码区域隔开,使可读框不连续的基因称为隔裂基因。 17、跳跃基因:即转座因子,指染色体组上可以转移的基因。实质是可作为插入因子和转座因子移动位置的DNA片断(序列)。 18、互补测验:比较顺式和反式构型个体的表型以判断两突变是否发生在一个基因座内的测验,称为互补测验又称顺反测验。 19、自交:指同一植株上的自花授粉或同株上的异花授粉。 20、基因纯合体: 21、基因杂合体: 22、分离: 23、基因互作:不同基因间的相互作用,可以影响性状的表现,称为基因互作。 24、完全连锁:同一染色体上非等位基因不发生分离而被一起传递到下一代的现象。 25、不完全连锁:指连锁基因的杂种子一代不仅产生亲本类型的配子,还会产生重组型配子。 26、相斥相:显性基因和隐性基因联系在一起称为相斥相。 27、相引相:不同显性基因或不同隐性基因相互联系在一起称为相引相。

遗传学(第二版) 刘庆昌 重点整理2

第九章 ★无性繁殖(Asexual reproduction) 指通过营养体增殖产生后代的繁殖方式,其优点是能保持品种的优良特性、生长快。★有性繁殖(Sexual reproduction) 指通过♀、♂结合产生的繁殖方式,其优点是可以产生大量种子和由此繁殖较多的种苗。大多数动植物都是进行有性生殖的。 ★近交(Inbreeding) 指血缘关系较近的个体间的交配,近亲交配。近交可使原本是杂交繁殖的生物增加纯合性(homozygosity),从而提高遗传稳定性,但往往伴随严重的近交衰退现象(inbreeding depression)。 ★杂交(crossing or hybridization) 指亲缘关系较远,基因型不同的个体间的交配。可以使原本是自交或近交的生物增加杂合性(heterozygosity),产生杂种优势。 一、近交的种类 ★自交(Selfing) 指同一个体产生的雌雄配子彼此融合的交配方式,它是近交的极端形式,一般只出现在植物中(自花授粉植物),又称自花受粉或自体受精(self-fertilization)。 ★回交(Back-crossing) 杂交子代和其任一亲本的杂交,包括亲子交配(parent-offspring mating)。 ★全同胞交配(Full-sib mating) 相同亲本的后代个体间的交配,又叫姊妹交。 ★半同胞交配(Half-sib mating) 仅有一个相同亲本的后代个体间的交配。 ★自花授粉植物(Self-pollinated plant) 天然杂交率低(1-4%):如水稻、小麦、大豆、烟草等; ★常异花授粉植物(Often cross -pollinated plant) 天然杂交率常较高(5-20%):如棉花、高粱等; ★异花授粉植物(Cross-pollinated plant): 天然杂交率高(>20-50%)如玉米、黑麦等,在自然状态下是自由传粉。 ★近交衰退(Inbreeding depression) 近交的一个重要的遗传效应就是近交衰退,表现为近交后代的生活力下降,产量和品质下降,适应能力减弱、或者出现一些畸形性状。 ★回交(Backcross)B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent) 未被用来回交的亲本。 B: 轮回亲本(recurrent parent) 用来反复回交的亲本。 A: 非轮回亲本(non-recurrent parent)

遗传学期末考试名词解释

性状:生物所具有的形态结构特征和生理生化特性称为性状 单位性状:每一个具体的性状称为单位性状 相对性状:同一单位性状在不同的个体上可能表现不同,存在差异,这种单位性状内具有相对差异的性状称为相对性状 等位基因:杂种体细胞内的成对基因是位于一对同源染色体相等的位置上,并决定一个单位性状的遗传及其相对差异,这样的一对基因称为等位基因 基因型:是指决定生物生长发育和遗传的内在遗传组成,对于某一个生物体而言,其基因型是指它从亲本获得的全部基因的总和 表型:对某一种生物体而言是指它所具有的全部单位性状的总和 显性:包括完全显性,不完全显性,共显性,镶嵌显性,超显性 测交法:一般是把被测验的个体与隐形纯合体杂交,因为常利用隐形纯合体亲本故又称回交上位作用:是指一对显性基因对另一对基因具有显性作用,使其不能表现 上位基因:表现上位作用的基因 隐形上位作用:当两对基因互作时,若其中一对隐性基因对另一对基因具有上位作用,这种互作类型称为隐形上位作用 外显率:在具有特定基因的一个群体中,表现该基因所决定性状的个体所占比率称为外显率表现度:在具有特定基因而又表现其决定性状的个体中,对该性状所显现的程度称为表现性连锁遗传:遗传学中把不同性状常常联系在一起向后代传递的现象称为连锁遗传 相引相:不同显性基因或不同隐形基因相互联系在一起称为相引相 相斥相:显性基因和隐形基因联系在一起称为相斥相 完全连锁:同一染色体上非等位基因不发生分离而被一起传递到下一代的现象 拟等位基因:遗传学中把完全连锁的,控制同一性状的非等位基因称为拟等位基因 重组:产生新基因组合或染色体组合的过程 重组值:重组型配子占总配子数的百分比。又称重组率,重组频率,用Rf表示 双交换:在一段染色体区域发生两次交换的现象称为双交换 双交换配子:由双交换形成的重组型配子称为双交换配子 单交换:只发生一次交换 符合系数:把实际获得的双交换类型的数目或频率与理论上期望得到的双交换类型的数目或频率的比值称为符合系数C 连锁群:位于同一染色体的所有基因构成一个连锁群 无序四分子分析:对无特定排列顺序的四分子的遗传分析 异型核:单倍体菌丝互相混合后发生融合,形成可进行有丝分裂的二倍体,称为异型核 拟有性世代:二倍体有丝分裂时连锁基因间偶尔会发生交换,产生重组型 限制性核酸内切酶:是一种在特定DNA序列上切割DNA分子的酶 原位杂交:是指DNA探针直接与染色体或染色体片段上对应的同源区段杂交结合,杂交结果直接显示出与探针序列同源的区域在染色体或染色体片段上所处的位置 荧光原位杂交:将用不同发光特性的荧光标记的一组探针与单个染色体杂交,同时显示各探针序列在染色体上的相对位置

遗传学知识整理(学习资料)

遗传学知识整理 绪论 1、遗传学是研究生物遗传与变异规律的科学。而现代遗传学是研究生物基因的结构与功能,基因 的传递与变异,基因的表达与调控的科学。 2、变异生物在繁殖过程中,后代发生了变化,与亲代不相同的现象。 3、遗传生物在繁殖过程中,亲代与子代各方面相似的情况,本质上就是遗传信息(DNA)世代传递 的现象。 4、模式生物这种被选定的生物物种就是模式生物。 5、遗传变异和选择是生物进化和新品种的选育的三大因素。 (看看就行 (1) 1856年, Mendel发现遗传因子的分离定律和自由组合定律, Mendel提出的遗传因子就是基因。 2) 1909年Johannsen首先称遗传因子为基因(gene) 。 3) 20世纪初, Morgan等人用果蝇做实验, 发现连锁交换定律, 并建立染色体学说, 确定基因在染色体上直线排列 , 染色体是基因的载体。与此同时, Emerson等人用玉米做实验也得到同样的结论。 4) 20世纪30年代, Muller用放射性处理果蝇, 研究基因的本质, 基因决定形状的问题。 5) 20世纪40年代, Beadle和Tatum研究链饱霉, 提出“一个基因一个酶”的学说, 把基因与蛋白质的功能结合起来,把基因概念的发展向前推进了一步。Avery, Macleod和Mccarty等人从肺炎双球菌转化试验中发现, 转化因子是DNA, 而不是蛋白质。 6) 20世纪50年代, McClintock提出基因可以转座的概念, 以后证明了跳跃基因的存在。 7) 20世纪50年代, Hershey 和Chase用噬菌体感染大肠杆菌,证明DNA是遗传物质。Watson和Crick提出DNA双螺旋结构模型,阐明了有关基因的核心问题—DNA的自我复制。 8) 20世纪60年代, 中心法则提出, 三联体密码的确定, 调节基因作用的原理被揭示。 9) 20世纪70年代,基因操作技术发展起来, 基因概念进一步发展。认识到基因与基因间有基因间区或, 基因的转译部分称为外显子(extron) ,不转译的部分称为内含子(intron) ,真核类基因的编码顺序由若干非编码区或隔开, 使阅读框不能连续, 这种基因称为隔裂基因 (split gene) 。 10) 近代基因的概念, 基因是一个作用单位—顺反子, 一个顺反子内存在着很多突变位点—突变子, 一个顺反子内部可以发生交换, 出现重组不能由重组分开的基本单位叫做重组子。所以一个基因是一个顺反子, 可以分成很多的突变子和重组子。 11) 1970年,分离出第一个限制性内切酶,随后一系列核酸酶按发现和提纯。 12) 1972年,Khorana等人合成了完整的CRNA基因。 13) 1973年,Boyer and Cohen建立了DNA重组技术。可将外源基因插入质粒,并导入大肠杆菌使之表达。以后用DNA重组技术生产出第一个动物激素--生长激素抑制因子。 14) 1976年,第一个DNA重组技术规则问世。 15) 1976年,DNA测序技术诞生。诺贝尔生理学与医学奖获得者杜伯克曾说:人类的DNA序列是人类的真谛,这个世界上发生的一切事情都与这一序列息息相关,包括癌症在内的人类疾病的发生都与基因直接或间接有关…。 16) 1978年,Genentech公司在大肠杆菌中表达出胰岛素。 17) 1980年,美国最高法院对Diamond and Chakrabarty专利案作出裁定,认为经基因工程操作的微生物可获得专利。1981年,第一台商业化生产的DNA自动测序仪诞生。 18) 1982年,用DNA重组技术生产的第一个动物疫苗在欧洲获得批准。 19) 1983年,基因工程Ti质粒用于植物转化。 20) 1988年,美国授予对肿瘤敏感的基因工程鼠以专利。

遗传学重点名词解释

Chapter 1 性状(character): 生物体所表现的明显的能够遗传的特征。 单位性状(unit character):一个基因或一组基因所决定的一个性状,作为一个遗传单位进行传导。 相对性状(contrasting character):遗传学中同一单位性状的相对差异。 真实遗传(true-breeding)自带性状永远与亲代性状相同的遗传方式。 纯系(pure line):能够进行真是遗传的品种。 三个假说:(1)遗传因子成对存在(颗粒遗传因子) (2)显隐性(3)分离 表型(phenotype):个体形状的外在表现。 基因型(genotype):决定个体表型的基因形式。 等位基因(allele):一个基因的不同形式,是由突变形成的。 纯合体(homozygote):基因座上有两个相同的等位基因,就这个基因座而言,这种个体或细胞成为纯合体。 杂合体(heterozygote):基因座上有两个不同的等位基因。 侧交:杂交产生的后代与隐性纯合亲本交配以检测自带个体基因型。 自由组合定律:配子形成后,同一基因的等位基因分离,非等位基因自由组合。 染色体(chromosome)常由脱氧核糖核酸、蛋白质和少量核糖核酸组成的线状或棒状物,是生物主要遗传物质的载体。 染色质(euchromatin):用碱性染料染色时着色浅的部位,是构成染色体DNA 的主体,在间期呈高度分散状态。 异染色质(heterochromatin):用碱性染色质染色时着色深的部位,又分为组成型染色质. 组成型染色质(constitutive heterochromatin): 在染色体上的大小和位置恒定,在间期时,仍保持螺旋化。如着丝粒。 兼性异染色体(facultative heterochromatin.): 起源于常染色质,在个体发育的特定阶段可转变成异染色质。如x染色体失活。 着丝粒(centromeres):每个染色体上都有一个高度浓缩的区域。 核型分析(karyotype):是指某一物种染色体的组成,通常用中期染色体的照片,铵长臂的大小或总的长度排列,用来表明物种的特点以及和亲缘种之间的进化关系。 带型(banding patterns):用特定的染料对染色体染色后,会出现深浅不一的条带,条带的位置和大小既有高度的染色体的专一性。 端粒(tele mere): 真核生物染色体的末端,有许多成串短的序列组成。 端粒的功能:稳定染色体末端结构,防止染色体间末端连接,并可补偿前导链和后滞链5’末端在消除RNA 引物后造成的空缺。 细胞周期(cell cycle):一次分裂的开始到下一次分裂的开始的这段时间。 姐妹染色单体(sister chromosome):染色体复制,着丝粒的DNA也复制,尽管仅能看到一个着丝粒。复制了的染色体是两个完全一样的拷贝。 G1 S关卡:检测细胞大小和DNA是否受损伤。 G2 M关卡:细胞进入有丝分裂之前检测细胞的生理状态。(如果DNA复制

遗传学期末试卷及答案

遗传学期末试卷及答案 云南大学生命科学学院 09级遗传学期末试卷题 Part1 1.F'因子是从Hfr细胞中不准确地切除F因子时产生的。(?) 2(一个成熟的卵细胞中有36条染色体,期中18条一定是来自父本。(×) 3(“三系”杂交种优势利用中保持系与不育系杂交目的的是繁殖保持系。(×) 4(在一个大群体中,只要进行随机交配,那么该群体就可以达到平衡。(×) 5(生物的生殖细胞不一定都是单倍性的。(?) 6(互补基因是指相同对的两个基因,它们互相作用产生了新性状。(×) 7(基因突变可在个体发育的任何使其发生。(?) 8(Watson和Crick的DNA结构模型要求A与T分子数量相等,但G与C可以不等。(×) 9(两个单交换百分率的乘积等于理论双交换率。(?) 10(一个顺反子内可以有多个突变位点。(?) 11(只要有细胞质k颗粒(卡巴粒)或细胞核K基因就能保持草履虫稳定的放毒性状。(×) 12(遗传学中所指的群体实质就是孟德尔群体。(?) 13(连锁基因的重组率只能低于50%。(?) 14(Y染色体上的性别决定区域决定胎儿性别发育的方向。(?) 15(雌性哺乳动物的体细胞中X染色体的Barr体数量等于X染色体数量。(×) 16(体细胞交换与性细胞形成过程中的交换一样发生在非姐妹染色单体之间。(×) 17(基因突变可以在个体发育的任何时期发生。(?) 18(Trans-acting element反式作用因子可以使DNA序列,也可以使蛋白质。(×) 19(转录因子可以说就是反式作用因子。(?)

20(群体遗传学中的“适合度”和“选择系数”均可大于1。(×) Part2 1(在细胞质遗传中,玉米雄性不育系的遗传是由核质互作所决定的,酵母菌的小菌落是受线粒体所决定的,紫茉莉的花斑遗传是受叶绿体(质体)所决定的。 2(染色体结构变异包括倒位、易位、重复、和缺失。 3(根据产生的原因,突变可分为自发突变和诱发突变,而从DNA分子水平看,基因突变的可能方式有碱基替换和移码突变。 4(DNA复制的可能模型有3种,它们是保留(守)复制、半保留复制和分散复制。 5(基因表达调控,不管是可诱导的还是可阻遏的,都有正调控和负调控之分。 6(基因的转译部分(序列)称为外显子(extron),不转译的部分称为内含子(intron)。 7(在果蝇的X染色体数与常染色体组数(A)之比称为性指数,性指数决定果蝇性别。这些果蝇个体性别:(a)AAX雄性(b)AAAXX兼性(c)AAXXY雌性 (d)AAXXX超雌。 8(由于倒位环内的交换产生缺失和重复,导致配子的死亡。 9(植物杂种优势利用中的“三系”是指雄性不育系、保持系和恢复系。 10(表现为不连续变异,可明确区分的相对性状是质量性状,而表现为连续变异,很难明确区分的相对性状是数量性状。 11(狭义遗传力等于V/V,而由加性效应方差V,显性效应方差V和环境效应方差VA PADE构成。 12(DNA转录的产物主要是信使RNA(mRNA)、核糖体RNA(rRNA)和转运 (移)RNA(tRNA)。 13(居群遗传结构改变时生物进化的根本动力,而引起居群遗传结构改变的因素有:即突变、基因流动、自然选择和随机遗传漂变。 Part3

相关文档
相关文档 最新文档