文档库 最新最全的文档下载
当前位置:文档库 › 中频感应炉变频器主电路简介

中频感应炉变频器主电路简介

中频感应炉变频器主电路简介

2008年05月02日星期五08:44P.M.

中频感应炉变频器主电路简介

青华

中频感应炉变频器主电路简介

[siz e=2]图一是变频器的主电路原理图,主要由整流器(VT11-VT16),滤波器(LF),逆变器(VT21-VT24),并联负载(L、C)组成。整流器是将三相工频交流电转化成直流,滤波器是为了滤除整流电流纹波,并在整流和逆变之间隔离不同的纹波电压,逆变器将直流再变为单相中频交流,由线圈和补偿电容组成并联谐振负载。

零压启动是指在启动过程中,负载电压和电流是从零开始逐渐增长的一种软启动方式,该启动方式对电网的电流冲击几乎为零。

[attach]293[/attach]

图一:主电路原理图

图二是滤波电感之前的整流输出电压波形,各种波形分别对应于相控角α为0°、30°、60°、75°。

[attach]294[/attach]

图二:整流输出电压波形

图三是逆变器各部分的正常工作波形。图中(a)和(b)分别是两个对角桥臂晶闸管的门极脉冲波形;图(c)是逆变晶闸管电流波形,图中r是换相角;图(d)是逆变输出电流波形,图中虚线是基波正弦波;图(e)和图(f)分别是两对桥臂上晶闸管阴阳极之间的电压波形,波形中电压为零的部分是晶闸管导通区,波形中负电压的宽度δ/ω是供晶闸管关断的恢复时间,此时间必须大于晶闸管的关断时间,才能保证逆变器可靠工作;图(g)是逆变桥直流侧的电压波形;图(h)是逆变输出的电压波形,图中ø为逆变输出电流超前输出电压的相位角。

[attach]295[/attach]

图三:逆变桥工作波形图

一、控制电路原理及调试须知

为了更好地使用、维护此控制板,请在使用前仔细阅读本说明书。

特点:

●该控制板专为并联逆变器而开发。用于各种金属的熔炼,保温及感应加热设备的电源控制。

●控制板为单板全集成化控制板,采用数字触发,具有可靠性高、精度高、调试容易、继电元件少。

●先进的扫频式类它激零点压启动技术,使操作者无需选择启动电压和启动频率就能实现100%的成功启动。

●逆变控制参考美国ABB、PiIIar、Ajax公司,日本富士电机等国外先进控制技术,自行开发的逆变控制技术,具有极强的抗干扰能力。

●自动跟随负载变化,在运行时具有非故障性的自动再启动功能以及功率自动调节功能。

●具有理想的截流、截压、精确的关断时间或逆变角控制,保证设备可靠运行。

●具有完善的多级保护系统(水压、缺相、欠压、过流、过压、关断时间、直通、操作联锁等)具有较高的变频效率、1000H及以下大于97%。适合控制100KW~5000KW/150~4000HZ中频电源。

为了更好地使用、维护中央控制板,请在使用前仔细阅读本说明书。

特点:

●该控制板专为并联逆变器而开发。用于各种金属的熔炼,保温及感应加热设备的电源控制。

●控制板为单板全集成化控制板,采用数字触发,具有可靠性高、精度高、调试容易、继电元件少等特点。

●先进的扫频式类它激零点压启动技术,使操作者无需选择启动电压和启动频

率就能实现100%的成功启动。

●逆变控制是参考美国ABB、PiIIar、Ajax公司,日本富士电机等国外先进控制技术而自行开发的,具有较强的抗干扰能力。

●自动跟随负载变化,在运行时具有非故障性的自动再启动功能以及功率自动

调节功能。

●具有理想的截流、截压、精确的关断时间和逆变角控制,保证设备可靠运行。

●具有完善的多级保护系统(水压、缺相、欠压、过流、过压、关断时间、直

通、操作联锁等),具有较高的变频效率,1000HZ以下大于97%。

●适合控制100KW~3000KW/150~8000HZ中频电源。

1、控制电路原理

整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见控制电路原理图。高电压(大于380V)进线时,整流触发脉冲变压器与控制电路板分离。

1.1、整流触发工作原理

这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计数(时钟脉冲)的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉冲频率受α移相控制电压Vk的控制,Vk降低,则振荡频率升高,而计数器的计数量是固定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短,α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0°时开始计数。现假设在某Vk值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为25KHZ,则在计数到256个脉冲所需的时间为(1/25000)×256=10.2(mS),相当于约180°电角度,该触发器的计数清零脉冲在同步电压(线电压)的30°处,这相当于三相全控桥式整流电路的β=30°位置,从清零脉冲起,延时10.2mS产生的输出触发脉冲,也即接近于三相桥式整流电路某一相晶闸管α=150°位置,如果需要得到准确的a=150°触发脉冲,可以略微调节一下电位器。显然,有三套相同的触发电路,而压控振荡器和VK控制电压为公用,这样在一个周期中产生6个相位差60°的触发脉冲。

数字触发器的优点是工作稳定,特别是用HTL或CMOS数字集成电路,则可以有很强的抗干扰能力。

IC16A及其周围电路构成电压频率变换器VFC,其输出信号的频率随调节器的输出电压VK而线性变化。这里微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。

三相同步信号直接由晶闸管的门极引线K4、K6、K2从主回路的三相进线上取得,由R23、C1、R63、C40、R102、C63进行滤波及移相,再经6只光电耦合器进行电位隔离,获得6个相位互差60度、占空比略小于50%的矩形波

同步信号(如IC2C、IC2D)的输出。

IC3,IC8,IC12(4536)计数器构成三路数字延时器。三相同步信号对计数器进行复位后,对电压频率变换器的输出脉冲每计数256个脉冲便输出一个延时脉冲,因计数脉冲的频率是受VK控制的,换句话说,VK控制了延时脉冲。

计数器输出的脉冲经隔离、微分后,变成窄脉冲,送到后级的LM556,它既有同步分频器功能,亦有定输出脉宽的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶体管放大,驱动脉冲变压器输出。具体的时序图见附图。

1.2、调节器工作原理

调节器部分共设有四个调节器:电压调节器、电流调节器、阻抗调节器、逆变角调节器。其中电压调节器、电流调节器,组成常规的电流、电压双闭环系统,在启动和运行的整个阶段,电流环始终参与工作,而电压环仅工作于运行阶段;另一阻抗调节器,从输入上看,它与电流调节器LT2的输入完全是并联的关系,区别仅在于阻抗调节器的负反馈系数较电流调节器的略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。

调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的时候,由于阻抗调节器的反馈系数略大,阻抗调节器的给定小于反馈,阻抗调节器便工作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全是一个标准电压,电流双闭环系统;另一种情况是直流电压已经达到最大值,电流调节器开发始限幅,不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节器来说,当反馈电流信号比给定电流略小时,阻抗调节器工作,若负载等效电阻RH的继续增大,逆变θ角亦相应增大,直至

最大逆变θ角。逆变角调节器用于使逆变桥能在某一θ角稳定的工作。

中频电压互感器过来的中频电压信号由CON2—1和CON2—2输入后,分为两路一路送到逆变部分,另一路经D7—D10整流后,又分为三路,一路送到电压调节器;一路送到过电压保护;一路用于电压闭环自动投入。

电压PI调节器由IC1A组成,其输出信号由IC13D进行钳位限幅。IC13C和IC21C组成电压闭环自动投入电路,DIP—3开关用于电压开环调试,内环采用了电流PI调节器进行电流自动调节,控制精度在1%以上,由主回路交流互感器取得的电流信号,从CON2—3、CON2—4、CON2—5输入,经二极管三相整流桥(D11~D16)整流后,再分为三路。一路作为电流保护信号,另一路作为电流调节器的

反馈信号,还有一路作为阻抗调节器的反馈信号。由IC17B构成电流PI调节器,然后由IC17A隔离,控制触发电路的电压频率变换器VFC。

IC17C构成阻抗调节器,它与电流调节器是并列的关系。用于控制逆变桥的引前角,其作用可间接地达到恒功率因数,DIP—1可关掉此调节器。

1.3、逆变部分工作原理

本电路逆变触发部分,采用的是扫频式零压软起动,由于自动调频的需要,虽然逆变电路采用的是自励方式,控制信号也是取自负载端,但是主回路上无需附加的起动电路,不需要预充磁或预充电的起动过程,因此主回路得以简化,但随之带来的问题是控制电路较为复杂。

逆变起动过程大致是这样的:在逆变电路起动前,先以一个高于槽谐振频率的它激信号去触晶闸管,当电路检测到主回路直流电流时,便控制它激信号的频率从高向低扫描,当它激信号频率下降到接近槽路谐振频率时中频电压便建立起来,并反馈到自动调频电路,控制逆变引前角,使设备进入稳态运行。

若一次起动不成功,即自动调频电路没有抓住中频电压反馈信号,此时,它激信号便会一直扫描到最低频率,重复起动电路一旦检测到它激信号进入到最低频段,便进行一次再起动,把它激信号再推到最高频率,重新扫描一次直至起动成功,重复起动的周期约为0.5秒钟,完成一次起动到满功率运行的时间不超过10S。

由CON2—1和CON2—2输入的中频电压信号,经变压器隔离送到中频起动控制器,控制器输出的信号经微分后由IC18B和IC20B变成窄脉冲输出,驱动逆变末极MOS晶体管。IC20A构成频率电压变换器FVC,用于驱动频率表。W7用于整定频率表的读数,IC18A构成过电压保护振荡器,当逆变桥发生过电压时,振荡器起振,使逆变桥的4只晶闸管导通。

IC19D为起动失败检测器,其输出控制重复起动电路,IC19A为起动成功检测器,其输出控制中频电压调节器的输出限幅电平,即主回路的直流电流,W6为逆变它激信号的最高频率设定电位器。

1.4、启动演算工作原理

过电流保护信号经IC13B倒相后,送到IC5A组成的过电流截止触发器,封锁触发脉冲(或拉逆变);驱动“过流”指示灯亮和驱动报警继电器。过电流触发器动作后,只有通过复位信号或通过关机后再开机进行“上电复位”,方可再次动行。通过W2微调电位器可整定过流电平。

当三相交流输入缺相时,本控制板均能对电源实现保护和指示。其原理是:由4#、6#、2#晶闸管的阴极(K)分别取A、B、C三相电压信号(通过门极引线),经过光电耦合器的隔离送到IC14及IC16进行检测和判别,一旦出现“缺相”故障时,除了封锁触发脉冲外,还驱动“缺相”指示灯以及报警继电器。

为了使控制电路能够更可靠准确的运行,控制电路上还设置了启动定时器和控制电源欠压检测保护。在开机的瞬间,控制电路的工作是不稳定的,设置一个3秒钟左右的定时器,待定时后,才容许输出触发脉冲,这部分电路由C11、R20等元件构成,若由于某种原因造成控制板上直流供电电压过低,稳压器不能稳压,亦会使控制出错。设置一个欠压检测电路(由DW4、IC9B等组成),当VCC电压低于12.5V时便封锁触发脉冲,防止不正确的触发。

自动重复起动电路由IC9A组成。DIP—2开关用于关闭自动重复起动电路。IC5B组成过电压截止触发器,封锁整流桥触发及脉冲(或拉逆变);驱动“过压”指示灯亮和驱动报警继电器;通过Q9使过压保护振荡器IC18A起振。过电压触发器动作后,也像过流触发器一样,只有通过复位信号或通过关机后再开机进行“上电复位”,方可再次运行,调节W1微调电位器可整定过压电平。

Q7及周围电路组成水压过低延时保护电路,延时时间约8秒。

复位开关信号由CON2—6、CON2—7输入,闭合状态为复位暂停。

2、各部分调试简介

2.1、整流部分的调试

调试前,应该使逆变桥不工作,例如:把平波电抗器的一端断开或断开逆变末级的输入线,使逆变桥的晶闸管无触发脉冲,再在整流桥口接入一个约1~2KW 的电阻性负载。电路板上的If微调电位器W2顺时针旋至灵敏最高端,(调试过程发生短路时,可以提供过流保护)。主控板上的DIP开关均拨在ON位置;用示波器做好测量整流输出直流电压波形的准备;把面板上的“给定”电位器逆时针旋至最小。

送上三相供电(可以不分相序),检查是否有缺相报警指示,若有,可以检查进线快断器是否损坏。速熔

把面板上的“给定”电位器顺时针旋大,直流电压波形应该几乎全放开,再把面板上的“给定”电位器逆时针旋至最小,调节控制板上的W4微调电位器,使直流电压波形全关闭,移相角约120度。输出直流波形在整个移相范围内应该是连续平滑的。

把逆变桥接入,使逆变触发脉冲投入,把电路板上的Vf微调电位器W1顺时针旋至灵敏最高端,(调试过程了发生逆变过压时,可以提供过压保护)。把面板上的“给定”电位器顺时针稍微旋大,这时逆变桥便工作当出现直通现象时,继续把面板上的“给定”电位器顺时针旋至一半,此时直流电流表应指示到额定电流的25%左右,若电流表的指示不为额定值的25%,可调节控制板上的W2电流反馈微调电位器,使直流电流表指示到额定输出电流的25%左右。一旦逆变起振后,直流电流就可接近额定电流值,精确的额定电流整定,要在满负荷运行时才可进行。

若把面板上的“给定”电位器顺时针稍微旋大,逆变器便起振不出现直通现象,可调整中频电压互感器的相位,即把中频电压互感器20V绕组的输出线对调一下,就不会起振了。

这样整流桥的调试就基本完成,可以进行逆变桥的调试。

2.2、逆变部分的调试

2.2.1首先应校准频率表。用示波器测逆变触发脉冲的它激频率(它激频率可以通过W6来调节),调节W7微调电位器,使频率表的读数与示波器测得相一致。

2.2.2起振逆变器,调节控制板上的W6微调电位器,使其略高于槽路的谐振频率,W3、W5微调电位器旋在中间位置。把面板上的“给定”电位器顺时针稍微旋大,这时它激频率开始扫描,逆变桥进入工作状态,当起动成功后,控制板上“p.p”指示灯会熄灭,可以把面板上的“给定”电位器旋大、旋小反复操作,这样,它激信号也反复作扫频动作,若不起振,可调整中频电压互感器的相位,即把中频电压互感器20V绕组的输出线对调一下,此步骤的调试,亦可使DIP—2和DIP—3开关处在OFF位置,此时加入了重复起动功能,电压环也投入工作。

2.2.3逆变起振后,可做整定逆变引前角的工作,把DIP—1开关打在OFF 位置,调节W5微调电位器,使中频输出电压与直流电压的比为1.2左右(若换相重叠角较大,可适当增大此比例值);再把DIP—1开关打在ON位置调节W3微调电位器,使中频输出电压与直流电压的比为1.5左右(或更高)此项调试工作在较低的中频输出电压下进行。注意,必须先调1.2倍关系,再调1.5倍关系,否则顺序反了,会出现互相牵扯的问题。

2.2.4下一步可以在轻负荷的情况下整定电压外环。主控板上的DIP—3开关拨在OFF位置,W1微调电位器顺时针旋至最大,把面板上的“给定”电位器顺时针旋至最大,逆时针调节W1微调电位器,使输出的中频电压达到额定值,在这项调试中,可见到阻抗调节器起作用的现象,即直流电压不再上升,而中频输出电压却还能继续随“给定”电位器的旋大而上升。

2.3、过压保护

控制电路上已经把过压保护电平固定在额定输出电压的1.2倍上,当进行额定电压整定时,过压保护就自动整定好了,若觉得1.2倍不合适,可改变控制板上的R13电阻值,增大R13,过压保护电平增高;反之减小。

2.4、额定电流整定

在满负荷下,调节控制板上的W2电流反馈微调电位器,使直流电流

表达到额定值。

3、注意事项

3.1、调试需准备的工具

一台20M示波器,若示波器的电源线是三芯插头时,注意“地线”千万不能接,示波器外壳对地需绝缘,仅使用一踪探头,示波器的X轴,Y轴无需较准,探头需在测试信号下补偿好。

若无高压示波器探头,应用电阻做一个分压器,以适应600V电压测量。

一个≤500Ω、≥500W的电阻性负载。

3.2、整流部分调试中的问题

若在整流部分调试中,发现出不来6个整流波头,则应检查6只整流晶闸管的序号是否接对,晶闸管的门极线是否接反或短路。

在整流部分调试过程中也间接检查了面板上的“给定”电位器是否接反,接反了则会出现直流电压几乎为最大,只有把“给定”电位器顺时针旋到头时,直流电压才会减小的现象。

3.3、整定额定输出电流的注意事项

上电数钞钟后,把面板上的“给定”电位器顺时针慢慢地旋大,这时逆变桥会出现两种工作状态,一种是逆变桥起振,另一种是逆变桥直通。此时需要的是逆变桥直通,若逆变桥为起振状态,可在停电的状态下,调节中频电压互感器的相位,即把中频电压互感器20V绕组的输出线对调一下,就不会起振了。在缓慢旋大面板上“给定”电位器的操作中,就密切注意电流表的反应,若电流表的指示迅速增大,则应迅速把“给定”电位器逆时针旋下来,此时表明电流取样电路有问题,系统处于电流开环状态,应检查电流互感器是否接对,特别是5A:0.1A 电流互感器的原、付边是否接反,0.1A绕组上的68Ω电阻是否接上。正常表现是随着“给定”电位器的缓慢加大,电流表的指示也跟着增大,当停止旋转“给定”电位器时,电流表的指示能稳定的停在某一刻度上。

当出现直通现象时,继续把面板上的“给定”电位器顺时针旋大,使直流电流表指示到额定电流的20%左右,用示波器观察主控板上D16的正极波形,即电流取样波形,(示波器探头的地线夹在主控板的跳线上),正常的电流取样波形应该是6个负极性波头的高低一致,若波头相差太大,说明电流互感器的同名端没有接对,必须改对,否则会影响电流调节器的正常工作。

需要指出的是,当平波电抗器的直流电阻较小时,在直通状态下作额定电流的整定,会出现直流电流振荡的现象,可在直流回路里串一点电阻加以解决,另外,水冷装置在此项调试时,必须通水冷却。

当调试场地的电源供不出装置的额定电流时,额定电流的整定,可放在现场满负荷运行时进行,这与一般的中频电源的电流整定是一样的,但是,应先在小电流的状况下,判定一下电流取样回路的工作是否正常,

3.4、校准频率表

若中频电源用的是专用中频频率表,则可免去此步调试,但还是推荐使用直流毫安表头改制的频率表,这一方面是可以测得最高它激频率,另一方面是价格便宜。

3.5、逆变脉冲的简便检查

为了判断逆变晶闸管的门极线连接是否正确,首先检查逆变末级上的LED亮度是否正常,不太亮则说明逆变末级的E和C接反了;再把主控板上CON3—5对外的连线解掉,看熄灭的LED逆变末级是否处在逆变桥的对角线位置。

3.6、逆变不起振

若把中频电压互感器20V绕组的输出线对调后,仍然起动不起来,此时应确认一下槽路的谐振频率是否正确,可以用电容/电感表测量一下电容器的电容量及感应器的电感量,计算出槽路的谐振频率,当槽路的谐振频率处在最高它激频率的0.6~0.9的范围内时,起动应该是很容易的,再就是检查一下逆变晶闸管是否有损环的。

3.7、整定逆变引前角中的问题

逆变起振后,可做整定逆变引前角的工作,把DIP开关均打在OFF位置,用示波器观察电压互感器100V绕组的波形,调节主控板上W5微调电位器,使逆变换相引前角在22°左右,此时中频输出电压与直流电压的比为1.2左右(若换相重叠角较大,可适当的增大此比例值),此步整定的是最小逆变引前角,一般希望它仅可能的小,当然过小的逆变换相引前角会使逆变换相失败,表现为中频电压升高时,会出现重复起动。

再把DIP—1开关打在ON位置,调节主控板上W3微计电位器,整定最大逆变换相引前角。根据不同的中频输出电压的要求,最大逆变换相引前角亦不同,如中频装置的三相输入电压为380V,额定中频输出电压为750V时,则要求最大逆变换相引前角在42°左右,此时,中频输出电压与直流电压的比为1.5;若中频装置的三相输入电压仍为380V,而额定中频输出电压为1000V,则要求最大逆变换相引前角在56°左右,此时,中频输出电压与直流电压的比为2.0。一般希望它尽可能的大些,这在系统输入电压偏低时,仍可保证中频输出电压到额定值。当系统输入电压偏高时,由于有电压调节器的作用,中频输出仍然不会出现过电压。

此项调试工作可在较低的中频输出电压下进行。注意,必须先调最小逆变引前角,再调最大逆变引前角,否则顺序反了,会出现互相牵扯的问题。有时由于电压表不准,给调试带来错误的结论,所以应以示波器测得的引前角为准。

调试中若出现逆变引前角调不小的现象,在排除了槽路谐振频率过低的原因后,应检查逆变晶闸管是否都工作了,当只有三只晶闸管工作时,就会出现逆变引前角过大的现象。

3.8、额定输出电压的整定

在轻负荷的情况下整定额定输出电压。在这项调试中,可见到阻抗调节器起作用的现象,即直流电压不再上升,而中频输出电压却还能继续随“给定”电位

器的旋大而上升。在不整定额定输出电压时,应在直流电流低于额定电流的条件下进行,否则会由于电流调节器的作用,使中频输出电压调不上去。

3.9、它激频率

一定要使它激频率高于槽路可能的最大谐振频率,否则,系统由于它激频率的“拽着”而不能正常运行,它激频率高于槽路可能的最大谐振频率1.2倍是合适的。

3.10、恒功率输出

对熔炼负载来说,恒功率输出是很重要的,要想使恒功率区的范围大,就要使逆变引前角从最小变到最大的范围尽可能的大,同时负载阻抗的匹配也很重要,即使不是熔炼负荷,这样做也有利于提高整流功率因数。

二、调试步骤、方法及维护

1、静态检查

中频电源安装完毕或送至现场后,必须做以下检查:

1、核对主电路与控制线路的接线,它们必须与图纸相符。

2、检查所有主电路的连接螺丝,并逐一进行紧固。

3、检查面板上各种指示仪表及指示灯是否有松脱。

4、检查各个晶闸管的阻容吸收线是否接可靠。

5、用万用表测量主电路晶闸管阴阳间电阻,初步判断元件的好坏,在有水情况下,一般整流管大于50KΩ,逆变管大于20KΩ属正常。

6、检查各进出水,保证各种不能有漏水现象。

7、检查绝缘,用万用表测量主电路,控制电路对地(壳体)间的电阻,一般应大于15KΩ(通水)。

8、接地检查,设备的外壳必须进行安全接地。

2、动态检查

静态检查完毕无误方可进行动态检查。

1、相序检查。晶闸管中频电源对电源相序有严格的要求,在主电路通电以前必须对电源的相序进行检查,检查的方法为,用双踪示波器A(B或C)相电压(注意幅值衰减),如相序不正确,只须将三电缆进行任意调换即可。

2、脉冲检查

3、整流波形检查。将主电路从分流器后侧断开处和另一直流侧之间接一负载(用2只200W灯泡相串或一只电炉),用示波器观察整流电压表两端波形,当功率调节使α为0°时,对应的直流电压为500V左右,波形应为圆滑的六波头,说明整流正常。

4、中频电源启动。在以上各项检察均正常后方可启动中频。启动顺序为:先打开控制电源开关,再合上主电路,然后按中频启动按钮,缓慢调节功率电位器,使直流电压逐渐增加,若能听到中频叫声则启动成功。若启动不成功,对新装电源可调整中频电压的极性,或将启动引前角少调大再试,直至启动成功为止。启动成功后,调节引前角使中频电压的比值为1.3~1.5倍较合适。

5、截压整定。

6、截流整定。

3、维护须知

晶闸管变频装置与中频发电机组比较,有耗电少,无噪音,调节方便等许多优点,但是,半导体器件的过载能力较差,因此,合理使用,正确操作与精心维护,是晶闸管变频电源安全运行,避免故障的重要保证。在连续运行的生产线上,搞好装置的维护保养尤为重要。

3.1、经常清除配电柜内的积尘,尤其是晶闸管管芯外部,要用酒精擦拭干净。运行中的变频装置,一般都是专用机房,但实际作业环境并不理想。在熔炼、锻压工作时,粉尘很大,震动强烈;在淬火工作时,装置常靠近酸洗、磷化等作业设备,有较多的腐蚀性气体。这些都会表面放电现象。因此,必须注意经常的清洁工作,防止故障发生。

3.2、经常检查水管接头是否扎结牢固,清洁冷却水管内的水垢和堵塞物。在水管老化产生裂纹时,应及时更换。装置在夏天运行时,晶闸管管芯外部容易结露,引起晶闸管阳极与阴极间严重漏电,应考虑减小进出水温差,结露严重时应停止运行。

3.3、定期对装置进行检修,对装置各部的螺丝、螺母、压接件进行检查、紧固;接触器、继电器的触头有松动、接触不良,无应及时修理、更换,不要勉强使用,以免引起更大的事故。定期校验装置的过流过压、截流截压整定值,检查保护系统动作可靠性,防止保护失灵。

3.4、经常检查负载的接线是否完好,绝缘是否可靠,透热感应器内积存的氧化皮要及时清理;隔热炉衬有裂纹时要适时更换;熔炼炉在更换新炉衬后,应注意检查绝缘。变频装置的负载放置在工作现场,故障率比较高,而往往被人们忽视,加强对负载的维护,防止故障波及变频器,是保证设备安全运行的重要一环。[/siz e]

变频器基本电路图

变频器基本电路图目前,通用型变频器绝大多数是交—直—交型变频器,通常尤以电压器变频器为通用,其主回路图(见图1.1),它是变频器的核心电路,由整流回路(交—直交换),直流滤波电路(能耗电路)及逆变电路(直—交变换)组成,当然还包括有限流电路、制动电路、控制电路等组成部分。 1)整流电路 如图1.2所示,通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。 2)滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 3)逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。 通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。 逆变电路中都设置有续流电路。续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。为异步电动机的再生电能反馈至直流电路提供通道。在逆变过程中,寄生电感释放能量提供通道。另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护 1、概述 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机 60Hz 1,800 [r/min],4极电机 50Hz 1,500 [r/min],电机的旋转速度同频率成比例。本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机

继电器控制电路模块及原理讲解

继电器控制电路模块及原理讲解 发布: 2011-9-8 | 作者: —— | 来源:huangguohai| 查看: 564次| 用户关注: 能直接带动继电器工作的CMOS集成块电路在电子爱好者认识电路知识的的习惯中,总认为CMOS 集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-DC12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下:CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的 能直接带动继电器工作的CMOS集成块电路 在电子爱好者认识电路知识的的习惯中,总认为CMOS集成块本身不能直接带动继电器工作,但实际上,部分CMOS集成块不仅能直接带动继电器工作,而且工作还非常稳定可靠。本实验中所用继电器的型号为JRC5M-D C12V微型密封的继电器(其线圈电阻为750Ω)。现将CD4066CMOS集成块带动继电器的工作原理分析如下: CD4066是一个四双向模拟开关,集成块SCR1~SCR4为控制端,用于控制四双向模拟开关的通断。当SCR1接高电平时,集成块①、②脚导通,+12V→K1→集成块①、②脚→电源负极使K1吸合;反之当SCR1输入低电平时,集成块①、②脚开路,K1失电释放,SC R2~SCR4输入高电平或低电平时状态与SCR1相同。 本电路中,继电器线圈的两端均反相并联了一只二极管,它是用来保护集成电路本身的,千万不可省去,否则在继电器由吸合状态转为释放时,由于电感的作用线圈上将产生较高的反电动势,极容易导致集成块击穿。并联了二极管后,在继电器由吸合变为释放的瞬间,线圈将通过二极管形成短时间的续流回路,使线圈中的电流不致突变,从而避免了线圈中反电动势的产生,确保了集成块的安全。 低电压下继电器的吸合措施

变频器的主电路(一)

小孙学变频——第一讲变频器的主电路 小孙是蓝天公司的电气工程师,多年来从事电子设备的维修工作。近几年来,各种设备里应用的变频器越来越多,小孙被安排来专门从事变频器的调试和维护。 这一天,小孙从仓库里领出了一台变频器,打算配用到鼓风机上。按照规定,先通电测试一下。谁知一通电,就发现冒烟,立刻切断了电源。把盖打开后,发现有一个电阻很烫。小孙想,在开盖情况下再通电观察一次。这一回,电阻倒是不冒烟了,但不一会儿,变频器便因“欠压”而跳闸了。用万用表一量,那个电阻已经烧断了。 经人介绍,小孙找到了一位退休老高工张老师。 “你们那台变频器在仓库里存放了多长时间?”听完了小孙的情况介绍后,张老师问。 “大约一年多一点。” “我知道了。”张老师胸有成竹地说。“在分析电阻冒烟的原因之前,先要弄清楚变频器里整流滤波电路的特点。” “老师,我不大明白,变频器的中间为什么要加进一个直流电路呢?” “好吧,那我们就先从交-直-交变频器的基本结构讲起。”张老师拿了一张纸,不紧不慢地画出了交-直-交变频器的框图,如图1-1所示,然后说: “你瞧,电网的电压和频率是固定的。在我国,低压电网的电压和频率统一为380v、50hz,是不能变的。要想得到电压和频率都能调节的电源,必须自己‘变出来’,才便于控制。所谓‘变出来’,当然不可能象变魔术那样凭空产生出来,而只能从另一种能源变过来。这‘另一种能源’,便是直流电。 因此,交-直-交变频器的工作可分为两个基本过程: (1)交-直变换过程 就是先把不可调的电网的三相(或单相)交流电经整流桥整流成直流电。

(2)直-交变换过程 就是反过来又把直流电“逆变”成电压和频率都任意可调的三相交流电。 你方才说的那台变频器的问题,我的判断是出在‘交-直变换’里。我们就来讨论这部分电路吧。 图1-1 交-直-交变频器框图 1 交-直变换电路 “所谓交-直变换电路就是是整流和滤波。在低压电路里,哪种滤波方式效果最好?”老张又问。“应该是π形滤波。”小孙答。 “可是,变频器里却不能用π形滤波。” 图1-2 整流和滤波电路 (a)低压整流滤波电路(b)变频器整流滤波电路

中频炉控制电路原理

控制电路原理 整个控制电路除逆变末级触发电路板外,做成一块印刷电路板结构,从功能上分为 整流触发部分、调节器部分、逆变部分、启动演算部分。详细电路见《控制电路原理图》。 1. 1 整流触发工作原理 这部分电路包括三相同步、数字触发、末级驱动等电路。触发部分采用的是数字 触发,具有可靠性高、精度高、调试容易等特点。数字触发器的特征是用计(时钟脉冲)数的办法来实现移相,该数字触发器的时钟脉冲振荡器是一种电压控制振荡器,输出脉 冲频率受移相控制电压Uk 的控制,Uk 降低,则振荡频率升高,而计数器的计数值是固 定的(256),计数器脉冲频率高,意味着计一定脉冲数所需时间短,也即延时时间短, α角小,反之α角大。计数器开始计数时刻同样受同步信号控制,在α=0 时开始计数。 现假设在某Uk 值时,根据压控振荡器的控制电压与频率间的关系确定输出振荡频率为 25KHZ,则在计数到256 个脉冲所需的时间为(1/25000)×256=10.2(ms)相当于约180 °电角度,该触发器的计数清零脉冲在同步电压〔线电压〕的30°处,这相当于三相 全控桥式整流电路β=30°位置, 从清零脉冲起,延时10.2ms 产生的输出触发脉冲, 也 即接近于三相桥式整流电路某一相晶闸管α=150°位置,如果需要得到准确的α=150° 触发脉冲, 可以略微调节一下电位器W4。显然有三套相同的触发电路,而压控振荡器和Uk 控制电压为公用,这样在一个周期中产生6 个相位差60°的触发脉冲。 数字触发器的优点是工作稳定,特别是用HTL 和CMOS 数字集成电路,可以有很强 的抗干扰能力。 IC16A 及其周围电路构成电压----频率转换器,其输出信号的周期随调节器的输出 电压Uk 而线性变化。W4 微调电位器是最低输出频率调节(相当于模拟电路锯齿波幅值调节)。 三相同步信号直接由晶闸管的门极引线K4、K6、K2 从主回路的三相进线上取得, 由R23、C1、R63、C40、R102、C63 进行滤波、移相,经6 只光电耦合器进行电位隔离,获得6 个相位互差60°、占空比略小于50%的矩形同步信号。 IC3、IC8、IC12(4536 计数器)构成三路数字延时器。三相同步信号对计数器进行 复位后,对电压---频率转换器的输出脉冲每计数256 个脉冲便输出一个延时脉冲,因计 数脉冲的频率是受Uk 控制的, 换句话说Uk 控制了延时脉冲。 计数器输出的脉冲经隔离、微分后变成窄脉冲,送到后级的NE556,它既有同步分 频器功能,亦有定输出脉冲宽度的功能。输出的窄脉冲经电阻合成为双窄脉冲,再经晶 体管放大,驱动脉冲变压器输出。具体时序图见附图。 1.2 调节器工作原理 调节器部分共有四个调节器:中频电压调节器、电流调节器、阻抗调节器、逆变角 调节器。 其中电压调节器、电流调节器组成常规的电压、电流双闭环系统。在启动和运行 的整个阶段,电流调节器始终参与工作,而电压环仅工作于运行阶段。另一阻抗调节器 从输入上看,它与电流调节器LT2 的输入完全是并联关系,区别仅在于阻抗调节器的负 反馈系数较电流调节器略大,再者就是电流调节器的输出控制的是整流桥的输出直流电压,而阻抗调节器的输出控制的是中频电压与直流电压的比例关系,即逆变功率因数角。调节器电路的工作过程可以分为两种情况:一种是在直流电压没有达到最大值的 时候,由于阻抗调节器的反馈系数略大,阻抗调节器的给定小于反馈,阻抗调节器便工 作于限幅状态,对应的为最小逆变θ角,此时可以认为阻抗调节器不起作用,系统完全 西是一个标准的电压、电流双闭环系统。另一种情况是直流电压巳经达到最大值,电流调节器开始限幅不再起作用,电压调节器的输出增加,而反馈电流却不变化,对阻抗调节

电气控制电路基础(电气原理图)

电气控制电路基础(电气原理图) 电气控制系统图一般有三种:电气原理图、电器布置图和电气安装接线图。 这里重点介绍电气原理图。 电气原理图目的是便于阅读和分析控制线路,应根据结构简单、层次分明清晰的原则,采用电器元件展开形式绘制。它包括所有电器元件的导电部件和接线端子,但并不按照电器元件的实际布置位置来绘制,也不反映电器元件的实际大小。 电气原理图一般分主电路和辅助电路(控制电路)两部分。 主电路是电气控制线路中大电流通过的部分,包括从电源到电机之间相连的电器元件;一般由组合开关、主熔断器、接触器主触点、热继电器的热元件和电动机等组成。 辅助电路是控制线路中除主电路以外的电路,其流过的电流比较小和辅助电路包括控制电路、照明电路、信号电路和保护电路。其中控制电路是由按钮、接触器和继电器的线圈及辅助触点、热继电器触点、保护电器触点等组成。 电气原理图中所有电器元件都应采用国家标准中统一规定的图形符号和文字符号表示。 电气原理图中电器元件的布局

电气原理图中电器元件的布局,应根据便于阅读原则安排。主电路安排在图面左侧或上方,辅助电路安排在图面右侧或下方。无论主电路还是辅助电路,均按功能布置,尽可能按动作顺序从上到下,从左到右排列。 电气原理图中,当同一电器元件的不同部件(如线圈、触点)分散在不同位置时,为了表示是同一元件,要在电器元件的不同部件处标注统一的文字符号。对于同类器件,要在其文字符号后加数字序号来区别。如两个接触器,可用KMI、KMZ文字符号区别。 电气原理图中,所有电器的可动部分均按没有通电或没有外力作用时的状态画出。 对于继电器、接触器的触点,按其线圈不通电时的状态画出,控制器按手柄处于零位时的状态画出;对于按钮、行程开关等触点按未受外力作用时的状态画出。 电气原理图中,应尽量减少线条和避免线条交叉。各导线之间有电联系时,在导线交点处画实心圆点。根据图面布置需要,可以将图形符号旋转绘制,一般逆时针方向旋转90o,但文字符号不可倒置。 图面区域的划分 图纸上方的1、2、3…等数字是图区的编号,它是为了便于检索电气线路,方便阅读分析从而避免遗漏设置的。图区编号也可设置在图的下方。

中频电源的原理与维修

晶闸管中频感应加热电源是利用晶闸管将三相工频交流电能变换成几百或几千赫兹的 单相交流电能。具有控制方便、效率高、运行可靠、劳动强度低的特点,广泛用于铸钢、不锈钢或合金钢的冶炼、真空冶炼、锻件的加热和钢管的弯曲、挤压成型、工件 的预热、钢件表面淬火、退火热处理、金属零件的焊接、粉末冶金、输送高温工质的 管道加热、晶体的生长等不同场合。在我厂,中频电源装置主要用于铸钢、不锈钢和 青铜等的冶炼。 中频电源的工作原理为:采用三相桥式全控整流电路将交流电整流为直流电,经电抗器平波后,成为一个恒定的直流电流源,再经单相逆变桥,把直流电流逆变成一定 频率(一般为1000至8000Hz)的单相中频电流。负载由感应线圈和补偿电容器组成,连接成并联谐振电路。 一般情况下,可以把中频电源的故障按照故障现象分为完全不能起动和起动后不 能正常工作两大类。作为一般的原则,当出现故障后,应在断电的情况下对整个系统 作全面检查,它包括以下几个方面: (一)电源:用万用表测一下主电路开关(接触器)和控制保险丝后面是否有电,这将排除这些元件断路的可能性。 (二)整流器:整流器采用三相全控桥式整流电路,它包括六个快速熔断器、六 个晶闸管、六个脉冲变压器和一个续流二极管。在快速熔断器上有一个红色的指示器,正常时指示器缩在外壳里边,当快熔烧断后它将弹出,有些快熔的指示器较紧,当快 熔烧断后,它会卡在里面,所以为可靠起见,可以用万用表通断档测一下快熔,以判 断它是否烧断。 测量晶闸管的简单方法是用万用表电阻挡(200Ω挡)测一下其阴极—阳极、门极—阴极电阻,测量时晶闸管不用取下来。正常情况下,阳极—阴极间电阻应为无穷大,门极—阴极电阻应在10—50Ω之间,过大或过小都表明这只晶闸管门极失效,它将不能被触发导通。 脉冲变压器次边接在晶闸管上,原边接在主控板上,用万用表测量原边电阻约为50Ω。续流二极管一般不容易出现故障,检查时用万用表二极管挡测其二端,正向时 万用表显示结压降约有500mV,反向不通。 (三)逆变器:逆变器包括四只快速晶闸管和四只脉冲变压器,可以按上述方法 检查。

1吨串联中频炉原理技术与分析

1吨串联中频炉原理技术与分析(1吨串联可控硅中频炉原理技术与分析)1吨串联中频炉是串联逆变中频电炉,是中频炉感应加热炉,如果配一台中频炉炉体熔炼称为单台1吨串联中频炉。串联逆变中频炉电源工作原理 串联逆变电源为电压源供电,串联逆变电源主回路原理图所示。 1吨串联中频炉逆变电源原理说明 电源由三相桥式整流桥和可控硅半桥逆变电路组成,运行时整流桥可控硅全导通,满电压工作。逆变器主电路由二组可控硅桥臂和二组谐振电容器及电炉线圈组成,半桥逆变电路适用于大功率低频率恒压源逆变器。 逆变桥臂上两个SCR交替导通,任何一只SCR导通一定要在串联负载电流过零之后,即大于SCR关闭时间TOT之后,触发导通,如图5,6所示逆变器负载波形图,当SCR电

流过零后,与其并联的反向二极管导通,其反向压降把SCR关闭,之后另一臂SCR才能触发导通,逆变器的输出工作频率为300—400Hz, 工作频率越高,输出功率越大。 图5为逆变器触发脉冲和负载波形图,把可控硅视为理想开关,瞬时导通和关断,电感L和电阻R串联,等效于炉体的负载,触发脉冲频率略低于负载谐振频率f。半桥逆变器工作电流流动路经的描述逆变运行时,电流通过逆变器和炉体线圈L的路径,逆变器的工作波形如图7所示,逆变工作前恒定直流电压Ud为电容C1、C2均分,各充电至1/2Ud,均为上正下负电压,当t=to时SCRl被触发导通,电容C1电荷通过SCRl-Lf-Rf -C1下端放电,另一路是使C2充电,+Ud由CF上端-SCRl-Lf-Rf-C2-CF下端,这二路都是同一谐振电路的一部份,由于C1=C2,因而两路的工作频率相同,等于C=C1+C2,Lf-Rf

大工《电源技术》变频器分析 答案

大连理工大学电源技术大作业 姓名:魏晓永 学号:190020128199 学习中心:绍兴学习中心

大工20春《电源技术》大作业及要求 注意:请从以下题目中任选其一作答!要求添加自己对于题目相关的学习心得! 题目一:滤波电路分析 总则:围绕滤波电路,阐述其作用、分类,并任选其一类分析其工作原理及应用。 撰写要求: (1)阐述滤波电路的作用。 (2)阐述滤波电路的分类,并任选分类之一分析其工作原理。 (3)简述任选的滤波电路的应用。 (4)学习心得(为区分离线作业是否独立完成,请写些自己对该题目相关的想法或者学习心得,学习心得严禁抄袭!) 作业具体要求: 1. 封面格式 封面名称:大连理工大学电源技术大作业,字体为宋体加黑,字号为小一; 姓名、学号、学习中心等字体为宋体,字号为小三号。 2. 文件名 大作业上交时文件名写法为:[姓名学号学习中心](如:戴卫东101410013979浙江台州奥鹏学习中心[1]VIP); 以附件形式上交离线作业(附件的大小限制在10M以内),选择已完成的作业(注意命名),点提交即可。如下图所示。

3. 正文格式 作业正文内容统一采用宋体,字号为小四,字数在2000字以上。 注意: 作业应该独立完成,不准抄袭其他网站或者请人代做,如有雷同作业,成绩以零分计。引用他人文章的内容,需在文中标注编号,文章最后写出相应的参考文献。引用内容不得超过全文的20%。 鼓励大家对本地区的相关政策制定及实施情况进行调查了解,给出相关数据,进而有针对性的提出自己的看法。

题目二:反激电路分析 总则:围绕反激电路,介绍其工作原理、主要参数及对应计算方法,并简述其在实际中的应用。 撰写要求: (1)介绍基本斩波电路的分类。 (2)介绍反激电路的工作原理、主要参数及对应计算方法。 (3)简述反激电路在实际中的应用。 (4)学习心得(为区分离线作业是否独立完成,请写些自己对该题目相关的想法或者学习心得,学习心得严禁抄袭!) 作业具体要求: 1. 封面格式 封面名称:大连理工大学电源技术大作业,字体为宋体加黑,字号为小一; 姓名、学号、学习中心等字体为宋体,字号为小三号。 2. 文件名 大作业上交时文件名写法为:[姓名学号学习中心](如:戴卫东101410013979浙江台州奥鹏学习中心[1]VIP); 以附件形式上交离线作业(附件的大小限制在10M以内),选择已完成的作业(注意命名),点提交即可。如下图所示。 3. 正文格式 作业正文内容统一采用宋体,字号为小四,字数在2000字以上。

常用电动机控制电路原理图.

三相异步电机启动常见方法 1、定时自动循环控制电路 说明:(技师一) 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控 制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮SB2

串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2电动机。

变频器驱动电路详解

变频器驱动电路详解 测量驱动电路输出的六路驱动脉冲的电压幅度都符合要求,如用交流档测量正向激励脉冲电压的幅度约14V左右,负向截止电压的幅度约7.5V左右(不同的机型有所差异),对驱动电路经过以上检查,一般检修人员就认为可以装机了,此中忽略了一个极其重要的检查环节——对驱动电路电流(功率)输出能力的检查!很多我们认为已经正常修复的变频器,在运行中还会暴露出更隐蔽的故障现象,并由此导致了一定的返修率。 变频器空载或轻载运行正常,但带上一定负载后,出现电机振动、输出电压偏相、频跳OC故障等。 故障原因:A、驱动电路的供电电源电流(功率)输出能力不足;B、驱动IC或驱动IC后置放大器低效,输出内阻变大,使驱动脉冲的电压幅度或电流幅度不足;C、IGBT低效,导通内阻变大,导通管压降增大。 C原因所导致的故障比例并不高,而且限于维修修部的条件所限,如无法为变频器提供额定负载试机。但A、B原因所带来的隐蔽性故障,我们可以采用为驱动增加负载的方法,使其暴露出来,并进而修复之,从面能使返修率降到最低。IGBT的正常开通既需要幅值足够的激励电路,如+12V以上,更需要足够的驱动电流,保障其可靠开通,或者说保障其导通在一定的低导通内阻下。上述A、B 故障原因的实质,即由于驱动电路的功率输出能力不足,导致了IGBT虽能开通但不能处于良好的低导能内阻的开通状态下,从而表现出输出偏相、电机振动剧烈和频跳OC故障等。 让我们从IGBT的控制特性上来做一下较为深入的分析,找出故障的根源所在。 一、IGBT的控制特性: 通常的观念,认为IGBT器件是电压型控制器件——为栅偏压控制,只需提供一定电平幅度的激励电压,而不需吸取激励电流。在小功率电路中,仅由数字门电路,就可以驱动MOS型绝缘栅场效应管。做为IGBT,输入电路恰好具有MOS型绝缘栅场效应管的特性,因而也可视为电压控制器件。这种观念其实有失偏颇。因结构和工艺的原因,IGBT管子的栅-射结间形成了一个名为Cge的结电容,对IGBT管子开通和截止的控制,其实就是Cge进行的充、放电控制。+15V的激励脉冲电压,提供了Cge的一个充电电流通路,IGBT因之而开通;-7。5V的负向脉冲电压,将Cge上的“已充电荷强行拉出来”,起到对充电电荷的快速中和作用,IGBT因之而截止。 假定IGBT管子只对一个工作频率为零的直流电路进行通断控制,对Cge一次性充满电后,几乎不再需要进行充、放电的控制,那么将此电路中的IGBT管子说成是电压控制器件,是成立的。而问题是:变频器输出电路中的IGBT管子工作于数kHz的频率之下,其栅偏压也为数kHz频率的脉冲电压!一方面,对于这种较高频率的信号,Cge的呈现出的容抗是较小的,故形成了较大的充、放电电流。另一方面,要使IGBT可靠和快速的开通(力争使管子有较小的导通内阻),在IGBT的允许工作区内,就要提供尽可能大的驱动电流(充电电流)。对于截止的控制也是一样,须提供一个低内阻(欧姆级)的外部泄放电路,将栅-射结电容上的电荷极快地泄放掉!

串联谐振中频电炉原理_串联谐振中频电炉电路特点

串联谐振中频电炉原理_串联谐振中频电炉特点 大家之前都在聊中频电炉,是不是对中频电炉非常了解呢,今天不妨大家一起来交流一下,互相学习一下经验,弥补一下自己的不足,那我就先来提一个问题,大家是否知道串联谐振中频电炉电路特点,还有就是串联谐振中频电炉原理有哪些具体应用,这个问题不好回答吧,既然大家都不知道,那今天就给大家科普一下串联谐振中频电炉原理,不知道的小伙伴可要仔细阅读哦!那么下文就开始介绍串联谐振中频电炉电路特点了。 【串联谐振中频电炉原理】 串联谐振中频电炉电路特点所谓串联谐振是指回路中LC串联,两者阻抗之和刚好为0,所以整个回路呈纯电阻性,整个回路阻抗变小,电流将变大。在电力系统中可能会造成过电压,所以在电力系统中也较电压谐振 【串联谐振中频电炉控制板详解】 串联谐振中频电炉电路特点整流控制电路简单,只是在一般三相晶闸管半控桥式整流电路用触发器的基础上,加一斜波发生器构成。斜波发生器是代替触发器的移相角设定功能。每次起动时,斜波发生器输出到触发器的电压会按预定的速率,由零逐渐升高,终稳定在某一值。因此,串联谐振中频电炉原理相应的触发脉冲的控制角会从变大逐渐减小,终稳定在0°,使晶闸管全导通,从而实现软起动。

在正常停止时,情况则相反,串联谐振中频电炉电路特点斜波发生器的输出电压由恒定值逐渐降至零,晶闸管从全导通状态逐渐过渡到截止。因故障停止时,则采取封锁触发脉冲的方法,使晶闸管快速截止。 逆变控制电路如图1-7-3所示.其工作波形示于图1-7-4。 在t=t0时刻触发KS1,方波环节把 经电流互感器CT1检出的电流信号变 成方波。方波的作用有二:一是方波 的后沿作为延时环节的延时起点:二 是方渡使计数器复位。方波结束,延 时环节开始延时,计数器开始计数。延时一td后,双稳环节输出端q3变成“1”,打开了图中上一个脉冲形成环节的门,串联谐振中频电炉原理允许计数器的溢出 脉冲通过。计数器的计数值是固定的(例如1024),计数值到,其输出端qs成“1”,经脉冲形成环节,生成固定宽度的脉冲,再经脉冲功放去触发晶闸管KS2。同理,KS2的导通电流经方波环节形成方波。方波结束,开始延时和计数,延时td后使q4成“1”。待计数值到,q6成“1”,图中下侧的脉冲形成环节的输出端q8就会输出固定宽度脉冲,经功放后触发KS1,系统又将重复前述过程。 功率控制的实现过程为:逆变器的输入电压Ud和电流, Id的乘积与设定值比较,其差值输入到功率调节器,再把 它的输出与电流Id进行比较,经电流调节器运算后,去控 制压控振荡器的输出脉冲频率,使计数器的溢出脉冲时间 改变,进而改变晶闸管的触发脉冲频率,从而达到预期的 控制效果。这种控制效果体现在炉子参数额定值以上的重 负载情况下,保持炉子的输入功率恒定;在额定值以下的 轻负载范围内,则控制输出电流在限制值内。

中频炉的相关特点和工作原理

中频炉是一种将工频50HZ交流电转变为中频(300HZ以上至1000HZ)的电源装置,把三相工频交流电,整流后变成直流电,再把直流电变为可调节的中频电流,供给由电容和感 应线圈里流过的中频交变电流,在感应圈中产生高密度的磁力线,并切割感应圈里盛放的金属材料,在金属材料中产生很大的涡流。 中频炉 这种涡流同样具有中频电流的一些性质,即,金属自身的自由电子在有电阻的金属体里流动要产生热量。例如,把一根金属圆柱体放在有交变中频电流的感应圈里,金属圆柱 体没有与感应线圈直接接触,通电线圈本身温度已很低,可是圆柱体表面被加热到发红,甚至熔化,而且这种发红和熔化的速度只要调节频率大小和电流的强弱就能实现。如果圆 柱体放在线圈中心,那么圆柱体周边的温度是一样的,圆柱体加热和熔化也没有产生有害气体、强光污染环境。国内知名生产商河北恒远电炉制造有限公司生产的中频炉广泛用于 有色金属的熔炼[主要用在熔炼钢、合金钢、特种钢、铸铁等黑色金属材料以及不锈钢、锌等有色金属材料的熔炼,也可用于铜、铝等有色金属的熔炼和升温,保温,并能和高炉 进行双联运行。]、锻造加热[用于棒料、圆钢,方钢,钢板的透热,补温,兰淬下料在线加热,局部加热,金属材料在线锻造(如齿轮、半轴连杆、轴承等精锻)、挤压、热轧 、剪切前的加热、喷涂加热、热装配以及金属材料整体的调质、退火、回火等。]热处理调质生产线[主要供轴类(直轴、变径轴,凸轮轴、曲轴、齿轮轴等);齿轮类;套、圈 、盘类;机床丝杠;导轨;平面;球头;五金工具等多种机械(汽车、摩托车)零件的表面热处理及金属材料整体的调质、退火、回火]等。 中频炉系列透热炉特点 节约特点 ●加热速度快、生产效率高、氧化脱炭少、节省材料与成本、延长模具寿命由于中频感应加热的原理为电磁感应,其热量在工件内自身产生,普通工人用中频电炉上班后 十分钟即可进行锻造任务的连续工作,不需烧炉专业工人提前进行烧炉和封炉工作。由于该加热方式升温速度快,所以氧化极少,中频加热锻件的氧化烧损仅为0.5%,煤气炉加 热的氧化烧损为2%,燃煤炉达到3%,中频加热工艺节材,每吨锻件和烧煤炉相比至少节约钢材原材料20-50千克。其材料利用率可达95%。由于该加热方式加热均匀,芯表温差极 小,所以在锻造方面还大大的增加了锻模的寿命,锻件表面的粗糙度也小于50um工艺节能,中频加热比重油加热节能31.5%~54.3%,比煤气加热节能5%~40%。加热质量好, 可降低废品率1.5%,提高生产率10%~30%,延长模具寿命10%~15%。 环保特点

变频器主回路结构图及故障经验

下面先来说说变频器硬件故障如何判断技术人员凭借数字式万用表根据上图可简单判断主回路器件是否损坏。(主要是整流桥,IGBT,IPM) 为了人身安全,必须确保机器断电,并拆除输入电源线R 、S、T和输出线U、V、W后放可操作!首先把万用表打到?二级管?档,然后通过万用表的红色表笔和黑色表笔按以下步骤检测: 1、黑色表笔接触直流母线的负极P(+),红色表笔依次接触R、S、T,记录万用表上的显示值;然后再把

红色表笔接触N(-),黑色表笔依次接触R、S、T,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器二极管整流或软启电阻无问题,反之相应位臵的整流模块或软启电阻损坏,现象:无显示。 2、红色表笔接触直流母线的负极P(+),黑色表笔依次接触U、V、W,记录万用表上的显示值;然后再把黑色表笔接触N(-),红色表笔依次接触U、V、W,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器IGBT逆变模块无问题,反之相应位臵的IGBT逆变模块损坏,现象:无输出或报故障。 故障经验 一。变频器老是跳硬件保护?OCU1?故障,赶到现场后我静态测试机器无问题,主线路、控制线路也完好。我用万用表量零线和地线是通的,问电工才知道他们工厂的零地是共用的。一般变频器接地时,如果该工厂零线与地线是共用的话,最好另处取地线,把地线取下后故障解除。故障分析:因为该厂的零线与地线是共用的,变频器接地线也等于接了零线,零线一般会传播干扰信号。而我们的变频器报?OCU1?故障有如下几种情况:1。变频器三相输出侧有短路现象;2。逆变模块损坏;3。外部干扰信号进入变频器。由于第一与第二种原因正常排除,就只有第三种外部干扰信号,干扰信号是从地线进入的,所以把地线拆除,就切断了干扰源。这时运行变频器恢复正常。 二。调试一台锅炉引风机55KW的是?OCU1?,通常我们这种?OCU1?故障是:外部干扰,三相输出有短路现象,机器内部故障问题。原因是机器一启动到运行到10HZ左右就报,(变频器是用的自由停车,风机惯性也比较大)用户要经常启停变频器。这说明机器问题不太,是干扰问题,(因为电机线放了几十M长,而且控制线和主电源线是混合在一起的)停下变频器半个小时后,观查引风机还在自转。我就把变频器参数变为?先制动,再启动?(F0-011=1 当然还有一些参数要改,大家可以进我们网站下载技术手册。)然后再启动变频器,故障还有是没有解除,用了几种方案后,最后我们把启动频率提高到3HZ(F0-012=3)问题就解决了。真是什么问题都有呀!三,上位机控制,上位机给启动指令时能启动,但给停止指令时就不能停机。具体如下,40台11-22KW的风机节能改造,每台变频器都用一个上位机DDC模块控制(加拿大生产)。上位机主要是监测变频器的故障报警、过滤网报警、频率、启停、温度等。其它都正常,就是启停时有麻烦。后来到现场检测,故障真是这样,然后查看上位机DDC模块的说明书,最后发现是DDC 模块的干接点不接受直流24V,只接受交流24V或者是无源信号都行,所以才会出现上面这种现象。后来加一个继电器就解决了。 四。也是一台变频器与上位机联机控制的变频器,故障是上位机给运行信号,变频器不接收,其它都正常,而变频器本身就能运行起来,只要一联上位机就不行。我要用户技术员,把控制线路再好好的检查一下,那技术员硬说很好,检查了好几篇都发现什么问题。要求我们公司派技术支持. 后来我们技术员赶到现场处理,检查控制线路,就发现一条控制线与另外一条控制线调换了。难怪不接收指令.其实只有有耐心,什么问题都能查出来. 干扰问题: 1、PLC给信号到变频器时,经常出不必要的故障,比如给假信息,或者变频器不接收信息. 由于客户比较急,也找不到好的处理方法.也没有专业的技术员.只好要求我们技术员赶到现场处理,我们检测了变频器,PLC,电源,设备均正常.初步认定是干扰引起.在PLC的电源模块及输入/输出的电源线上接入滤波器,问题还是得不到明显的改善,后来把变频器和PLC的电源线,控制线分开走线,这时故障才解除.. 2、,由三台变频器组成的调速系统(装在同一个变频柜里),出现如下情况:用外接的电位器调频率时,发现异常,变频器转速产生波动.频率波动也比较大.然后就会报故障. 我们到现场后检查了也是查外围电源,负载,电位器,控制线路都正常.后上电运行变频器,在调试变频器时,当一台单独运行时,工作正常不报故障,当三台同时运行时就会出现异常.这就是干扰引起啊! 对策:将三台变频器移出变频柜,分别装在一个单独的变频柜里,电位器也分开,然后改用屏蔽线。最后干扰清除,三台都能同时运行. 3、多段速运行。(3。7KW)变频器单独运行印刷机很正常,当与印刷机的送纸机同步运行时,报软件过流故障。代理商技术员调了一天,没有调好,就认定是我们的机器有问题,不能用要退货。后来到现场维护处理,检测了线路,变频器都无问题。看了一下设备,印刷机里有两台电机,一台主电机,(就是改造的3。7KW的),还有一台是给送纸机用的,起上下降作用。变频器单独运行印刷机正常,就是与送纸机同

空调控制电路原理图

美的KFR-26/33GW/CBPY型变频空调电路原理分析 单元电路原理简析 美的变频空调主要包括“数智星”、“数智星S”、“数智星R”挂机系列:“数智星R”、“数智星M”、“数智星F”柜机系列等。美的KFR-26/33GW/CBPY型变频空调。属“数智星”变频系列。其主要机型包括:KFR-26/33GW/CBPY、KFR-26/33GW/I1BPY等。它们的电路原理基本相似。结合图1~图6电路原理图,对整机单元电路作简要分析。 1.室内机主电源电路 电路见上图,由电源捅头L、N两端输入AC220V交流电压,经保险管FS1、压敏电阻ZNR1、电容 C1和C2、T2过流保护和高频滤波后。一路经接线柱L、N两端送到室外机主电源电路的输入端。其中N 端与通讯电路的S端组成室内、室外机的通讯传输线路;另一路经A、B两端送到电源变压器T1的初级线圈;第三路送到室内风机控制电路。 2.室内机辅助电源电路 电路见中图,由电源变压器T1次级线圈输出的两路低压交流电,一路经捕件CN5(3)、(4)脚送到整流桥堆IC6(1)、(2)脚,经IC6、C8和C35整流、滤波后,输m+13V电压,给换气风机(M2)供电;另一路经插件CN5(1)、(2)脚送到整流桥堆IC7(1)、(2)脚,经整流桥堆IC7、三端稳压块IC4(7812)和IC5(7805)、C9~C11和C32~C34整流、滤波、稳压后。输出稳定的+12V和+5V 电压,分别给继电器控制、室内风机控制、步进电机控制、蜂鸣器、主控芯片、复位、过零检测、驱动、温度传感器、通讯、存储器、按键和显示等电路供电。 3.室内风机控制电路 电路见上图、下图。在主控芯片IC3(UPD780021)内部程序的控制下,由(1)脚输出室内风机控制信号,并由三极管04和双向可控硅光耦IC11(3526)进行控制,可实现室内风机(FAN)的运转、停转及无级调速等功能。当IC3(1)脚输出高电平时,Q4导通,IC11内部发光管导通。其发光强度控制内部双向可控硅的导通程度。从而进一步控制室内风机(FAN)的工作状态和运转速度。同时室内风机(FAN)的转速还受反馈电路控制,当风机转速信号通过R23、C20反馈到IC3(53)脚后,其内部风机转速检测电路则按照风机运转状况来确定风机转速。从而准确控制风机(FAN)的转速。 4.换气风机控制电路 电路见下图,为了让用户室内保持新鲜的空气,该空调设计了换气功能。由IC3(2)脚输出换气风机控制信号,当输出高电平时,经R10送到Q1的b极,Q1导通,驱动换气风机(M2)运转。从而实现与室外空气进行交换。 5.过零检测电路 电路见中图、下图,该电路一是检测供电电压是否正常;二是为双向可控硅提供同步触发信号。南电源变压器T1次级输出低压交流电,经D7和D8整流,输出频率约为100Hz脉动电压,经R43~R45 分压后的正弦交流信号,送到三极管Q3的b极,当b极电压大于0.7V时,Q3导通,C31通过Q3进行放电,主控芯片IC3(UPD780021)(51)脚便得到一个低电平;当b极电压小于0.7V时,Q3截止,+5V 电压通过R7对C31进行充电,于是IC3(51)脚便得到周期为10ms的(高电平)过零触发信号。 6.室内机晶振电路 电路见下图,由主控芯片IC3(48)、(49)脚内部电路与晶体XT1组成晶振电路,产生4.19MHz 主振荡频率信号。

中频炉培训内容

第一章基本知识 一、感应加热原理: 无芯感应电炉就像一个空芯变压器,并根据电磁感应原理工作。坩埚外的感应线圈相当于变压器的原绕组,坩埚内的金属炉料相当于副绕组。当感应线圈通一交变电流时,则因交变磁场的作用是短路连接的金属炉料产生强大的感应电流,电流流动时,为克服金属炉料的电阻而产生热量致使金属炉料加热熔化。 电磁感应现象:变化磁场在导体中引起电动势的现象称为电磁感应,也称“动磁生电”。当位于磁场中的导体与磁力线产生相对切割运动,或线圈中的磁通发生变化时,在导线或线圈中都会产生电动势;若导体和线圈构成闭合回路,则导体或线圈中将有电流。由电磁感应产生的电动势称感生电动势,由感生电动势引起的电流叫做感生电流。 涡流:在具有铁心的线圈中通以交流电时,铁心内就有交变磁通通过,因而在铁心内部必然产生感应电流,在铁心中自成闭合回路,因而形成状如水中漩涡的涡流。涡流的利用:利用涡流产生高温熔炼金属,或对金属进行热处理;电度表中铝盘转动及电工测量仪表中的磁感应阻尼器也就是根据涡流的原理工作的。涡流的危害:涡流消耗电能,使电机、电气设备效率降低; 使铁心发热;且涡流有去磁作用,会削弱原有磁场 二、可控硅的基础知识 1、优点:他是一种大功率的半导体器件,效率高、控制特性好、反应快、 寿命长、体积小、重量轻、可靠性高和方便维护。 2、结构:四层半导体叠交而成,有三个PN 结,外部有三个电极,分别是 阳极、阴极、控制极,分别为A、K、G。 3、工作原理:

将可控硅按图l---62连接,可以得到如下结果: ①开关K未合上时,灯不亮,可控硅未导通。 ②合上K,灯亮,这时可控硅上约有1V的电压降。 ③导通后即使打开K,灯仍亮,可控硅一经触发导通后,可自己维持导通状态。 ④如果降低电源电压E,灯泡逐渐变暗,当电流减小到某一定值(称为最小维持电流)以下时,可控硅关断,灯泡突然熄灭。 由此可知,要使可控硅导通,必须在A、K极间加上正向电压,同时加以适当的正向控制极电压(称触发电压)。一旦导通后,要使可控硅关断,必须采取降低阳极电压、反接或断开电路等措施,使正向电流小于最小维持电流。 4、晶闸管的保护 晶闸管虽然具有很多优点,但是,它们承受过电压和过电流的能力很差,这是晶闸管的主要弱点,因此,在各种晶闸管装置中必须采取适当的保护措施。 一、晶闸管的过电流保护 由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN结烧坏,造成元件内部短路或开路。 晶闸管发生过电流的原因主要有:负载端过载或短路;某个晶闸管被击穿短路,造成其它元件的过电流;触发电路工作不正常或受干扰,·使晶闸管误触发,引起过电流。晶闸管承受过电流能力很差,例如一个100A的晶闸管,它的过电流能力如表20—1所列。这就是说,当100A的晶闸管过电流为400A时,仅允许持续0.02 s,否则将因过热而损坏。由此可知,晶闸管允许在短时间内承受一定的过电流,所以,过电流保护的作用.就在于当发生过电流时,在允许的时间内将过电流切断,以防止元件损坏。 晶闸管过电流的保护措施有下列几种: 1、快速熔断器 普通熔断丝由于熔断时间长,用来保护晶闸管很可能在晶闸管烧坏之后熔断

相关文档