文档库 最新最全的文档下载
当前位置:文档库 › 仿真实验中心要求

仿真实验中心要求

仿真实验中心要求
仿真实验中心要求

附件2

国家级虚拟仿真实验教学中心遴选要求

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

系统仿真示例

Flexsim应用案例示例 示例一港口集装箱物流系统仿真 (根据:肖锋,基于Flexsim集装箱码头仿真平台关键技术研究,武汉:武汉理工大学硕士学位论文,2006改编) 1、港口集装箱物流系统概述与仿真目的 1.1港口集装箱物流系统概述 1.2港口集装箱物流系统仿真的目的 2、港口集装箱物流系统的作业流程 2.1港口集装箱物流系统描述 2.2港口集装箱物流系统作业流程 2.3港口集装箱物流系统离散模型分析 3、港口集装箱物流系统仿真模型 3.1港口集装箱物流系统布局模型设计 3.2港口集装箱物流系统设备建模 3.3港口集装箱物流系统仿真 4、仿真运行及数据分析 4.1仿真运行及数据处理 4.2仿真数据的结果分析 小结与讨论 示例二物流配送中心仿真 (根据:XXX改编) 1、物流配送中心概述与仿真目的 1.1物流配送中心简介 1.2仿真目的 2、配送中心的作业流程描述 2.1配送中心的功能 2.2配送中心的系统流程

3、配送中心的仿真模型 3.1配送中心的仿真布局模型设计 3.2配送中心的设备建模 3.3配送中心的仿真 4、仿真运行及数据分析 4.1仿真运行及数据处理 4.2仿真数据结果分析 4.3系统优化 小结与讨论 “我也来编书”示例 示例一第X章排队系统建模与仿真学习要点 1、排队系统概述 2、排队系统问题描述 3、排队系统建模 4、排队系统仿真 5、模型运行与结果分析 小结 思考题与习题(3-5题) 参考文献 1、李文锋,袁兵,张煜.2010.物流系统建模与仿真(第6章) 北京:科学出版社 2、王红卫,谢勇,王小平,祁超.2009.物流系统仿真(第6章) 北京:清华大学出版社 3、马向国,刘同娟.2012.现代物流系统建模、仿真及应用案例(第5章)

摘自:HLA-RTI仿真平台的设计与实现

摘自:HLA-RTI仿真平台的设计与实现 1.有关术语: ●联邦(Federation:是指用于达到某一特定仿真目的的分布式仿真系统,它由若干相互作 用的联邦成员(简称成员)构成。 ●联邦成员:所有参与联邦运行的应用程序都可以称为联邦成员。联邦中的成员有多种 类型,如用于联邦数据采集的数据一记录器,用于和实物接口的实物仿真代理成员,用于管理联邦的联邦管理器等等,其中最典型的成员是仿真应用(Simulation)。仿真应用对某个实体的行为进行仿真。 ●OMT :是一种标准的结构框架,它是描述HLA 对象模型的关键部件。之所以采用标准 化的结构框架,是因为它可以做到以下几点: 1、提供一个通用的、易于理解的机制,用来说明联邦成员之间的数据交换和运行期间的协作。 2、提供一个标准的机制,用来描述一个潜在的、联邦成员所具备的与外界进行数据交换及协作的能力。 3、有助于促进通用的对象模型开发工具的设计和应用。 HLA OMT中,HLA定义了两类对象模型,FOM和SOM ●FOM (Federation Object Model):是描述仿真联邦的对象模型,主要目的是提供联邦成 员之间用公共的、标准化的格式进行数据交换的规范,它描述了在仿真运行过程中将参与联邦成员信息交换的对象类、对象类属性、交互类、交互类参数的特性。 ●SOM (Simulation Object Model):是单一联邦成员的对象模型,它描述了联邦成员可以 对外公布或需要订购的对象类、对象类属性、交互类、交互特性,这些反映了成员在参与联邦运行时具有的能力。基于OMT的 SOM开发是一种规范的技术和方法,它便于模型的建立、修改、生成和管理,便于对已开发的仿真资源的再利用,能够促进建模走向标准化。 ●MOM (Management Object Model):为了便于在仿真运行过程中对RT工、联邦以及联 邦成员进行监控和管理,HLA定义了管理对象模型(MOM )o MOM描述了一种使得对联邦的管理和控制信息能以一种和联邦成员间交互相一致的方式在联邦中传递的机制。联邦成员和RTI可以利用MOM来控制RTI、联邦乃至单个成员的运行,获取状态信息。 ●联邦执行数据文件(FED文件):是FOM开发的结果,是所有联邦成员间为交互(或互 操作)目的而达成的“协议”。它记录了在联邦运行期间所有参与联邦交互的对象类、交互类及其属性、参数和相关的路径空间信息。 ●对象类和类属性(Object Class&Attribute):对象类是指参与联邦交互的对象实例所属的 类别,对象类由类属性构成。对象实例是联邦中的交互实体,可持续存在。 ●交互类和参数(Interaction Class & Parameters):在HLA中,成员间的交互可以通过更新 /反射对象类属性来完成,也可以通过发送/接收交互实例完成。交互类由参数组成。交互类不可持续存在,它可代表瞬间的行为。 2.联邦和联邦成员规则: 规则和术语主要用来描述联邦对象模型FOM o RTI的规则比较简单,包括的联邦规则和联邦成员规则两个部分。可以简单地归纳如下: 联邦规则主要包括: 1、每个联邦必须有一个FOM,它与HLA OMT里定义的兼容。 2、联邦中,所有与仿真有关的对象实例应该在联邦成员中描述,而不是在RTI中。 3、联邦运行过程中,各联邦成员必须通过RTI进行交互。

电力电子电路分析与仿真实验报告模板

电力电子电路分析与仿真 实验报告 学院:哈尔滨理工大学荣成学院 专业: 班级: 姓名: 学号:

年月日 实验1降压变换器 一、实验目的: 设计一个降压变换器,输入电压为220V,输出电压为50V,纹波电压为输出电压的0.2%,负载电阻为20欧,工作频率分别为220kHz。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 四、实验原理图: 五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个

平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

实验2升压变换器 一、实验目的: 将一个输入电压在3~6V的不稳定电源升压到稳定的15V,纹波电压低于0.2%,负载电阻10欧,开关管选择MOSFET,开关频率为40kHz,要求电感电流连续。 二、实验内容: 1、设计参数。 2、建立仿真模型。 3、仿真结果与分析。 三、实验用设备仪器及材料: MATLAB仿真软件 五、实验原理图:

五、实验方法及步骤: 1.建立一个仿真模型的新文件。在MATLAB的菜单栏上点击File,选择New,再在弹出菜单中选择Model,这时出现一个空白的仿真平台,在这个平台上可以绘制电路的仿真模型。 2.提取电路元器件模块。在仿真模型窗口的菜单上点击Simulink调出模型库浏览器,在模型库中提取所需的模块放到仿真窗口。 3.仿真模型如图所示。 六、参数设置 七、仿真结果分析

系统仿真测试平台

仿真测试系统 系统概述 FireBlade系统仿真测试平台基于用户实用角度,能够辅助进行系统方案验证、调试环境构建、子系统联调联试、设计验证及测试,推进了半实物仿真的理论应用,并提出了虚拟设备这一具有优秀实践性的设计思想,在航电领域获得了广泛关注和好评 由于仿真技术本身具备一定的验证功能,因此与现有的测试技术有相当的可交融性。在航电设备的研制和测试过程中,都必须有仿真技术的支持:利用仿真技术,可根据系统设计方案快速构建系统原型,进行设计方案的验证;利用仿真验证成果,可在系统开发阶段进行产品调试;通过仿真功能,还可对与系统开发进度不一致的子系统进行模拟测试等。 针对航电设备产品结构和研制周期的特殊性,需要建立可以兼顾系统方案验证、调试环境构建、子系统联调联试、设计验证及测试的系统仿真平台。即以半实物仿真为基础,综合系统验证、系统测试、设备调试和快速原型等多种功能的硬件平台和软件环境。 目前,众多研发单位都在思索着如何应对航电设备研制工作日益复杂的情况。如何采取高效的工程技术手段,来保证系统验证的正确性和有效性,是航电设备系统工程的重要研究内容之一,FireBlade 系统仿真测试平台正是在这种大环境下应运而生的。 在航电设备研制工程中的定位设备可被认为是航电设备研制工程中的终端输出,其质量的高低直接关系到整个航电设备系统工程目标能否实现。在传统的系统验证过程中,地面综合测试是主要的验证手段,然而,它首先要求必须完成所有分系统的研制总装,才能进行综合测试。如果能够结合面向设备的仿真手段,则可以解决因部分设备未赶上研发进度导致综合测试时间延长的问题。在以往的开发周期中,面向设备的仿真技术并没有真正得到重视: (1)仿真技术的应用主要集中在单个测试对象上,并且缺乏对对象共性的重用; (2)仿真技术缺乏对复杂环境与测试对象的模拟; (3)仿真技术的应用缺乏系统性,比如各个阶段中仿真应用成果没有实现共享,

电路仿真实验报告

单片机原理及接口技术电路仿真实验报告 实验一:独立式键盘与LED显示示例 例4—17: 功能:数码管的数据端与P0口引脚采用正序,试编写程序,分别实现功能:上电后数码管显示“P”,按下任何键后,显示从“0”开始每隔1秒加1,加至“F”后,数码管显示“P”,进入等待按键状态。 Keil编程: 电路图: 初始状态时:

3 秒后:程序: TEMP EQU 30H ORG 0000H JMP START ORG 0100H START:MOV SP,#5FH MOV P0,#8CH MOV P3,#0FFH NOKEY:MOV A,P3 CPL A JZ NOKEY MOV TEMP,P3 CALL D10ms MOV A,P3 CJNE A,TEMP,NOKEY MOV R7,#16 MOV R2,#0 LOOP:MOV A,R2 MOV DPTR,#CODE_P0 MOVC A,@A+DPTR MOV P0,A INC R2 SETB RS0 CALL D_1S CLR RS0 DJNZ R7,LOOP JMP START D_1S:MOV R6,#100 D10:CALL D10ms DJNZ R6,D10 RET D10ms:MOV R5,#10 D1ms:MOV R4,#249 DL:NOP NOP DJNZ R4,DL DJNZ R5,D1ms RET CODE_P0:DB 0C0H,0F9H,0A4H,0B0H,99H, 92H,82H,0F8H DB 80H,90H,88H,83H,0C6H,0A1 H,86H,8EH END 例4—18: 功能:执行程序时,先显示“P” 1、按键K0按下后,数码管显示拨动开关S3~S0对应的十进制值; 2、按键K1按下后,P0口数码管显示拨动开关S3~S0对应的十六进制值; 3、按键K2按下后,P2口数码管显示拨动开关S3~S0对应的十六制值;

熊宏齐国家虚拟仿真试验教学项目建

全国高校虚拟仿真实验教学项目申报与虚拟仿真实验教学中心建设研讨会日程安排(2018.10.12南京)日期时间报告题目主讲专家地点 10月13日(周六)08:30—10:00国家虚拟仿真实验教学项目建 设相关政策文件解读 熊宏齐 教育部高等学校实验教学指导委员会秘书长,东南大 学实验室与设备管理处处长、教授,博士生导师。 白宫大酒 店四楼会 议室10:00—11:30国家虚拟仿真实验教学项目建 设思路、规划及目标解析 张剑荣 南京大学国家级化学实验教学示范中心主任,高等学 校国家级实验教学示范中心联席会化学学科组组长。 11:30—11:45交通运输类虚拟仿真实验教学 项目建设探索 陈峻 东南大学交通学院副院长,教育部交通运输工程专业 教学指导委员会交通工程分委会成员。 14:30—16:00 入选第一批国家虚拟仿真实验 教学项目建设与申报经验交流 分享 崔瑾 南京农业大学农业生物学虚拟仿真实验教学中心主 任,教授、博士生导师,高等学校国家级实验教学示 范中心联席会生物和食品学科组副组长。 16:00—17:00教育信息化及国家级虚拟仿真 实验教学中心建设 文福安 北京邮电大学国家级电子信息虚拟仿真实验教学中 心副主任,教授,教育部装备中心虚拟现实教育应用 研究院副院长。 17:00—17:30微电子虚拟智造工厂仿真项目 开发 龙绪明 西南交通大学教授,四川省电子协会SMT专委会副主 任委员,广东省电子协会SMT专委会高级顾问,《现 代电子技术》期刊编委。

17:30—17:45Unity助力教育虚拟仿真技术 的发展 刘玥 Unity大中华区市场经理,主要负责教育市场,Unity 社区UUG,UVP运营负责人,媒体关系负责人,一直致力于开发者生态的维护和建设,未来会在教育市场进行深耕以及拓展。 10月14日(周日)08:30—10:002018年度国家虚拟仿真实验教 学项目申报说明及申报辅导 张新民 河南省教育评估中心副主任,教授、博士生导师。教 育部高等学校实验教学指导委员会委员,教育部本科 教学评估专家。受教育部聘请多次参加国家级虚拟仿 真实验教学中心和实验教学示范中心评审工作。 白宫大酒 店四楼会 议室10:00—11:30 地方高等院校如何参与国家虚 拟仿真实验教学中心申报与建 设 艾宁 浙江工业大学国家级化学化工实验教学示范中心常 务副主任、国家级化学化工虚拟仿真实验教学中心常 务副主任、教授,博士生导师。 11:30—11:45校企共建示范性虚拟仿真实验 教学项目 刘鹏 山东捷瑞数字科技股份有限公司技术总监,示范性虚 拟仿真实验教学项目技术负责人。 14:30—17:30参观南京农业大学农业生物学虚拟仿真实验教学中心

电路仿真实验报告42016年度

电路仿真实验报告 实验一直流电路工作点分析和直流扫描分析 一、实验目的 (1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。 (2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。 二、原理与说明 对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。Pspice软件是采用节点电压法对电路进行分析的。 使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。存盘。然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。 三、实验示例 1、利用Pspice绘制电路图如下 2、仿真 (1)点击Psipce/New Simulation Profile,输入名称; (2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。点击确定。 (3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。 (4)如原理图无错误,则显示Pspice A/D窗口。

(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。 四、选做实验 1、直流工作点分析,即求各节点电压和各元件电压和电流。 2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化

曲线。 曲线如图: 直流扫描分析的输出波形3、数据输出为: V_Vs1 I(V_PRINT1) 0.000E+00 1.400E+00 1.000E+00 1.500E+00 2.000E+00 1.600E+00 3.000E+00 1.700E+00 4.000E+00 1.800E+00 5.000E+00 1.900E+00 6.000E+00 2.000E+00 7.000E+00 2.100E+00 8.000E+00 2.200E+00 9.000E+00 2.300E+00 1.000E+01 2.400E+00 1.100E+01 2.500E+00 1.200E+01 2.600E+00

虚拟仿真实验教学中心平台建设方案

湖北警官学院虚拟仿真实验教学建设方案 一、方案背景 虚拟仿真实验教学是高等教育信息化建设和实验教学示范中心建设的重要内容,是学科专业与信息技术深度融合的产物。为贯彻落实《教育部关于全面提高高等教育质量的若干意见》(教高〔2012〕4号)精神,根据《教育信息化十年发展规划(2011-2020年)》,教育部决定于2013年启动开展国家级虚拟仿真实验教学中心建设工作。其中虚拟仿真实验教学的管理和共享平台是中心建设的重要内容之一。 目前,大多数高校都有针对课程使用实验教学软件,但由于每个专业或课程的情况不同,购买的软件所采用的工作环境、体系结构、编程语言、开发方法等也各不相同。由于学校管理工作的复杂性,各校乃至校内各专业的实验教学建设大都自成体系,各自为政,形成了“信息孤岛”。主要面临如下问题:? 管理混乱,各种实验教学软件缺乏统一的集中管理。 ? 使用不规范,缺乏统一的操作模式和管理方式; ? 可扩展性差,无法支持课程和相应实验的扩展; ? 各系统的数据无法共享,容易形成“信息孤岛”; ? 缺乏足够的开放性; ? 软件部署复杂,不同的软件不能运行在同一台服务器上; 二、方案目标 该方案的目标就是高效管理实验教学资源,实现校内外、本地区及更广范围内的实验教学资源共享,满足多地区、多学校和多学科专业的虚拟仿真实验教学的需求。平台要实现学校购置的所有实验软件统一接入和学生在平台下进行统一实验的目的,通过系统间的无缝连接,使之达到一个整体的实验效果,学校通过该平台的部署,不仅可以促进系统的耦合度,解决信息孤岛的问题,还可以使学校能够迅速实施第三方的实验教学软件。 平台提供了全方位的虚拟实验教学辅助功能,包括:门户网站、实验前的理论学习、实验的开课管理、典型实验库的维护、实验教学安排、实验过程的智能指导、实验结果的自动批改、实验成绩统计查询、在线答疑、实验教学效

电路仿真实验报告

本科实验报告实验名称:电路仿真

实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,

将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描

DMAS飞行系统仿真平台

DMAS 大型专业飞行系统仿真平台 DMAS—专业、大型飞行系统仿真平台 DMAS(Design Model Acquisition and Simulation System for Aircraft)是中仿科技将航空航天 仿真技术与虚拟现实技术有机结合,创新研发出的具有自主知识产权的飞行系统仿真产品,由飞行器设计与仿真系统、飞行器数据记录与分析软件、飞行模拟器等组成大型综合研究和应用一体化软硬件系统平台,支持当前主流航空系统,满足飞行器研制试验、飞行模拟训练、科研教学等多种需求。DMAS综合应用平台综合技术性能达到国际领先水平,属国内首创。 DMAS应用领域: DMAS飞行系统仿真平台满足固定翼飞机、直升机、无人机等多种飞行器研制试验、飞行训练、科研教学的需求,遵循CAD、CAE、CAM产品全生命周期PLM构架,有效解决设计、仿真、模拟等系统问题。DMAS 采用创新技术,高端的系统仿真技术不再是科研院所独享的,飞速更新的专业虚拟现实技术的引入,则将工程师们从繁重的底层设计工作中解脱出来,有更多的时间创新思考,使得航空技术实现跨越式的发展。 飞机研究院所工程师、大学教师及学生、飞机设计及改装爱好者、专业的飞机拥有者、飞行员、飞 行教练或考官等用户均可应用DMAS完成飞机开发、仿真实验、任务演示验证、飞行训练模拟等多种任务。?研制试验 飞机总体设计:概念设计、系统设计、结构设计、翼型设计、发动机设计、费效设计、性能优化设计; 飞行模拟测试:动力学特性仿真测试,飞行模拟数据分析,仿真与试验数据对比分析,飞机特性分析与表征; 飞行任务模拟:遥测照相、侦测雷达、GPS导航预测、航空通讯、防空模拟、C4ISR系统;飞行安全事件现 场重建分析。 ?教学科研 理论基础教学:航空航天概论、飞行理论、飞行动力学、飞机性能分析、飞行控制等; 新概念飞机开发:各种新概念飞机设计、人机工程学、飞行姿态控制、航电设计、通讯设计、雷达设计、 航线设计、飞行软件开发等。 ?飞行训练 飞行操纵训练:固定翼飞机、直升机、UAV无人机操作训练,VFR/IFR飞行训练; 飞行执照备考:飞行员培训、私人飞机驾驶执照、商业飞机驾驶执照、民航飞行驾驶执照;

电源仿真实验报告.

电子技术软件仿真报告 组长: 组员: 电源(一)流稳压电源(Ⅰ)—串联型晶体管稳压电源 1.实验目的 (1)研究单相桥式整流、电容滤波电路的特性。 (2)掌握串联型晶体管稳压电源主要技术指标的测试方法。 2.实验原理 电子设备一般都需要直流电源供电。除少数直接利用干电池和直流发电机提供直流电外,大多数是采用把交流电(市电)转变为直流电的直流稳压电源。

直流稳压电源由电源变压器、整流、滤波和稳压电路四部分组成,其原理框图如图7.18.1所示。电网供给的交流电源Ui(220V,5OHz)经电源变压器降压后,得到符合电路需要的交流电压U2;然后由整流电路变换成方向不变、大小随时间变化的脉动电压U3;再用滤波器滤去其交流分量,就可得到比较平直的直流电压Ui。但这样的直流输出电压还会随交流电网电压的波动或负载的变动而变化。在对直流供电要求较高的场合,还需要用稳压电路,以保证输出直流电压更加稳定。 图7.18.2所示为分立元件组成的串联型稳压电源的电路图。其整流部分为单相桥式整流、电容滤波电路。稳压部分为串联型稳压电路它由调整元件(晶体管V1)、比较放大器(V2,R7)、取样电路(R1,R2,RP)、基准电压(V2,R3)和过流保护电路(V3及电阻R4,R5,R6)等组成。整个稳压电路是一个具有电压串联负反馈的闭环系统。其稳压过程为:当电网电压波动或负载变动引起输出直流电压发生变化时,取样电路取出输出电压的一部分送入比较放大器,并与基准电压进行比较,产生的误差信号经V2放大后送至调整管V1的基极,使调整管改变其管压降,以补偿输出电压的变化,从而达到稳定输出电压的目的。 由于在稳压电路中,调整管与负载串联,因此流过它的电流与负载电流一样大。当输出电流过大或发生短路时,调整管会因电流过大或电压过高而损坏坏,所以需要对调整管加以保护。在图7.18.2所示的电路中,晶体管V3,R4,R5及R6组成减流型保护电路,此电路设计成在Iop=1.2Io时开始起保护作用,此时输出电路减小,输出电压降低。故障排除后应能自动恢复正常工作。在调试时,若保护作用提前,应减小R6的值;若保护作用迟后,则应增大R6的值。 稳压电源的主要性能指标: (1)输出电压Uo和输出电压调节范围 调节RP可以改变输出电压Uo。 (2)最大负载电流Iom (3)输出电阻Ro 输出电阻Ro定义为:当输入电压Ui(指稳压电路输入电压)保持不变,由于负载变化而引起的输出电压变化量与输出电流变化量之比,即 (4)稳压系数S(电压调整率)

单相半波整流电路仿真实验报告

单相半波整流电路仿真实验报告 一、实验目的和要求 1.掌握晶闸管触发电路的调试步骤与方法; 2.掌握单相半波可控整流电路在电阻负载和阻感负载时的工作; 3.掌握单相半波可控整流电路MATLAB的仿真方法,会设置各个模块的参数。 二、实验模型和参数设置 1. 总模型图: 有效值子系统模型图: 平均值子系统模型图:

2.参数设置 晶闸管:Ron=1e-3,Lon=1e-5,Vf=,Ic=0,Rs=500, Cs=250e-9.电源:Up=100*, f=50Hz. 脉冲发生器:Amplitude=5, period=, Pulse Width=2 情况一:R=1Ω,L=10mH; a=0°or a=60°; 情况二:L=10mH; a=0°or a=60°; 三、波形记录和实验结果分析 (1)R=1Ω,L=10mH; a=0°时的波形图: (2)R=1Ω,L=10mH; a=60°时的波形图:

(3)L=10mH; a=0°时的波形图: (4)L=10mH; a=60°时的波形图:

在波形图中,从上到下依次代表电源电压、脉冲发生器电压、晶闸管的电流,、晶闸管两端电压、负载电流和负载两端电压。 分析对比这四张图可以知道,由于负载中有电感,因此晶闸管截止的时刻并不在电压源为负值的时刻,而是在流过晶闸管的电流为零的时刻;同时,在对比中可以发现在电感相同的情况下,电阻负载的存在会使关断时间提前。 1.计算负载电流、负载电压的平均值: 以R=1Ω,L=10mH时 o α = 负载电压的平均值为如下: o α 60 = 负载电压的平均值为如下:

基于GUI的仿真平台的设计

3 基于GUI的《信号与系统实验》仿真平台的设计 设计思想 3.1.1 设计步骤 本课题设计的界面布局是先设计GUI总界面,然后设计子界面,再在子界面上设置按钮、坐标轴、文本框等一系列控件,最后借助于callback函数调用程序。在函数调用程序的设计中先编写各个子界面中的回调函数下的程序,再编写GUI界面的回调函数下的程序。 1. 用MATLAB的GUIDE提供的创建图形界面工具设计整个实验仿真界面的主界面,在设计子界面; 2. 在实验子界面中添加各个控件对象,编写控件按钮回调函数,实现每个控件的控制功能,直接通过界面上的控件实现对结果的分析; 3. 最后编写GUI总界面的回调函数程序,把所有的子界面集合在总界面中,通过总界面可以进入任意子界面中并可以进行操作; 4. 退出实验界面。 设计流程如图3-1: 3.1.2

验界面、快速傅里叶实验界面。在菜单设计时,在实验子界面中除了使用系统约定的 菜单条外,还增加了几个控制背景和退出实验的菜单。系统的整体结构如图3-2所示: 图3-2 实验系统的整体结构 基于的系统总界面的设计 3.2.1 设计步骤 在GUIDE 的编辑界面中,在空白处双击或者单机右键选择property inspector , 出现属性设置对话框,可以对GUI 的属性风格进行个性化。Color 选项可以改变背景 颜色,选择自己喜欢的颜色,本课题是插入图片。Position 选项可以对界面窗口的大小进行调整,窗口的大小可以通过设置width 和height 进行调整,也可以用鼠标拖拽窗口,用鼠标拖拽窗口设置比较方便、快捷,也更容易设置适合于实验设计内容的大 小GUI 界面。 下面详细介绍主界面的设计过程: 点击运行MATLAB 软件后,在软件界面中直接点击GUIDE 工具,选择Create New GUI 中的Blank GUI(Defarlt)点击OK ,在弹出的新建窗口中拖入7个静态文本框 (Statec Text )和7个按钮(Push Button )如图3-4所示。设置静态文本的String 为“基于GUI 的信号与系统仿真实验平台的设计”Background Color 为浅红色, FontSize 为,Foreground Color 位黑色。依次设置另外六个静态文本框String 为“实 验一基本信号的产生”、“实验二信号的基本运算”、“实验三卷积”、“实验四傅里叶变 换”、“实验五连续系统零状态响应”、“实验六低通滤波器”这几个实验的Fonsize 为, 另外的六个按钮依次设计的Fonsize 为。点击每个实验后的按钮编写回调函数进入相 应的实验子界面中,也可参考图3-3流程: 的产生。 基 本信号信号的 基卷积 傅立叶变连续系统 低通滤波 主界面 退出界

国家级虚拟仿真实验教学中心入选名单

北京大学地球科学虚拟仿真实验教学中心教育部 中国人民大学基于大数据文科综合训练虚拟仿真实验教学中心教育部清华大学材料科学与工程虚拟仿真实验教学中心教育部 北京交通大学交通运输国家级虚拟仿真实验教学中心教育部 北京化工大学化工过程虚拟仿真实验教学中心教育部 北京邮电大学电子信息虚拟仿真实验教学中心教育部 中国农业大学机械与农业工程虚拟仿真实验教学中心教育部 中央美术学院艺术、设计与建筑虚拟仿真实验教学中心教育部 华北电力大学电力工业全过程仿真实验教学中心教育部 南开大学经济虚拟仿真实验教学中心教育部 天津大学化学化工虚拟仿真实验教学中心教育部 大连理工大学化学虚拟仿真实验教学中心教育部 东北大学机械装备虚拟仿真实验教学中心教育部 吉林大学地质资源立体探测虚拟仿真实验教学中心教育部 东北师范大学生物学虚拟仿真实验教学中心教育部 东北林业大学森林工程虚拟仿真实验教学中心教育部 同济大学力学虚拟仿真实验教学中心教育部 上海交通大学机电学科虚拟仿真实验教学中心教育部 华东理工大学石油和化工过程控制工程虚拟仿真实验教学中心教育部东华大学管理决策虚拟仿真实验教学中心教育部 南京大学社会经济环境系统虚拟仿真实验教学中心教育部 东南大学机电综合虚拟仿真实验教学中心教育部 河海大学力学与水工程虚拟仿真实验教学中心教育部 南京农业大学农业生物学虚拟仿真实验教学中心教育部 中国药科大学药学虚拟仿真实验教学中心教育部 浙江大学化工类虚拟仿真实验中心教育部 厦门大学机电类虚拟仿真实验教学中心教育部 山东大学医学虚拟仿真实验教学中心教育部 武汉大学电力生产过程虚拟仿真实验教学中心教育部 武汉理工大学水路交通虚拟仿真实验教学中心教育部 华中师范大学心理与行为虚拟实验教学中心教育部 中南财经政法大学经济管理行为仿真实验中心教育部 湖南大学机械工程虚拟仿真实验教学中心教育部 中南大学矿冶工程化学虚拟仿真实验教学中心教育部 中山大学医学虚拟仿真实验教学中心教育部 华南理工大学机械工程虚拟仿真实验教学中心教育部 四川大学华西临床虚拟仿真实验教学中心教育部 重庆大学能源与动力电气虚拟仿真实验教学中心教育部 西南交通大学交通运输虚拟仿真实验教学中心教育部 电子科技大学电子与通信系统虚拟仿真实验教学中心教育部 西南大学药学虚拟仿真实验教学中心教育部 西南财经大学现代金融虚拟仿真实验教学中心教育部 西安交通大学通信与信息系统虚拟仿真实验教学中心教育部 西安电子科技大学电子信息与通信虚拟仿真实验教学中心教育部

电路仿真实验报告

本科实验报告 实验名称:电路仿真 实验1 叠加定理的验证 1.原理图编辑: 分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators, Family:VOLTMETER 或

AMMETER)注意电流表和电压表的参考方向),并按上图连接; 2. 设置电路参数: 电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为10A。 3.实验步骤: 1)、点击运行按钮记录电压表电流表的值U1和I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3; 4.根据叠加电路分析原理,每一元件的电流或电压可以看成是每一个独立源单独作用于电路时,在该元件上产生的电流或电压的代数和。 所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真: 当电压源和电流源共同作用时,U1=-1.6V I1=6.8A. 当电压源短路即设为0V,电流源作用时,U2=-4V I2=2A 当电压源作用,电流源断路即设为0A时,U3=2.4V I3=4.8A

所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理 实验2 并联谐振电路仿真 2.原理图编辑: 分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,按上图连接并修改按照例如修改电路的网络标号; 3.设置电路参数: 电阻R1=10Ω,电阻R2=2KΩ,电感L1=2.5mH,电容C1=40uF。信号源V1设置为AC=5v,Voff=0,Freqence=500Hz。 4.分析参数设置: AC分析:频率范围1HZ—100MHZ,纵坐标为10倍频程,扫描点数为10,观察输出节点为Vout响应。 TRAN分析:分析5个周期输出节点为Vout的时域响应。 实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否正确,最后提交实验报告时需要将实验结果附在实验报告后。 根据并联谐振电路原理,谐振时节点out电压最大且谐振频率为w0=1/LC=1000 10,f0=w0/2 =503.29Hz 谐振时节点out电压 * 理论值由分压公式得u=2000/(2000+10)*5=4.9751V.

智能交通仿真平台的设计与实现

智能交通仿真平台的设计与实现 发表时间:2018-05-16T16:47:29.383Z 来源:《基层建设》2018年第3期作者:扈高云 [导读] 摘要:智能交通仿真系统是在各种先进的定位技术和通信技术等为基础下实现的一种交通仿真平台,该系统通过各种先进的设备的对车辆的定位、停车、收费等个方面进行系统的管理,逐渐形成一个完善的智能交通系统。为此,本文就智能交通仿真平台的设计进行了系统的分析,并且提出了有效地措施推动了智能交通仿真平台的进一步实现。 身份证号码:4305211991****6624 广东佛山 528000 摘要:智能交通仿真系统是在各种先进的定位技术和通信技术等为基础下实现的一种交通仿真平台,该系统通过各种先进的设备的对车辆的定位、停车、收费等个方面进行系统的管理,逐渐形成一个完善的智能交通系统。为此,本文就智能交通仿真平台的设计进行了系统的分析,并且提出了有效地措施推动了智能交通仿真平台的进一步实现。 关键词:智能交通;仿真平台;基础设施 引言:智能交通系统的实现需要的坚实的基础提供重要的保证,其中主要有完善的基础设施建设,监控系统、定位系统等了,并且利用目前先进的信息技术、控制技术、传输系统等,对路面上的运输进行全面的了解和控制,从而在实际情况下制定高效、精确、完善、合理的智能交通仿真系统,推动我国经济的持续发展。但是在实际的工作中,为了更好地实现智能交通仿真平台的设计和实现,需要相关部门从以下几个方面进行考虑。首先,相关部门可以尝试着引功用各种的智能交通的模式,并且在RFID定位技术的支持下,探索智能交通仿真平台的设计和实现。其次,尝试着将智能交通仿真系统应用与集成定位、交通信号灯的控制管理、车辆的运行和停放等各个模块[1]。最后,选择合适的体体验者投入到智能交通仿真系统的运行中,让体验着感受到该系统在运行中的优缺点,研究人员还应该积极的将各种先进的高科技技术的应用到系统的运行中,加深体验者对智能交通仿真系统的认识,从而不断的探索智能交通仿真系统的发展趋势。 1 智能交通仿真系统的相关概述 我国研究智能仿真系统的设计和实现的时间较短、理论依据等不充分,较西方发达国家来说,还存在很大的差异,就以欧洲、日本来说,这些国家的智能仿真系统已经在不断的研究中取得了较大的成果,并且开始致力于研究的更高层次的ITS系统。尤其是在美国,该国家TIS技术已经逐渐趋于成熟,并且已经从原来的汽车研究、道路研究逐渐转变为一切交通工具和交通系统的运行和研究中,并且致力于建立的完善的车辆运行管理系统、交通信号灯控制系统、车辆收费系统等多个电子系统。智能交通仿真系统在欧洲的使用情况来看,相关部门应该将的其应用与城市的发展规划和安全系统规划当中。 各国想要实现智能交通仿真平台,需要相应的技术支持,其中做重要的就是定位系统。因为在实施智能交通仿真平台的时候,需要动态的监测车辆的运行情况和运行的位置,然后才能够及时的了解周边的实际环境,制定切实可行的交通管理计划。而美国的全球定位技术和欧洲的卫星定位技术为智能交通仿真平台的设计和实现提供了重要的技术支持。 2 智能交通仿真平台的系统的设计 交通仿真系统的设计需要在各方面的技术支持下才能够得到科学的设计和规划,这个系统的主要功能是实现模型车辆的控制和管理等,缓解我国的交通压力,推动我国交通运输业的不断发展。 2.1 定位技术 技术人员需要在城市道路、公路、停车地点安装相应的的定位芯片,并且为这些定位芯片进行科学的编号结合分组,然后将这些芯片收集到的信息整理到一个数据库中,如果车辆中安装有读卡装置,当经过这些路段的时候系统就会自动的收集带车辆运行中的各种信息,然后将这信息反馈到的中央控制中心,从而获得车辆的动态定位信息[2]。 2.2 控制技术 在智能交通仿真平台的设计工作中通常会使用到各种模拟的车辆,而这些车辆需要有方向盘、刹车、档位等重要装置。当模拟人们在模拟驾驶车辆的时候,可以将车辆中的各种操作动作自动的转变化为相应的数据信息,并且这些信息会被车辆中的主控制系统收集和整理,然后在先进技术和软件的支持下进行数字化,这些信息会反馈到的模拟车辆的中心控制系统,促使车辆自动的依据下达指令,调整运行的速度、方向、档位等。 2.3 动态诱导技术 模型车辆的诱导功能可以分为两种情况,一种是车辆的动态运行诱导功能,一种是车辆的停车诱导功能。通常情况下,模型车辆的运行诱导功能需要及时的了解车辆运行的目的地以及当前的道路的实际情况,然后在通过一定的诱导计算,系统能够自动的为的车辆选择更加科学、合理的运行途径,从而实现车辆的动态运行诱导功能。而模型车辆的停车诱导则需要的在芯片数据库的帮助下实现,也就是说依据安装的的定位芯片来了解车辆所处位置的实际情况,例如:停车收费站、共同通车站等,从而诱导模型车辆选择合适的停车地点。 3 智能交通仿真平台的系统的实现 智能交通仿真平台的实现需要的通信技术和定位技术的共同支持,在整个系统的实现不仅需要车辆的定位系统的准确性,还需要系统的快捷、稳定的通信模块,然后在先进科学技术的支持下实现智能交通仿真系统的实现。 3.1 通信服务系统 智能交通仿真系统的是通过电子信息技术将各种数据库和传输装置相联系,从而实现各个子系统的连接。但是在实际的模型车辆中需要应用到各种通信接口,从而实现车辆运行中各种数据的收集、整理、分析。并且通信服务系统在实际的应用过程中还被分为以下两种模块。 一方面是的串口通信模块,这种通信模块通常是在各种先进及时的支持下运行的,其中主要是Net Framework2.0中的Serial Port类实现的串口通信模块。而Serial由依据自身的特性和功能被划分为,模型车辆驾驶控制中心的串口通信和模型车辆驾驶中的状态反馈串口通信这两种。通过这两个方面的共同合作,不仅能够有效的收集模型车辆在运行中发出的各种信号,并且在软件的支持下将控制信号转化成状态信号,然后整理到储存器中进行。还能够将的模型车辆驾驶舱发出的各种控制信进行采集,将采集到的控制信号储存在控制信号储存中。 另一方面是TCP通信模块,这种通信模块的运行和实现需要通过专业人员的编程,然后在Net Framework2.0中的Serial Port类的帮助下安装相应的软件和装置,从而对智能交通仿真系统运行和实现提供坚实的基础。并且,研究人员还将TCPCtient类进行仔细的研究,衍生

单管放大电路仿真实验报告

? 单管放大电路仿真实验报告 一、实验目的 1、 掌握放大电路支流工作点的调整与测量方法。 2、掌握放大电流主要性能指标的测量方法。 3、了解支流工作点对放大电路动态特性的影响。 4、掌握发射极负反馈电阻对放大电路性能的影响。 5、了解信号源内阻Rs 对放大电路频带(上限截止频率f H )的影响。 二、实验电路与实验原理图

2、直流通路 VCC 12V 将基极偏置电路用戴维南定理等效成电压源,得到支流通路。开路电压:V BB = V CC*R B2/(R B1 + R B2) 电源内阻:R B = R B1 // R B2 三、实验内容 1、静态工作点的调整 ※预习计算

直流工作点的调整 I CQ =1.0mA 时 3.3c R C CQ V R I V ==, 1.95BQ E CQ BE V R I V V ≈+= 12 '11 75.4//55.4CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω +=-=Ω -7.5C CEQ CC BQ R BE V V V V V V =-+= I CQ =2.0mA 时 6.6c R C CQ V R I V ==, 3.15BQ E CQ BE V R I V V ≈+= 12 ' 1140.8, //20.8CC BQ B CQ BQ B W B B V V R K I V R R R R K β-= =Ω+=-=Ω -3C CEQ CC BQ R BE V V V V V V =-+= 由此可以得到扫描参数时的大致范围 要求:调节RW ,在ICQ=1mA 和2mA 时,测量VCEQ 的值,并记录RB1的值。 操作:对R W 进行参数扫描,通过观察Rc 上的电压变化 可以得到 CQ I ( c CQ c U I R = ), Uc 可以通过V (Vcc )-V(4)得到,从而可以在扫描参数设备时通过跟踪Uc 得到CQ I 为一 定值时对应的V CEQ 以及相应的R W 。 仿真结果(设备参数扫描):

相关文档
相关文档 最新文档