文档库 最新最全的文档下载
当前位置:文档库 › 通信系统中数字调制系统的Matlab仿真

通信系统中数字调制系统的Matlab仿真

摘要

数字调制是通信系统中最为重要的环节之一,数字调制技术的改进也是通信系统性能提高的重要途径。本文首先分析了数字调制系统的五种基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。最后,在仿真的基础上分析比较了各种调制系统的误码率、信号传输速率、信噪比、占用频带宽度等因素,综合衡量各系统的性能指标,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。

关键词:数字调制,分析与仿真,Matlab,Simulink

Abstract

In this paper, five usual methods of digital modulation are introduced firstly. Then their simulation models are built by using MATLAB’s simulation tool, SIMULINK. Through observing the results of simulation, the factors that affect the capability of the digital modulation system and the reliability of the simulation models are analyzed. And then, the capability of three digital modulation simulation models, 2-FSK, 2-DPSK and MSK, have been compared, as well as comparing the results of simulation and theory. At last, the conclusion is gotten: The simulation models are reasonable.

Keywords:Digital modulation,analysis and simulation,MATLAB,SIMULINK

目录

1 引言 (1)

1.1 数字调制的意义…………………………………………………………

1.2 Matlab在通信系统仿真中的应用………………………………………

2 数字调制系统的相关原理……………………………………………………....

2.1 2-ASK调制与解调……………………………………………………….

2.2 2-FSK调制与解调………………………………………………………..

2.3 2-PSK调制与解调………………………………………………………..

2.4 多进制调制与解调……………………………………………………….

3 数字调制系统的仿真设计………………………………………………………

3.1 数字调制系统各个环节分析……………………………………………...

3.1.1 仿真框图…………………………………………………………

3.1.2 信号源仿真及参数设置…………………………………………

3.1.3 调制解调模块……………………………………………………

3.1.4 信道………………………………………………………………

3.1.5 误码计算仪………………………………………………………

3.1.6 频谱仪……………………………………………………………

3.1.7 星座图……………………………………………………………

3.2 仿真模型的设计原理及结果分析………………………………………...

3.2.1 2-ASK …………………………………………………………….

3.2.2 2-FSK 、MSK、GMSK ………………………………………….

3.2.3 2-PSK 、QPSK、OQPSK ………………………………………..

3.2.4 MFSK 、MPSK ………………………………………………….

3.3 数字调制的性能比较……………………………………………………...

3.3.1 各种调制模型的性能比较………………………………………

3.3.2 仿真模型性能与理论性能比较…………………………………

4 外文翻译…………………………………………………………………………

4.1 原文…………………………………………………………………….......

4.2 译文………………………………………………………………………...

5 结束语……………………………………………………………………………致谢………………………………………………………………………………….. 参考文献…………………………………………………………………………….. 附录…………………………………………………………………………………..

通信系统中数字调制系统的软件仿真

1 引言

1. 1 数字调制的意义

数字调制是指用数字基带信号对载波的某些参量进行控制,使载波的这些参量随基带信号的变化而变化。根据控制的载波参量的不同,数字调制有调幅、调相和调频三种基本形式,并可以派生出多种其他形式。由于传输失真、传输损耗以及保证带内特性的原因,基带信号不适合在各种信道上进行长距离传输。为了进行长途传输,必须对数字信号进行载波调制,将信号频谱搬移到高频处才能在信道中传输。因此,大部分现代通信系统都使用数字调制技术。另外,由于数字通信具有建网灵活,容易采用数字差错控制技术和数字加密,便于集成化,并能够进入综合业务数字网(ISDN网),所以通信系统都有由模拟方式向数字方式过渡的趋势。因此,对数字通信系统的分析与研究越来越重要,数字调制作为数字通信系统的重要部分之一,对它的研究也是有必要的。通过对调制系统的仿真,我们可以更加直观的了解数字调制系统的性能及影响性能的因素,从而便于改进系统,获得更佳的传输性能。

1. 2 Matlab在通信系统仿真中的应用

随着通信系统复杂性的增加,传统的手工分析与电路板试验等分析设计方法已经不能适应发展的需要,通信系统计算机模拟仿真技术日益显示出其巨大的优越性.。计算机仿真是根据被研究的真实系统的模型,利用计算机进行实验研究的一种方法.它具有利用模型进行仿真的一系列优点,如费用低,易于进行真实系统难于实现的各种试验,以及易于实现完全相同条件下的重复试验等。Matlab仿真软件就是分析通信系统常用的工具之一。

Matlab是一种交互式的、以矩阵为基础的软件开发环境,它用于科学和工程的计算与可视化。Matlab的编程功能简单,并且很容易扩展和创造新的命令与函数。应用Matlab可方便地解决复杂数值计算问题。Matlab具有强大的Simulink 动态仿真环境,可以实现可视化建模和多工作环境间文件互用和数据交换。Simulink支持连续、离散及两者混合的线性和非线性系统,也支持多种采样速率的多速率系统;Simulink为用户提供了用方框图进行建模的图形接口,它与传统的仿真软件包用差分方程和微分方程建模相比,更直观、方便和灵活。用户可以在Matlab和Simulink两种环境下对自己的模型进行仿真、分析和修改。用于实现通信仿真的通信工具包(Communication toolbox,也叫Commlib,通信工具箱)是Matlab语言中的一个科学性工具包,提供通信领域中计算、研究模拟发展、系统

设计和分析的功能,可以在Matlab环境下独立使用,也可以配合Simulink使用。另外,Matlab的图形界面功能GUI(Graphical User Interface)能为仿真系统生成一个人机交互界面,便于仿真系统的操作。因此,Matlab在通信系统仿真中得到了广泛应用,本文也选用该工具对数字调制系统进行仿真。

2 数字调制系统的相关原理

数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,所以本文主要讨论二进制的调制与解调,最后简单讨论一下多进制调制中的MFSK(M元移频键控)和MPSK(M元移相键控)。

最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK和2-DPSK)。下面是这几种调制方式以及其改进调制方式的相关原理。

2.1 二进制幅度键控(2-ASK)

幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。

2-ASK信号功率谱密度的特点如下:

(1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定;

(2)已调信号的带宽是基带脉冲波形带宽的二倍。

2.2 二进制频移键控(2-FSK)

频移键控是利用两个不同频率f1和f2的振荡源来代表信号1和0,用数字信号的1和0去控制两个独立的振荡源交替输出。对二进制的频移键控调制方式,其有效带宽为B=2xF+2Fb,xF是二进制基带信号的带宽也是FSK信号的最大频偏,由于数字信号的带宽即Fb值大,所以二进制频移键控的信号带宽B较大,频带利用率小。2-FSK功率谱密度的特点如下:

(1) 2FSK信号的功率谱由连续谱和离散谱两部分构成,?离散谱出现在f1和f2位置;

(2) 功率谱密度中的连续谱部分一般出现双峰。若两个载频之差|f1 -f2|≤fs,则出现单峰。

2.3二进制相移键控(2-PSK)

在相移键控中,载波相位受数字基带信号的控制,如在二进制基带信号中为0时,载波相位为0或π,为1时载波相位为π或0。载波相位和基带信号有

一一对应的关系,从而达到调制的目的。2-PSK 信号的功率密度有如下特点:

(1) 由连续谱与离散谱两部分组成;

(2) 带宽是绝对脉冲序列的二倍;

(3) 与2ASK 功率谱的区别是当P =1/2时,2PSK 无离散谱,而2ASK 存在离散

谱。

2.4 多进制数字调制

上面所讨论的都是在二进制数字基带信号的情况,在实际应用中,我们常常

用一种称为多进制(如4进制,8进制,16进制等)的基带信号。多进制数字调

制载波参数有M 种不同的取值,多进制数字调制比二进制数字调制有两个突出

的优点:一是有于多进制数字信号含有更多的信息使频带利用率更高;二是在相

同的信息速率下持续时间长,可以提高码元的能量,从而减小由于信道特性引起

的码间干扰。现实中用得最多的一种调制方式是多进制相移键控(MPSK )。

多进制相移键控又称为多相制,因为基带信号有M 种不同的状态,所以它

的载波相位有M 种不同的取值,这些取值一般为等间隔。在多相制移键控有绝

对移相和相对移相两种,实际中大多采用四相绝对移相键控(4PSK ,有称QPSK ),

四相制的相位有0、π/2、π、3π/2四种,分别对应四种状态11、01、00、10。

3 数字调制系统的仿真设计

3.1 数字调制系统各个环节分析

典型的数字通信系统由信源、编码解码、调制解调、信道及信宿等环节构成,

其框图如图3.1所示:

数字调制是数字通信系统的重要组成部分,数字调制系统的输入端是经编码

器编码后适合在信道中传输的基带信号。对数字调制系统进行仿真时,我们并不

关心基带信号的码型,因此,我们在仿真的时候可以给数字调制系统直接输入数

字基带信号,不用在经过编码器。

图3.1 数字通信系统模型

息源 编码器 调制器 信 道 解调器 解码器 受信者 噪声源

3.1.1 仿真框图

MATLAB 提供的图形界面仿真工具Simulink 由一系列模型库组成,包括

Sources(信源模块),Sinks(显示模块),Discrete(离散系统模块),Linear(线性环节),

Nonlinear(非线性环节),Connections(连接),Blocksets&Toolboxes(其他环节)。特别

是在Blocksets&Toolboxes 中还提供了用于通信系统分析设计和仿真的专业化模

型库CommTbxLibrary 。在这里,整个通信系统的流程被概括为:信号的产生与

输出、编码与解码、调制与解调、滤波器以及传输介质的模型。在每个设计模块

中还包含有大量的子模块,它们基本上覆盖了目前通信系统中所应用到的各种模

块模型。通信系统一般都可以建立数学模型。根据所需仿真的通信系统的数学模

型(或数学表达式),用户只要从上述各个模型库中找出所需的模块,用鼠标器拖到

模型窗口中组合在一起,并设定好各个模块参数, 就可方便地进行动态仿真.从输

出模块可实时看到仿真结果,如时域波形图、频谱图等。每次仿真结束后还可以

更改各参数,以便观察仿真结果的变化情况。另外,对Simulink 中没有的模块,

可运用S 函数生成所需的子模块,并且可以封装和自定义模块库,以便随时调用。

根据Simulink 提供的仿真模块,数字调制系统的仿真可以简化成如图3.2所

示的模型:

图3. 2 数字调制系统仿真框图

带信

号 调制器 信 道 解调器 基带信

噪声源

3.1.2 信号源仿真及参数设置

Simulink 通信工具箱中的Comm Sources/Data Sources 提供了数字信号源

Bernoulli Binary Generator ,这是一个按Bernoulli 分布提供随机二进制数字信号的

通用信号发生器。在现实中,对受信者而言,发送端的信号是不可预测的随机信

号。因此,我们在仿真中可以用Bernoulli Binary Generator 来模拟基带信号发生器。 其中主要参数的含义为:

Probability of a zero :产生的信号中0符号的概率,在仿真的时候一般设成0.5,

这样便于频谱的计算;

Initial seed :控制随机数产生的参数,要求不小于30,而且与后面信道中的

Initial seed 设置不同的值;

Sample time :抽样时间,这里指一个二进制符号所占的时间,用来控制号发生

的速率,这个参数必须与后面调制和解调模块的Symbol period 保持一致。

3.1.3 调制与解调模块

Simulink通信工具箱中提供了数字信号各种调制方式的模块,如AM、CPM、FM及PM等。虽然不同的调制模块,参数设置有所不同,但很多参数在各种调制中是一致的,下面我们以DPSK调制模块为例介绍一下调制模块的参数及其设置,其余模块将在下面仿真模型的建立过程中详细介绍。

M-DPSK Modulator Passband和M-DPSK Demodulator Passband 分别是数字信号DPSK调制和解调的专用模块,其中主要参数有:

M-ary number:输入信号的阶次数,比如2-DPSK就是2阶的;

Symbol period:符号周期,即,一个符号所占的时间,这必须与信号源的Sample time保持一致;

Carrier frequency:载波频率;

Carrier initial phase:载波的初始相位;

Input sample time:输入信号的抽样时间;

Output sample time:输出信号的抽样时间。

其中,各参数要满足以下关系:

Symbol period > 1/(Carrier frequency)

Input sample time < 1/[2*Carrier frequency + 2/(Symbol period)]

Output sample time <1/[2*Carrier frequency + 2/(Symbol period)]

3.1.4 信道

在分析通信系统时通常选择高斯噪声作为系统的噪声来考查,因为这种噪声在现实中比较常见而且容易分析。Simulink 中提供了带有加性高斯白噪声的信道:AWGN Channe。仿真时可以用该模块模拟现实中的信道,该模块的主要参数有:

Initial seed:控制随机数产生的参数,要求不小于30,且与前面信号源中的Initial seed设置不同的值;

Es/No (dB):信号每个符号的能量与噪声的功率谱密度的比值;

SNR (dB):信号功率与噪声功率的比值;

注:Es/No (dB) 和SNR (dB)是表征信号与噪声关系的两种方法,在一次仿真中只能选择其中一个。

3.1.5 误码计算仪

信号经过信道后,由于噪声的干扰,在接收端可能出现误码,Simulink中提供了Error Rate Calculation 模块来计算误码率,其主要参数的设置为:Receive delay:接收延迟,表明在计算误码率时接收到的信号比源信号延迟的码元数,便于准确计算;

Output data:数据输出,将误码率、误码数及码元总数输出,有两个选项

可选择:Work space 和Port。将数据输出到Work space就是将误码率等数据存在内存中,以便下一步使用,而输出到Port中,则是在误码计算仪后面再接一个模块(比如结果显示模块),将数据传到该模块中(显示出来);

Variable name:变量名称,该参数只有在前面选择了Work space后才有用,它决定数据输出到Wok space后的名称,默认值为ErrorVec。

3.1.6 频谱仪

在仿真过程中,必须观察各个环节的频域波形,因此,必须在各个环节加上频谱仪以观察波形。以便对仿真结果做进一步处理,比如将各个调制系统的频域波形对比用来比较异同点和优缺点。Simulink 中提供了Spectrum Scope模块来显示仿真频谱,其主要参数的设置为:

Buffer size:缓存长度,频谱仪应用快速傅里叶变换FFT完成数据流从时域到频域的变换,所以先要将时域的数据流取出一段,FFT size(快速傅里叶变换的长度)确定为N,通常要求N为2的幂。正因为要取出一段长度为N的数据,就需要设置相应长度的Buffer size(缓存长度),通常这两个长度是一样的。

Buffer overlap:重叠的长度;Number of spectral averages:频谱数据的平均数,数据流分段的方法会影响FFT的结果,分段时Buffer overlap(重叠的长度)、Number of spectral averages(频谱数据的平均数)会影响频谱特性的平滑程度,这两个数值愈大,特性愈平滑。

Frequency Range:频率范围,希望所研究的谱线内容出现在频谱仪显示窗的中间部分,能看到在频域轴上谱线的低端和高端情况,以便于观察和分析。要做到这一点,将输入信号的采样频率取为期望的频率显示窗最大值的两倍即可,Frequency Range(频率范围)选[0...Fs/2]就是这个道理(Fs就是采样频率,亦是采样时间的倒数)。

3.2 仿真模型的设计原理及结果分析

了解了仿真所需的主要模块后,下一步就是设计和仿真各种数字调制模型,并对仿真结果在时域和频域进行分析。

3.2.1 2-ASK

通常,二进制振幅键控信号(2-ASK)的产生方法(调制方法)有两种,如图3.3所示:

(a) (b)

图3.3 2-ASK 信号产生的两种方法 S(t) e 0(t)

cos ωc t

乘法器

2-ASK 解调的方法也有两种相应的接收系统组成方框如图3.4所示:

图3.4 2-ASK 信号接收系统组成框图

根据

3.3(a )所示方框图产生2-ASK 信号,并用图3.4(b )所示的相干解调法来解调,设计2-ASK 仿真模型如图3.5所示:

图3.5 2-ASK 模型

在该模型中,调制和解调使用了同一个载波,目的是为了保证相干解调的同频同相,虽然这在实际运用中是不可能实现的,但是作为仿真,这样能获得更理想的结果。

主要模块参数设置如下:

1.Bernoulli Binary Generator的参数设置为:

位置:Communications Blockset\Comm Sources

表3.1伯努利二进制随机数产生器的主要参数

参数名称参数值

Probability (0出现的概率)0.5

Initial seed (初始化种子)67

Sample time (采样时间) 1

Frame-based output (基于帧输出)使能

Smaple per frame (每帧取样数) 10

2. 载波频率设为:50(可调)

3. Sample and Decide 模块是一个子系统,其内部结构由抽样和判决两部分组成,其中,抽样由同步冲激信号(Sychronizing signal)完成,其参数period(sec)设置和信号源的参数Sample time保持一致。判决模块是一个由M文件编写的S函数,S函数是Simulnk中用以功能扩展的一个功能,用S函数可以自己编制Simulink库中没有的Simulink模块,从而使Simulink的功能大大加强,本模型中使用的判决模块就是这样一个应用,其M文件详见附录[1]。Sample and Decide 模块内部结构如图3.6所示:

图3.6 Sample and Decide 子系统内部结构

5. Error Rate Calculation的参数设置:

位置:Communications Blockset\Comm Sinks

表3.2 误码率计算的主要参数

参数名称参数值

Receive delay (接受延迟) 2

Communication delay (计算延迟) 0

Variable name (变量名称)ErrorVec

Output data (输出数据) Work space

仿真结果时域分析

设信息源发出的是由二进制符号

0、1组成的序列,且假定0符号出现的概率为P ,1符号出现的概率为1-P ,他们彼此独立。则,2ASK 信号的时间表示式为:

s(t)为随机的单极性矩形脉冲序列。

将图3.5中各示波器的值输出到Work space 中做统一处理(处理程序见附录[2]),各环节波形如图3.7所示;

图3.7 2-ASK 各环节波形示意图

从图3.7中可以看出,经过调制后的信号波形在符号1持续时间内是载波的波形,在符号0持续时间内无波形,这与式(3.2)是完全吻合的。最后经过解调和抽样判决出来的信号与源信号波形大体一致,只是有两个码元的延迟,这说明如果将Error Rate Calculation 的Receive delay 参数设置为2,则此模型最后的误码率为0。这个值与理论值有些出入,原因是我们在仿真时为了便于观察信号的波形,将信号源发送的码元数设定为20个(码元速率为1,仿真时间20秒),

(3.2.)

这大大低于现实中的传码率,所以在只传送20个码元的情况下,误码率为0是可能的。

仿真结果频域分析

由于二进制的随机脉冲序列是一个随机过程,?所以调制后的二进制数字信号也是一个随机过程,因此在频率域中只能用功率谱密度表示。

2ASK的功率谱密度为

(3.3)

(3.4)

1-3

当概率P=0.5时,2ASK的功率谱密度可进一步整理为

由式(3.4)可知,2-ASK信号的中心频谱被搬移到了载波频率f

c

上。对图3.7中各环节数据做1024点快速傅立叶可得频域波形,如图3.8所示:

图3.8 2-ASK 各环节频谱图

从图3.8中可以看到,源信号中心频率经调制后搬移到了载波频率上,这与公式(3.4)是相符的。最后经过抽样判决后的频谱与源信号频谱也大体一致,说明该2-ASK 仿真模型是成功的、符合理论的。 3.2.2 2-FSK 、MSK 、GMSK

首先说明FSK,MSK 和GMSK 调制系统的原理。

2FSK 信号可以用一个矩形脉冲序列对一个载波进行调频而获得。这正是频率键控通信方式的早期采用的实现方法,2FSK 另一个实现方法便是采用键控法,即利用受矩形脉冲序列控制的开关电路对两个不同的独立频率源进行选通。以上两种方法如下,()s t 代表信息的二进制矩形脉冲序列,0()e t 即是2FSK

信号:

图3.9 FSK 系统调制原理

2-FSK 信号最常用的解调方法是采用的相干检测法,如图3.10所示

:图3.10 2-FSK 相干解调的方法

根据以上2FSK 信号的产生原理,已调信号的数学表示式也不难写出,即:

012()()cos()()cos()n s n n s n n

n

e t a g t nT w t b g t nT w t ?θ=-++-+∑∑

式中 ()g t 为单个矩形脉冲,脉宽为s T ,

Cos ω2t

Cos ω1t

相乘器

相乘器

输入

ω1 ω2

LPF

LPF 抽样脉冲

输出

抽样判决

LPF

LPF

0P {1P

n a =,概率为,概率为1-

n b 是n a 的反码,于是

01P

{

1P

n b -=,概率为,概率为

n n ?θ,分别是第n 个信号码元的出相位。

一般来说,键控法得到的n n ?θ,是与序列n 无关的,反映在0()e t 上,仅表现出1w 与2w 改变时其相位是不连续的;而用模拟调频法时,由于当1w 与2w 改变时

0()e t 相位是连续的,故n n ?θ,不仅与第n 个信号码元有关,而且n n ?θ,之间也应

保持一定的关系。

最小移频键控方式MSK 是2FSK 信号的改进型,二进制MSK 信号的表示式可写为

()cos()2k

MSK c k s

a s t w t t T π?=+

+ (1)

(1)s s k T t kT -≤≤

或者()cos[()]MSK c s t w t t θ=+ 其中 (),2k

k s

a t t T πθ?=

+ (1)s s k T t kT -≤≤

c w ——载波角频率 s T ——码元宽度

k a ——第k 个码元中的信息,其取值为±1

k ?——第k 个码元的相位常数,它在时间(1)s s k T t kT -≤≤中保持不变。 由(1)式知,当k a =+1时,信号的频率为

21()22c s

f w T ππ=

+ 当k a =-1时,信号的频率为

11()22c s

f w T ππ=

- 由此可得 211

2s

f f f T ?=-=

0.5s h fT =?=

MSK 信号在码元转化时信号的相位是连续的,根据这个要求,相位应该满足下面的条件:

{

111

1

,

11(1),

()[(1)]2

k k k k k k a a k k k k a a k a a k ππ

?

???----=--≠±-=+--=

上式表明,MSK 信号在第k 个码元的相位常数不仅与当前的k a 有关,而且与前面的1k a -及相位常数1k ?-有关。假定k ?的起始参考值假定为0,可以得到k ?=0或π。

可以知道MSK 信号具有如下特点: (1) 已调信号的振幅是恒定的 (2) 调制指数0.5s h fT =?=

(3) 以载波相位为基准的信号相位在一个码元期内准确的线形变化2

π

± (4) 码元转换时刻信号的相位是连续的,或者说信号的波形没有突跳 在一些通信场合,对信号带外辐射功率的限制是十分严格的,MSK 信号仍不能满足,于是提出的GMSK 。

GMSK (高斯最小移频键控)是在MSK 调制器之前加入高斯低通滤波器,用高斯低通滤波器作为MSK 调制的前置滤波器。所以高斯低通滤波器必须满足: (1) 带宽窄,且是锐截止的 (2) 具有较低的过冲脉冲响应 (3) 保持输出脉冲的面积不变 设计2-FSK 仿真模型如图3.11所示:

图3.11 FSK基带调制仿真系统框图

FSK基带调制仿真系统的框图由伯努利二进制随机数产生器,频谱仪,基带M-FSK调制与解调器,加性高斯白噪声信道,误码率计算器及显示器构成。MSK,GMSK仿真框图与FSK只有调制合解调器不同,其余模块一样,故不再列出。

主要参数设置如下:

1. Bernoulli Random Binary Generator (伯努利二进制随机数产生器) 位置:Communications Blockset\Comm Sources

表3.3 伯努利二进制随机数产生器的主要参数

参数名称参数值

Probability (0出现的概率)0.5

Initial seed (初始化种子)12345

Sample time (采样时间)0.1

Frame-based output (基于帧输出)使能

Smaple per frame (每帧取样数) 10

图3.12 伯努利二进制随机数产生器的主要参数

2. Spectrum Scope (频谱仪)用来显示对数字调制后信号的测量。

位置:DSP Blockset\DSP Sinks

表3.4 频谱仪的主要参数一

参数名称参数值

Buffer size (缓存长度) 1024

Buffer overlap (缓存交叠) 512

FFT length (FFT长度) 1024

64

Number of spectral averages (谱(计

算)平均(点)数)

Scope position (显示器位置) get(0,’defaultfigureposition’) Frequency units (频率单位) Hertz

Frequency range (频率范围) [0…Fs/2]

Amplitude scaling (幅度刻度) dB

使能

Inherit sample increment from input

(与输入信号采样时间一致)

Minimum Y-limit (Y轴最小刻度) -50

Maximum Y-limit (Y轴最大刻度) 30

注:Fs=1/0.0002=5kHz,Fs/2=2.5kHz

(a) (b)

(c) (d)

图3.13 频谱仪的主要参数一

3. AWGN Channel(加性高斯白噪声信道)模拟加性高斯白噪声环境,使传输环境相同,FSK的信噪比为-3dB,其余两个为-6 dB。

位置:Communications Blockset\Channels

表3.5 加性高斯白噪声信道的主要参数

参数名称参数值

FSK MSK GMSK Initial seed (初始化种子) 18233

Mode (模式) Signal to noise ration (SNR)(信噪

比)

SNR(信噪比) -3 -6 -6 Input signal power(输入信号功率) 1

图3.14 加性高斯白噪声信道的主要参数

4. Error Rate Calculation(误码率计算)比较输入输出的误码率。

位置:Communications Blockset\Comm Sinks

表3.6 误码率计算的主要参数

参数名称参数值

FSK MSK GMSK Receive delay (接受延迟) 0 16 16 Communication delay (计算延迟) 0

Computation mode (计算模式) Entire frame

Output data (输出数据) port

图3.15 误码率计算的主要参数

5. M-FSK Modulator Baseband (基带M-FSK调制器)

位置:Communications Blockset\Modulation\Digital Baseband Modulation

表 3.7 基带M-FSK调制器的主要参数

参数名称参数值

M-ray number(元数) 3

Input type(输入类型) Bit

Symbol set ordering(符号排序) Binary(二进制) Frequency separation(HZ)(频率间隔) 10

Phase continuity(相位连续性) Discontinuous(不连续) Sample per symbol(每符号采样数) 16

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

模拟调制仿真

课程设计报告题目模拟调制仿真

目录 一.原理 (1) 二.编程思想 (2) 三.结果 (3) 四.分析 (5) 五.程序代码 (8)

一.原理 1.1模拟调制原理 模拟调制包括幅度调制(DSB,SSB,AM)和相角调制(频率和相位调制)。在本次设计中主要讨论模拟调制中的幅度调制,幅度调制即用基带调制信号去控制高频载波的幅度,使其按基带信号的规律变化的过程。幅度调制主要有AM调制,DSB调制,SSB调制。他们的调制原理如下,AM调制:AM 是用调制信号去控制高频正弦载波的幅度,使其按调制信号的规律变化的过程;DSB调制:在幅度调制的一般模型中,若假设滤波器为全通网络,调制信号中无直流分量,则输出的已调信号就是无载波分量的双边调制信号,或称抑制载波双边带调制信号;SSB调制:由于 DSB 信号的上、下两个边带是完全对称的,皆携带了调制信号的全部信息,因此从信息传输的角度来考虑,仅传输其中一个边带。 1.2 AM调制 AM信号的时域表示式: 频谱: 调制器模型如图所示: 1.3 DSB调制 DSB信号的时域表示式 频谱: 1.4 相干解调 相干解调器原理:为了无失真地恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步(同频同相)的本地载波(称为相干载波),它与接收的已调信号相乘后,经低 00 ()[()]cos cos()cos AM c c c s t A m t t A t m t t ωωω =+=+ 1 ()[()()][()()] 2 AM c c c c S A M M ωπδωωδωωωωωω=++-+++- ? () m t() m s t c t ⊕

模拟电话通信系统

南阳理工学院本科生毕业设计(论文) 学院(系):电子与电气工程系 专业:电子信息工程 学生:胡鹏 指导教师:曹原 完成日期2011年 4月

南阳理工学院本科毕业设计(论文) 模拟电话通信系统的硬件设计Hardware’s Design of Communication Systems 总计:毕业设计(论文)页 表格:0 个 插图:10 幅

南阳理工学院本科毕业设计(论文) 模拟电话通信系统的硬件设计 Hardware design of Analog telephone communication system 学院(系):电子与电气工程系 专业:电子信息工程 学生姓名:胡鹏 学号:094409042 指导教师(职称):曹原(讲师) 评阅教师: 完成日期:2011年5月17日 南阳理工学院 Nanyang Institute of Technology

模拟电话通信系统的硬件设计 电子信息工程专业胡鹏 [摘要]随着现代通信技术的飞速发展与日益普及,程控交换是目前模拟电话通信系统中的核心。本文介绍的模拟电话通信系统的硬件设计以amt89c51单片机为中心控制交换芯片MT8816设计实现一种高性价比,实现一对一双工通信的程控交换设备。 本文详细阐述了程控电路交换机在交换电话网中的作用、工作原理和系统的组成结构,将程控交换机的硬件设计分为几个功能模块,并分别加以详细地介绍。 该系统硬件包括了:以单片机为核心的信号检测、信号音控制电路;双音多频解码电路;交换电路;两个用户接口电路等。 [关键词]AT89C51;程控交换;模拟;硬件 Hardware design of Analog telephone communication system Electronic and Information Engineering Hu Peng Abstract:With the rapid development of modern communication technology and the increasing popularity of program-controlled exchange is the core of the current field of communications. Analog telephone communication system to amt89c51 microcontroller hardware design as the central control switch chip MT8816 Design and Implementation of a cost-effective, one-duplex communication to achieve program-controlled switching equipment. This paper describes the program-controlled circuit switched telephone network switches in the role, working principle and system structure, the program-controlled switches, the hardware design is divided into several functional modules, respectively, to introduce them in detail. The system hardware includes: a microcontroller as the core of the signal detection, signal tone control circuit; DTMF decoder circuit; switching circuit; two user interface circuit. Key words:AT89C51、Program-controlled exchange、Simulation、hardware

基于MATLAB的MIMO通信系统仿真(DOC)

目录 (一)基于MATLAB的MIMO通信系统仿真………………………… 一、基本原理……………………………………………………… 二、仿真…………………………………………………………… 三、仿真结果……………………………………………………… 四、仿真结果分析…………………………………………………(二)自选习题部分…………………………………………………(三)总结与体会……………………………………………………(四)参考文献…………………………………………………… 实训报告 (一)基于MATLAB的MIMO通信系统仿真 一、基本原理 二、仿真 三、仿真结果 四、仿真结果分析 OFDM技术通过将频率选择性多径衰落信道在频域内转换为平坦信道,减小了多径衰落的影响。OFDM技术如果要提高传输速率,则要增加带宽、发送功率、子载波数目,这对于频谱资源紧张的无线通信时不现实的。 MIMO能够在空间中产生独立并行信道同时传输多路数据流,即传输速率很高。这些增加的信道容量可以用来提高信息传输速率,也可以通过增加信息冗余来提高通信系统的传输可靠性。但是MIMO却不能够克服频率选择性深衰落。 所以OFDM和MIMO这一对互补的技术自然走到了一起,现在是3G,未来也是4G,以及新一代WLAN技术的核心。总之,是核心物理层技术之一。 1、MIMO系统理论:

核心思想:时间上空时信号处理同空间上分集结合。 时间上空时通过在发送端采用空时码实现: 空时分组、空时格码,分层空时码。 空间上分集通过增加空间上天线分布实现。此举可以把原来对用户来说是有害的无线电波多径传播转变为对用户有利。 2、MIMO 系统模型: 11h 12 h 21 h 22 h r n h 1r n h 21 R n h 2 R n h 1 n n R h 可以看到,MIMO 模型中有一个空时编码器,有多根天线,其系统模型和上述MIMO 系统理论一致。为什么说nt>nr ,因为一般来说,移动终端所支持的天线数目总是比基站端要少。 接收矢量为:y Hx n =+,即接收信号为信道衰落系数X 发射信号+接收端噪声 3、MIMO 系统容量分析: (附MIMO 系统容量分析程序) 香农公式的信道容量(即信息传送速率)为: 2log (1/)C B S N =+ 4、在MIMO 中计算信道容量分两种情况: 未知CSI 和已知CSI (CSI 即为信道状态信息),其公式推导较为复杂,推导结果为信道容量是信噪比与接收、发射天线的函数。 在推导已知CSI 中,常用的有waterfilling ,即著名的注水原理。但是,根据相关文献资料,通常情况下CSI 可以当做已知,因为发送,接收端会根据具体信道情况估算CSI 的相关参数。 在这里对注水原理做一个简单介绍:之所以成为注水原理是因为理想的注水原理是在噪声大的时候少分配功率,噪声小时多分配功率,最后噪声+功率=定值,这如果用图形来表示,则类似于给水池注水的时候,水池低的地方就多注水,也就是噪声小分配的功率就多,故称这种达到容量的功率分配方式叫做注水原理。通过给各个天线分配不同的发射功率,增加系统容量。核心思想就是上面所阐述的,信道条件好,则分配更多功率;信道条件差,则分配较少的功率。 在MIMO 的信道容量当中要注意几个问题:(下面说已知CSI 都是加入了估计CSI 的算法,并且采用了注水原理。) 1. 已知CSI 的情况下的信道容量要比发送端未知CSI 的情况下的信道容量高,这是 由于当发送端已知CSI 的时候,发送端可以优化发送信号的协方差矩阵。也就是

通信系统仿真经典.doc

题目基于SIMULINK的通信系统仿真 摘要 在模拟通信系统中,由模拟信源产生的携带信息的消息经过传感器转换成电信号,模拟基带信号在经过调制将低通频谱搬移到载波频率上适应信道,最终解调还原成电信号;在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号。本文应用了幅度调制以及键控法产生调制与解调信号。 本论文中主要通过对SIMULINK工具箱的学习和使用,利用其丰富的模板以及本科对通信原理知识的掌握,完成了AM、DSB、SSB、2ASK、2FSK、2PSK三种模拟信号和三种数字信号的调制与解调,以及用SIMULINK进行设计和仿真。首先我进行了两种通信系统的建模以及不同信号系统的原理研究,然后将学习总结出的相应理论与SIMULINK中丰富的模块相结合实现仿真系统的建模,并且调整参数直到仿真波形输出,观察效果,最终对设计结论进行总结。 关键词通信系统调制 SIMULINK

目录 1. 前言 (1) 1.1选题的意义和目的 (1) 1.2通信系统及其仿真技术 (2) 3. 现代通信系统的介绍 (7) 3.1通信系统的一般模型 (7) 3.2模拟通信系统模型和数字通信系统模型 (7) 3.2.1 模拟通信系统模型 (7) 3.2.2 数字通信系统模型 (8) 3.3模拟通信和数字通信的区别和优缺点 (9) 4. 通信系统的仿真原理及框图 (12) 4.1模拟通信系统的仿真原理 (12) 4.1.1 DSB信号的调制解调原理 (12) 4.2数字通信系统的仿真原理 (16) 4.2.1 ASK信号的调制解调原理 (16) 5. 通信系统仿真结果及分析 (21) 5.1模拟通信系统结果分析 (21) 5.1.1 DSB模拟通信系统 (21) 5.2仿真结果框图 (24) 5.2.1 DSB模拟系统仿真结果 (24) 5.3数字通信系统结果分析 (28) 5.3.1 ASK数字通信系统 (28) 5.4仿真结果框图 (35) 5.4.1 ASK数字系统仿真结果 (35)

FM调制解调系统设计与仿真

贵州大学明德学院 《高频电子线路》 课程设计报告 题目:模拟角度调制系统 学院:明德学院 专业:电子信息工程 班级: 学号: 姓名:周科远 指导老师:宁阳 2012年1月 1日

《高频电子线路》课程设计任务书 一、课程设计的目的 高频电子线路课程设计是专业实践环节之一,是学习完《高频电子线路》课程后进行的一次全面的综合练习。其目的让学生掌握高频电子线路的基本原理极其构造和运用,特别是理论联系实践,提高学生的综合应用能力。 二、课程设计任务 课程设计一、高频放大器 课程设计二、高频振荡器 课程设计三、模拟线性调制系统 课程设计四、模拟角度调制系统 课程设计五、数字信号的载波传输 课程设计六、通信系统中的锁相环调制系统 共6个课题选择,学生任选一个课题为自己的课程设计题目,独立完成;具体内容按方向分别进行,不能有雷同;任务包括原理介绍、系统仿真、波形分析等;要求按学校统一的课程设计规范撰写一份设计说明书。 三、课程设计时间 课程设计总时间1周(5个工作日) 四、课程设计说明书撰写规范 1、在完成任务书中所要求的课程设计作品和成果外,要撰写课程设计说明书1份。课程设计说明书须每人一份,独立完成。 2、设计说明书应包括封面、任务书、目录、摘要、正文、参考文献(资料)等内容,以及附图或附件等材料。 3、题目字体用小三,黑体,正文字体用五号字,宋体,小标题用四号及小四,宋体,并用A4纸打印。

目录 摘要...................................................................I ABSTRACT .............................................................II 一.课程设计的目的与要求.. (1) 1.1课程设计的目的 (1) 1.2课程设计的要求 (1) 二.FM调制解调系统设计 (2) 2.1FM调制模型的建立 (3) 2.2调制过程分析 (3) 2.3FM解调模型的建立 (4) 2.4解调过程分析 (5) 2.5高斯白噪声信道特性 (6) 2.6调频系统的抗噪声性能分析 (9) 三.仿真实现 (10) 3.1MATLAB源代码 (11) 3.2仿真结果 (15) 四.心得体会 (18) 五.参考文献 (19)

数字通信系统的模型

数字通信系统的模型 ? 数字通信系统的分类 ?数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。 1. 数字频带传输通信系统 数字通信的基本特征是,它的消息或信号具有“离散”或“数字”的特性,从而使数字通信具有许多特殊的问题。例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。 另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。这是通过所谓的差错控制编码来实现的。于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。在数字通信中,称节拍一致为“位同步”或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。 综上所述,点对点的数字通信系统模型一般可用图1-3 所示。

需要说明的是,图中调制器/ 解调器、加密器/ 解密器、编码器/ 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。但在一个系统中,如果发端有调制/ 加密/ 编码,则收端必须有解调/ 解密/ 译码。通常把有调制器/ 解调器的数字通信系统称为数字频带传输通信系统。 2. 数字基带传输通信系统 与频带传输系统相对应,我们把没有调制器/ 解调器的数字通信系统称为数字基带传输通信系统,如图1-4 所示。 图中基带信号形成器可能包括编码器、加密器以及波形变换等,接收滤波器亦可能包括译码器、解密器等。 3. 模拟信号数字化传输通信系统 上面论述的数字通信系统中,信源输出的信号均为数字基带信号,实际上,在日常生活中大部分信号(如语音信号)为连续变化的模拟信号。那么要实现模拟信号在数字系统中的传输,则必须在发端将模拟信号数字化,即进行A/D 转换;在接收端需进行相反的转换,即D/A 转换。实现模拟信号数字化传输的系统如图1-5 所示。

实验三 Matlab的数字调制系统仿真实验(参考)

成都理工大学实验报告 课程名称:数字通信原理 姓名:__________________学号:______________ 成绩:____ ___ 实验三Matlab的数字调制系统仿真实验(参考) 1 数字调制系统的相关原理 数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,主要讨论二进制的调制与解调,简单讨论一下多进制调制中的差分相位键控调制(M-DPSK)。 最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK 和2-DPSK)。下面是这几种调制方式的相关原理。 1.1 二进制幅度键控(2-ASK) 幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1 或0 的控制下通或断,在信号为1 的状态载波接通,此时传输信道上有载波出现;在信号为0 的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1 和0。 幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。 2-ASK 信号功率谱密度的特点如下: (1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定; (2)已调信号的带宽是基带脉冲波形带宽的二倍。 1.2 二进制频移键控(2-FSK) 数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK

基于MATLAB的模拟调制系统仿真与测试(AM调制)

闽江学院 《通信原理设计报告》 题目:基于MATLAB的模拟调制系统仿真与测试学院:计算机科学系 专业:12通信工程 组长:曾锴(3121102220) 组员:薛兰兰(3121102236) 项施旭(3121102222) 施敏(3121102121) 杨帆(3121102106) 冯铭坚(3121102230) 叶少群(3121102203) 张浩(3121102226) 指导教师:余根坚 日期:2014年12月29日——2015年1月4日

摘要在通信技术的发展中,通信系统的仿真是一个重点技术,通过调制能够将信号转化成适用于无线信道传输的信号。 在模拟调制系统中最常用最重要的调制方式是用正弦波作为载波的幅度调制和角度调制。在幅度调制中,文中以调幅、双边带和单边带调制为研究对象,从原理等方面阐述并进行仿真分析;在角度调制中,以常用的调频和调相为研究对象,说明其调制原理,并进行仿真分析。利用MATLAB下的Simulink工具箱对模拟调制系统进行仿真,并对仿真结果进行时域及频域分析,比较各个调制方式的优缺点,从而更深入地掌握模拟调制系统的相关知识,通过研究发现调制方式的选取通常决定了一个通信系统的性能。 关键词模拟调制;仿真;Simulink 目录 第一章绪论 (1) 1.1 引言 (1) 1.2 关键技术 (1) 1.3 研究目的及意义 (2) 1.4 本文工作及内容安排 (2) 第二章模拟调制原理 (3) 2.1 幅度调制原理 (3) 2.1.1 AM调制 (4) 第三章基于Simulink的模拟调制系统仿真与分析 (6) 3.1 Simulink工具箱简介 (6) 3.2 幅度调制解调仿真与分析 (8) 3.2.1 AM调制解调仿真及分析 (8) 第四章总结 (12) 4.1 代码 (13) 4.2 总结 (14)

基于Matlab模拟通信系统仿真设计

目录 摘要------------------------------------------------------4 第一章课程设计容及要求--------------------------------4 1、课程设计的容-----------------------------------4 2、课程设计的要求-----------------------------------4 第二章通信系统的调制与解调------------------------------5 1、通信系统的概念----------------------------------5 2、调制和解调的概念--------------------------------6 第三章MATLAB软件及功能介绍------------------------------7 1、MATLAB软件简介-----------------------------------7 2、GUI功能简介--------------------------------------7 3、基于MATLAB相关函数介绍---------------------------8 第四章四种模拟信号的调制解调---------------------------10 1、AM的调制与解调---------------------------------10 2、DSB的调制与解调--------------------------------13 3、SSB的调制与解调--------------------------------16 4、FM的调制与解调---------------------------------19 5、GUI界面的设计----------------------------------23 第五章总结与结束语-------------------------------------25 1、各调制解调方式性能分析总结----------------------25

模拟通信系统性能指标

1.5.1 模拟通信系统性能指标 知识点归纳: 通信系统的主要性能指标通信系统的性能指标指涉及有效性、可靠性、标准性、经济性及可维护性等,但设计或评价通信系统的主要性能指标是传输信息的有效性和可靠性。有效性主要是指消息传输的“速度” ,而可靠性主要是指消息传输的“质量” 。 对于模拟通信系统来说,有效性可以用消息占用的有效带宽来度量,可靠性可以用接受端输出的信噪比来度量。对于数字通信系统来说,度量其有效性的主要性能指标是传输速率和频带利用率,可靠性主要指标是差错率。 数字系统的性能指标 有效性有效性时通信系统传输信息的数量上的表征,时指给定信道和时间内传输信息的多少。数字通信系统中的有效性通常用码元速率RB信息速率Rb和频带利用率衡量。 1.码元速率 码元速率RB也称为传码率、符号传输速率等定义:码元速率RB是指每秒钟传输码元的数目。单位:为波特(baud), 简记为B, 例如,某系统在 2 秒内共传送4800 个码元,则该系统的传码率为2400B 。 虽然数字信号由二进制和多进制的区分, 但码元速率与信号的进制无关, 只与一个码元占有时间Tb 有关, R B=1/Tb 。 2 . 信息速率 定义:信息速率(Rb)是指每秒传输的信息量。单位:比特/秒(bit/s ),简记(b/s) 例如,若某信源在 1 秒钟内传送1200 个符号,且每一个符号的平均信息量为l (bit ),则该信源的信息传输速率 =1200b/s 或1200bps 。对于传输二进制数字信号,则Rb 为二进制码元数目/秒,对于传输N 二进制数字信号,有Rb=RBlog2M 式中RB为M进制数字信号的码元速率。二进制时,码元速率与信息速率数值相等,只是单位不同。 3. 频带利用率在比较不同的数字通信系统的效率时,仅仅看他们的信息传输速率是不够的。因为即使是两个系统的信息传输的速率相同,他们所占用的频带宽度也可能不同。从而效率也不同。对于相同的信道频带,传输的信息量越来越高。所以用来衡量数字通信系统传输效率指标(有效性)应当是单位频带内的传输速率,即 n=符号传输速率/频带宽度(波特/赫) 对于二进制传输,则可以表示为 n=信息传输速率/频带宽度(比特/秒*.赫) 可靠性 可靠性是通信系统传输信息质量上的象征。指的是接收信息的准确程度。衡量数字通信系统可靠性的重要指标是错误率,具体地有误码率,具体地有误码率Pe和误信率Pb二种中表示方式 1 .误码率Pe 这个指标是多次统计结果的平均量,所以这里指的是平均误码率。例如:经长时间统计,平均传输1 0 0 0个 码元种错一个码元,则误码率Pe = 10 - 3 2. 误信率 显然在二进制种有Pe=Pb 错误率的大小由通路的系统特性和信道质量决定。而不同信号对错误了的要求为 10 - 3——10 - 6,而传输计算机的数据信息时常常要求更高,则Pb更小。当信道不能马民族要求时,必须家 纠错编码。最后需指出的是:可靠性和有效性指标是互相矛盾的和可以交换的,即可通过降低有效性的方法来提高 系统的可靠性,或反之.

MATLAB通信系统仿真心得体会

MATLAB通信系统仿真心得体会 课程名称(中文) MATLAB通信系统仿真成绩姓名班级学号日期 学习MATLAB通信系统仿真心得体会 经过一学期的MATLAB通信系统仿真的学习,使我对通信原 理及仿真实践有了更深层次的理解。在学习过程当中,了解到了MATLAB的语言基础以及应用的界面环境,基本操作和语法,通信仿真工具箱的应用,simulink 仿真基础,信号系统分析等一系列的内容。我明白学好这门课程是非常的重要。 在学习当中,我首先明白了通信系统仿真的现实意义,系统模型是对实际系统的一种抽象,是对系统本质(或是系统的某种特性)的一种描述。模型可视为对真实世界中物体或过程的信息进行形式化的结果。模型具有与系统相似的特性,可以以各种形式给出我们所感兴趣的信息。知道了通信系统仿真的必要性,利用系统建模和软件仿真技术,我们几乎可以对所有的设计细节进行分层次的建模和评估。通过仿真技术和方法,我们可以有效地将数学分析模型和经验模型结合起来。利用系统仿真方法,可以迅速构建一个通信系统模型,提供一个便捷,高效和精确的评估平台。明白了MATLAB通信系统仿真课程重点就是系统仿真软件 Matlab / Simulink 在通信系统建模仿真和性能评估方面的应用原理,通信系统仿真的一般原理和方法。 MATLAB集成度高,使用方便,输入简捷,运算高效,内容丰富,并且很容易由用户自行扩展,与其它计算机语言相比, MATLAB有以下显著特点:1.MATLAB是一种解释性语言;2(变量的“多功能性”;3.运算符号的“多功能性”;4(人机界面适合科技人员;5(强大而简易的作图功能;6(智能化程度高;7(功能丰富,可扩展性强。在MATLAB的Communication Toolbox(通 信工具箱)中提供了许多仿真函数和模块,用于对通信系统进行仿真和分析。

模拟与数字通信的简单比较Ⅰ

模拟通信就是在用户线上传输模拟信号的通信方式。 数字通信 是一种离散的、脉冲有无的组合形式,是负载数字信息的信号。最常见的数字信号是幅度取值只有两种(用0和1代表)的波形,称为“二进制信号”。“数字通信”是指用数字信号作为载体来传输信息,或者用数字信号对载波进行数字调制后再传输的通信方式。 随着超大规模集成电路工艺的成熟以及计算机和数字信号处理 技术的充分发展,数字通信发展迅速,大多数的模拟通信系统已被数字通信系统所取代。尽管在未来的一段时间内数字通信系统还不能完全取代模拟通信系统那个,但通信朝着数字化方向发展是不会改变的,这是由数字通信和模拟通信自身的特点所决定的。 两者的对比 数字通信与模拟通信相比,具有明显的优点: 首先是抗干扰、抗噪声能力强。模拟信号在传输过程中和叠加的噪声很难分离,噪声会随着信号被传输、放大、严重影响通信质量。比如说1用高电平来表示,0用低电平来表示。 一个模拟信号如果信号衰减20%的话,那就严重失真了。而一个高电平的信号衰减20%时,它还是代表1。因为数字通信是采用再生中继方式,能够消除噪音,再生的数字信号和原来的数字信号一样,

可继续传输下去,这样通信质量便不受距离的影响,可高质量地进行远距离通信。再有数字通信中的信息是包含在脉冲的有无之中的,只要噪声绝对值不超过某一门限值,接收端便可判别脉冲的有无,以保证通信的可靠性。其次,数字信号易于加密,信息传输比较安全。数字信号的特殊形式,使得信息加密变得十分容易。例如把信息比特率按一定的长度分组,用相同长度的一个比特率(称为密钥)与这些分组进行模二加,便完成了信息的加密。在接收端,用相同的密钥与接收到的序列模二加,就恢复为原来的信息序列。数字移动通信GSM 系统就是采用这方法对信息加密的。模拟信号虽然也可以加密,但操作起来要复杂得多。此外,数字通信设备的产品重复性好,有利于生产以及通信的发展和普及。 即使这样,与数字通信系统相比,模拟通信系统也有自己比较好的一面,设计较简单,电路的功率消耗一般比较低。 因此数字通信与模拟通信的区别具体说就是调制方式不同而已。模拟通信,技术很成熟,就是将模拟信号与载波进行调制,使其带有一定载波特性,又不失模拟信号的独特性,接受端通过低通滤波器,还原初始模拟信号。而数字信号,首先进行采样,对于采样幅值进行编码(0,1编码),然后进行调制,相移键控等,接受端还原即可,信号传输率高。相对而言,数字通信优于模拟通信。 从宏观看,世界通信方式,仍以电话为主,在电话通信中,则以程控交换和移动电话发展最快。目前模拟通信系统还在使用,但由于

MATLAB 2psk通信系统仿真报告

实验一 2PSK调制数字通信系统 一实验题目 设计一个采用2PSK调制的数字通信系统 设计系统整体框图及数学模型; 产生离散二进制信源,进行信道编码(汉明码),产生BPSK信号; 加入信道噪声(高斯白噪声); BPSK信号相干解调,信道解码; 系统性能分析(信号波形、频谱,白噪声的波形、频谱,信道编解 二实验基本原理 数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。 数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。 图1 相应的信号波形的示例 1 0 1 调制原理 数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的

相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。载波的初始相位就有了移动,也就带上了信息。 相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。在2PSK中,通常用初始相位0和π分别表示二进制“1”和“0”。因此,2PSK信号的时域表达式为(t)=Acos t+) 其中,表示第n个符号的绝对相位: = 因此,上式可以改写为 图2 2PSK信号波形 解调原理 2PSK信号的解调方法是相干解调法。由于PSK信号本身就是利用相位传递信息的,所以在接收端必须利用信号的相位信息来解调信号。下图2-3中给出了一种2PSK信号相干接收设备的原理框图。图中经过带通滤波的信号在相乘器中与本地载波相乘,然后用低通滤波器滤除高频分量,在进行抽样判决。判决器是按极性来判决的。即正抽样值判为1,负抽样值判为0. 2PSK信号相干解调各点时间波形如图 3 所示. 当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错.

模拟调制系统的设计

X x通大学信息科学与工程学院课程设计实验报告 姓名:学号 班级: 实验项目名称:模拟调制系统的设计 实验项目性质:设计性实验 实验所属课程:通信原理 实验室(中心):现代电子实验中心 指导教师: 实验完成时间: 2013 年 1 月 1 日

一、实验目的 1. 综合应用《Matlab编程与系统仿真》、《信号与系统》、《现代通信原理》等多门课程知识,使学生 建立通信系统的整体概念; 2. 培养学生系统设计与系统开发的思想; 3. 培养学生利用软件进行通信仿真的能力。 二、实验内容及要求 内容: 模拟调制系统:主要分为线性调制系统和非线性调制系统,其中线性调制分为AM、DSB、SSB、VSB,非线性调制主要为FM,主要完成FM调制。(至少选择2种方法)。调制在通信系统中有十分重要的作用。通过调制,不仅可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将信号转换成合适于传播的已调信号,而且它对系统的传输有效性和传输的可靠性有着很大的影响,调制方式往往决定了一个通信系统的性能。AM信号的调制属于频谱的线性搬移,它的解调往往采用非相干解调即包络解调方式;而FM信号的调制属于频谱的非线性搬移,它的解调有相干和非相干解调两种方式。 要求: 1.最多2人一组(2人一组必须连成系统) 2.对通信系统有整体的较深入的理解,深入理解自己仿真部分的原理的基础,画出对应的通信子系 统的原理框图 3.提出仿真方案; 4.完成仿真软件的编制 5.仿真软件的演示 6.提交详细的设计报告 三、实验原理 1.模拟通信系统设计原理 模拟通信系统的主要内容是研究不同信道条件下不同的调制解调方法。调制可以分为三类,即调幅(AM)、调频(FM)、调相(PM)。

模拟通信调制解调技术的仿真实现

南昌工程学院 《通信原理》课程设计 题目模拟通信调制解调技术的仿真实现—— 相角调制——频率调制 课程名称通信系统原理 系院信息工程学院 专业09通信工程 班级一班 学生姓名 学号 设计地点电子信息楼B405 指导教师侯友国 设计起止时间:2012年6月4日至2012年6月15日

目录 一、需求分析 (2) 二、系统总体设计 (2) 三、系统详细设计 (4) 1.解调过程分析 (4) 四、调试与维护 (5) 频率调制的Matlab演示源程序 (5) 六、参考文献 (8) 七、指导教师评阅(手写) (9)

)(K π <

(完整版)现代通信系统与网络课后题答案(部分)

第一章 1.你对信息技术如何理解?信息时代的概念是什么? 答:信息技术是研究完成信息采集、加工、处理、传递、再生和控制的技术,是解放、扩展人的信息功能的技术。概念是信息技术为核心推动经济和社会形态发生重大变革。 2.NII GII的含义是什么? 答:NII国家信息基础结构行动计划。GII全球信息基础设施。 3.现代通信的基本特征是什么?它的核心是什么? 答:现代通信的基本特征是数字化,核心是计算机技术。 4.数字通信与模拟通信的主要区别是什么?试举例说明人们日常生活中的信息服务,哪些是模拟通信,哪些是数字通信。 答:模拟信号的电信号在时间上、瞬时值上是连续的,模拟信号技术简单,成本低,缺点是干扰严重,频带不宽、频带利用率不高、信号处理难、不易集成和设备庞大等。数字信号在时间,瞬时值上是离散的,编为1或0的脉冲信号。 5.数字通信的主要特点有哪些? 答:数字通信便于存储、处理;数字信号便于交换和传输;数字信号便于组成多路通信系统;便于组成数字网;数字化技术便于通信设备小型化、微型化;数字通信抗干扰性强,噪声不积累。 6.为什么说数字通信抗干扰性强?噪声不积累? 答:在模拟通信中,由于传输的信号是模拟信号,因此

很难把噪声干扰分开而去掉,随着传输距离的增加,信号的传输质量会越来越恶化。在数字通信中,传输的是脉冲信号,这些信号在传输过程中,也同样会有能量损失,受到噪声干扰,当信噪比还未恶化到一定程度时,可在适当距离或信号终端经过再生的方法,使之恢复原来的脉冲信号,消除干扰和噪声积累,就可以实现长距离高质量的通信。 7.你对网络全球化如何理解?它对人类生活将带来什么样的影响? 答:我认为网络全球化是以内特网为全球范围的公共网,用户数量与日俱增,全球各大网络公司抢占内特网网络资源,各国政府高度重视,投资研发的网络,全球网络化的发展趋势是即能实现各国国情的应用服务,又能实现突破地区、国家界限的世界服务,使世界越来越小。 8.什么是现代通信?它与信息网关系如何? 答:现代通信就是数字通信系统与计算机融合,实现信源到信宿之间完成数字信号处理、传输和交换全过程。 信息网是多种通信系统综合应用的产物,信息网源于通信系统,但高于通信系统,通信系统是各种网不可缺少的物质基础。通信系统可以独立地存在并组成网络,而通信网不可能离开系统而单独存在。 9.信息网的网络拓扑结构有哪几种类型,各自有何特点? 答:有星型网,以一中点向四周辐射,现在的程控交换局与其所在的各电话用户的连线就是这种结构。

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

相关文档
相关文档 最新文档