文档库 最新最全的文档下载
当前位置:文档库 › 【2019年整理】电源管理芯片

【2019年整理】电源管理芯片

【2019年整理】电源管理芯片
【2019年整理】电源管理芯片

便携产品电源管理芯片的设计技巧

随着便携产品日趋小巧轻薄,对电源管理芯片也提出更高的要求,诸如高集成度、高可靠性、低噪声、抗干扰、低功耗等.本文探讨了在便携产品电源设计的实际应用中需要注意的各方面问题.

便携产品的电源设计需要系统级思维,在开发手机、MP3、PDA、PMP、DSC等由电池供电的低功耗产品时,如果电源系统设计不合理,会影响到整个系统的架构、产品的特性组合、元件的选择、软件的设计以及功率分配架构等.同样,在系统设计中,也要从节省电池能量的角度出发多加考虑.例如,现在便携产品的处理器一般都设有几种不同的工作状态,通过一系列不同的节能模式(空闲、睡眠、深度睡眠等)可减少对电池容量的消耗.当用户的系统不需要最大处理能力时,处理器就会进入电源消耗较少的低功耗模式.

从便携式产品电源管理的发展趋势来看,需要考虑以下几个问题:1. 电源设计必须要从成本、性能和产品上市时间等整个系统设计来考虑;2. 便携产品日趋小巧轻薄化,必需考虑电源系统体积小、重量轻的问题;3. 选用电源管理芯片力求高集成度、高可靠性、低噪声、抗干扰、低功耗,突破散热瓶颈,延长电池寿命;4. 选用具有新技术的新型电源芯片进行方案设计,这是保证产品先进性的基本条件,也是便携产品电源管理的永恒追求.

便携产品常用电源管理芯片包括:低压差稳压器(LDO)、非常低压差稳压器(VLDO)、基于电感器储能的DC/DC转换器(降压电路Buck、升压电路Boost、降压-升压变换器Buck-Boost)、基于电容器储能的电荷泵、电池充电管理芯片、锂电池保护IC.

选用电源管理芯片时应注意:选用生产工艺成熟、品质优秀的生产厂家产品;选用工作频率高的芯片,以降低周边电路的应用成本;选用封装小的芯片,以满足便携产品对体积的要求;选用技术支持好的生产厂家,方便解决应用设计中的问题;选用产品资料齐全、样品和DEMO易于申请、能大量供货的芯片;选用性价比好的芯片.

LDO线性低压差稳压器

LDO线性低压差稳压器是最简单的线性稳压器,由于其本身存在DC无开关电压转换,所以它只能把输入电压降为更低的电压.它最大的缺点是在热量管理方面,因为其转换效率近似等于输出电压除以输入电压的值.

LDO电流主通道在其内部是由一个MOSFET加一个过流检测电阻组成,肖特基二极管作反相保护,输出端的分压电阻取出返馈电去控制MOSFET的流通电流大小,EN使能端可从外部去控制它的工作状态,内部还设置过流保护、过温保护、信号放大、Power-OK、基准源等电路,实际上LDO已是一多电路集成的SoC.LDO的ESD>4KV,HBM ESD>8KV.

低压差稳压器的应用象三端稳压一样简单方便,一般在输入、输出端各加一个滤波电容器即可.电容器的材质对滤波效果有明显影响,一定要选用低ESR的X7R & X5R陶瓷电容器.

LDO布线设计要点是考虑如何降低PCB板上的噪音和纹波,如何走好线是一个技巧加经验的工艺性细活,也是设计产品成功的关键之一.图1说明了如何设计走线电路图,掌握好电流回流的节点,有效的控制和降低噪音和纹波.优化布线方案是值得参考的.

图1:LDO布线电路方案

如果一个驱动图像处理器的LDO输入电源是从单节锂电池标称的3.6V,在电流为200mA时输出1.8V电压,那么转换效率仅为50%,因此在手机中产生一些发热点,并缩短了电池工作时间.虽然就较大的输入与输出电压差而言,确实存在这些缺点,但是当电压差较小时,情况就不同了.例如,如果电压从1.5V降至1.2V,效率就变成了80%.

当采用1.5V主电源并需要降压至1.2V为DSP内核供电时,开关稳压器就没有明显的优势了.实际上,开关稳压器不能用来将1.5V电压降至1.2V,因为无法完全提升MOSFET(无论是在片内还是在片外).LDO稳压器也无法完成这个任务,因为其压差通常高于300mV.

理想的解决方案是采用一个VLDO稳压器,输入电压范围接近1V,其压差低于300mV,内部基准接近0.5V.这样的VLDO稳压器可以很容易地将电压从1.5V降至1.2V,转换效率为80%.因为在这一电压上的功率级通常为100mA左右,那么30mW的功率损耗是可以接受的.VLDO的输出纹波可低于1mVP-P.将VLDO作为一个降压型开关稳压器的后稳压器就可容易地确保低纹波.

开关式DC/DC升降压稳压器

开关式DC/DC升降压稳压器按其功能分成Buck开关式DC/DC降压稳压器、Boost开关式DC/DC升压稳压器和根据锂电池的电压从4.2V降低到2.5V能自动切换降升压功能的Buck-Boost开关式DC/DC升降压稳压器.当输入与输出的电压差较高时,开关稳压器避开了所有线性稳压器的效率问题.它通过使用低电阻开关和磁存储单元实现了高达96%的效率,因此极大地降低了转换过程中的功率损失.

Buck开关式DC/DC降压稳压器是一种采用恒定频率、电流模式降压架构,内置主(P沟道MOSFET)和同步(N沟道MOSFET)开关.PWM控制的振荡器频率决定了它的工作效率和使用成本.选用开关频率高的DC/DC可以极大地缩小外部电感器和电容器的尺寸和容量,如超过2MHz的高开关频率.开关稳压器的缺点较小,通常可以用好的设计技术来克服.但是电感器的频率外泄干扰较难避免,设计应用时对其EMI辐射需要考虑.

图2给出了Buck开关式DC/DC应用线路设计,需要注图中粗线的部分:粗线是大电流的通道;选用MuRata、Tayo-Yuden、TDK&AVX品质优良、低ESR的X7R & X5R陶瓷电容器;在应用环境温度高,或低供电电压和高占空比条件下(如降压)工作,要考虑器件的降温和散热.必须注意:SW vs. L1距离<4mm;Cout vs. L1距离<4mm;SW、Vin、Vout、GND的线必须粗短.

要得到一个运作稳定和低噪音的高频开关稳压器,需要小心安排PCB板的布局结构,所有的器件必需靠近DC/DC,可以把PCB板按功能分成几块,如图3所示.1. 保持通路在Vin、Vout之间,Cin、Cout接地很短,以降低噪音和干扰;2. R1、R2和CF 的反馈成份必须保持靠近VFB反馈脚,以防噪音;3. 大面积地直接联接2脚和Cin、Cout的负端.

图2:Buck开关式DC/DC应用线路设计

DC/DC应用举例:1. APS1006为MCU/DSP核(Core)供电;2. APS1006应用于电子矿灯(图3);3. APS1046应用于0.8-1.8微硬盘供电(图4);4. APS1006、APS4070应用于智能手机(图5).

图3:APS1006应用于电子矿灯

图4:APS1046应用于0.8-1.8微硬盘供电

图5:APS1006、APS4070在智能手机上的应用

电荷泵及其应用技巧

电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量.电荷泵是无须电感的,但需要外部电容器.工作于较高的频率,因此可使用小型陶瓷电容(1μF),使空间占用最小,使用成本低.电荷泵仅用外部电容即可提供±2倍的输出电压.其损耗主要来自电容器的等效串联电阻(ESR)和内部开关晶体管的RDS(ON).

电荷泵转换器不使用电感,因此其辐射EMI可以忽略.输入端噪声可用一只小型电容滤除.它输出电压是工厂生产时精密予置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间.电荷泵十分适用于便携式应用产品的设计.从电容式电荷泵内部结构来看,它实际上是一个片上系统.

电荷泵是一种无幅射的有效升压器件,它不使用电感器而使用电容器作为储能器件.在设计应用时需要注意电容器的容量和材质对输出纹波的影响.外部电容器的容量关系到输出纹波,在固定的工作频率下,太小的电容容量,将使输出纹波增大.输出纹波大小与电容器材料介质有关,外部电容器的材料类型关系到输出纹波.同一电荷泵,使用相同的容量和尺寸而不同材料类型的电容器,输出纹波的结果.在工作频率固定,电容器容量相同的情况下,优良的材料介质,将有效地降低纹波.选用低ESR的X7R & X5R陶瓷电容器是一种比较好的选择.

LCD Module(LCM)是目前CP、MP3/MP4、PMP需求量较大的产品,在有限的PCB面积上,需要按装LCD屏、数码相机的镜头和闪光灯、音频DAC等器件,因此它需要封装很小的多芯片组合的电源模块(MCM),以减小电源IC所占PCB的面积,而手机产品又要求这些电源IC对RF几乎无干扰.

电池充电管理芯片和锂电池保护IC

锂电池充电IC是一个片上系统(SoC),它由读取使能微控制器、2倍涓流充电控制器、电流环误差放大器、电压环误差放大器、电压比较器、温度感测比较器、环路选择和多工驱动器、充电状态逻辑控制器、状态发生器、多工器、LED信号发生

器、MOSFET、基准电压、电源开机复位、欠电压锁定、过流/短路保护等十多个不同功能的IC整合在一个晶元上.它是一个高度集成、智能化芯片.锂电智能充电过程:涓流充-->恒流充-->恒压充-->电压检测,因此电路设计的关键是要做到:充分保护、充分充电、自动监测、自动控制.

锂电池保护电路是封装在锂电池包内的,它由一颗锂电池保护IC和二颗MOSFET组成.在图6中,OD代表过放电控制;OC 代表过充电控制;P+、P-接充电器;B+、B-接锂电池.锂电池保护电路简单工作原理如下:正常装态M1、M2均导通;过充电时M2 OC 脚由高电位转至低电位,电闸关闭,截止充电,实现过充电保护;充电电流方向P+-->P-;过放电时M1 OD脚由高电位转至低电位,电闸关闭,截止充放电,实现过放电保护;放电电流方向P- -->P+.

图6:锂电池保护电路

锂电池保护电路的PCB板是很小的,设计时必须注意:1. MOSFET尽可能接近B-、P-;2. ESD防护电容器尽可能接近P+、P-;3. 相邻线间距>0.25mm,通过电流大的线要放宽,地线加宽.

电源管理芯片的低功耗OMAP系统设计

随着半导体设计和制作工艺技术的不断提高,电路板上的期间运行速度将更快,体积将更小.供电系统要求更多的种类

的电压、更低的供电电压和更大的供电电流电源设计不再仅仅局限于提供电流、电压和监控温度,还必须诊断电源供应情况、灵活设定每个输出电压参数.普通的模拟解决方案难以满足这些需求.数字电源的目标就是将电源转换与电源管理用数字方法

集成到单个芯片中,实现电源转换、控制和通信.

数字电源实现了数字和模拟技术的融合,具有很强的适应性和灵活性,具备直接监视、处理及适应系统条件的能力.数字电源还可通过远程诊断确保持续的系统可靠性,实现故障管理、过压过流保护、自动冗余等功能.但是数字电源不比传统的模拟电源效率更高,而且成本一般较高.目前数字电源需要大滤波器,这使其工作效率比模拟电源低.

本文介绍一种在嵌入式数字信号处理器(DSP)OMAP5912上使用简单的数字电源实现系统低功耗设计的方法.使用TI公司的电源转换和电压监控芯片TPS65010实现对DSP系统各种状态的检测.在不同状态下输出不同的供电电压,减小供电电流,实现整个系统的低功耗运行.该设计方法适用于各种低功耗要求的手持电子设备.

TPS65010是TI公司推出的一款针对锂离子供电系统的电源和电池管理芯片.TPS65010集成了2个开关电源转换器Vmain和Vcore、2个低压差电源转换器LD01和LDO2以及1个单体锂离子电池充电器,非常适合手持电子设备的应用要求.当12 V直流电源适配器接通时,芯片无需开关电路.在实际使用中,Vmain可以提供2.5~3.3 V电压,Vcore可以提供O.8~1.6 V 电压,LD01和LDO2可以提供1.8~6.5 V电压.各个不同电压下的电流一般可以达到400 mA,满足大部分手持设备的需求.可以通过I2C总线对TPS65010的各种寄存器进行设置,也可以通过通用的引脚将重要的信息通知TPS65010,例如可以通过LOW_POWER 引脚使TPS65010输出低功耗模式下的工作电压.

OMAP5912是TI公司推出的嵌入式DSP,具有双处理器结构,片内集成ARM和C55系列DSP处理器.TI925T处理器基于ARM9核,用于控制外围设备.DSP基于TMS320C55X核,用于数据和信号处理,提供1个40位和1个16位的算术逻辑单元(ALU).由于DSP采用了双ALU结构,大部分指令可以并行运行,工作频率达到150 MHz,并且功耗更低.C55和ARM可以联合仿真,也可以单独仿真.

OMAP5912内部专门配置了超低功率设备(Ultra Low Power Device,ULPD).ULPD模块内部结构如图1所示.

从图1可以看出,ULPD模块主要由复位管理器、FIQ管理器以及睡眠模式状态机组成.片内ULPD和OMAP5912芯片内部的复位产生模块以及芯片IDLE和唤醒状态控制器相连接.片外ULPD的复位管理器负责检测上电复位和手动复位,并将片内的复位信号输出;FIQ管理器专门用于检测电池电压,一旦出现电池电压低于或高于系统要求,或者电池电源质量不高(纹波较大、过冲较大、瞬间脉冲较大)等,FIQ管理器将中断系统工作;睡眠模式状态机负责检测和输出不同的工作方式,在不同的工作方式下将提供不同的电压和电流,从而降低系统功耗.共有3种睡眠模式:正常工作模式、Big Sleep模式和Deep Sleep模式.

2 系统硬件结构

较完整的手持设备系统主要由OMAP5912、TPS6501O、AD/DA、LCD、SDRAM、人机接口以及Flash组成.其硬件连接如图2所示.图中,DSP是核心控制单元;AD用于采集模拟信号,并将其转变成数字信号;DA将数字信号转换成模拟信号;人机接口主要包括键盘接口.Flash保存DSP所需的程序,供DSP上电调用.此外,使用DSP的HPI接口连接到PC机.

TPS65010和OMAP5912的连接是实现系统低功耗设计的关键,具体硬件连接如图3所示.TPS650lO可以提供OMAP5912所需的各种电压,但是核心运算单元需要的CVDDA以及重要外设需要的DVDD4由TPS7620l从Vmain电压转换得到.具体的TPS76201的硬件连接如图4所示.TPS7620l将Vmain的3.3V电压转换成1.6 V提供给OMAP,只要Vmain的电压不低于1.8 V,TPS76201都将稳定地输出1.6 V电压,以确保OMAP在任何情况下,即使是深度睡眠状态,核心运算单元和重要的外设都有稳定的电源保证.注意,如果不要求OMAP系统的低功耗设计,CVDDA和 DVDD4可以直接连接到Vcore.

TPS65010的Vcore输出1.6 V电压提供给OMAP的其他核,这些核电压在低功耗状态下均可以降低到1.1 V.TPS65010的VLDO1和VLDO2输出2.75V电压提供给OMAP的其他外设,这些电压和常规的3.3 V存在一定的电压差,但不影响数据传输.一般情况下,高电平只要达到2 V以上就可以了;低功耗状态下,VLDO1和VLDO2都降低到1.1 V.使用2个LDO给不同的外设提供电压,是为了在Big Sleep状态下关闭某些外设并同时能够使能其他外设.如果不进行低功耗设计,可以使用同一个LDO提供电压.

TPS65010的I2C总线连接到OMAP,便于OMAP对TPS65010的寄存器进行设置.TPS65010的RESPWRON引脚连接到OMAP 的Power_Reset引脚,上电复位后由TPS65010复位OMAP;TPS65010的LOWPWR引脚连接到OMAP的LOW_PWR引脚,OMAP进入低功耗状态由该引脚通知TPS65010,TPS65010将设定的各种电压降低,从而降低系统功耗.

4 OMAP5912的低功耗软件设计

OMAP5912有3种工作模式,分别为正常工作模式、Big Sleep模式和Deep Sleep模式.正常工作模式下,使能所有的内部时钟和外部时钟以及引脚,此时系统功耗最大,TPS650lO也按照正常工作方式供电.低功耗模式下,随时判断是否有芯片IDLE 请求,如果有则进入Big Sleep模式.在Big Sleep模式下,进一步判断是否有外部时钟请求,并根据情况进入Deep Sleep模式.

在系统正常工作方式下,如果不需要进行低功耗设计,以上软件无需加入到应用程序中.进行低功耗设计时,就需要对OMAP的各种工作状态进行判断,要在应用程序中加入LOW_PWR信号使能、关闭DSP核、激活并设置唤醒事件、关闭ARM核、激活并设置深度睡眠等软件代码.

5 总结

本文详细介绍了基于TPS65010和OMAP5912的低功耗系统设计.使用TPS65010的多个电源输出引脚给OMAP的不同单元供电,以便在OMAP的不同工作模式下改变电压输出,降低系统功耗.OMAP根据自身的软件运行情况,随时调整工作模式,并通知TPS65010,使得软件和硬件在低功耗设计上得到互通.该设计方法适用于各种对功耗要求较高的电子设备.

高级电源管理芯片FS1610及其应用

Fsl610是一款采用专利数字技术生产的高级电源管理控制器件,该器件可为数码相机、智能手机、个人PDA和笔记本电脑等移动设备提供完全可编程的电源系统解决方案.与传统的电源管理方法相比,FSl610能节约20~40%的PcB面积,此外,其完全可编程的专利数字技术.还能极大缩短研发周期.加快产品上市进程.

1 FSl610的主要功能

IS1610内部的电压检测主要针对的是FSl610芯片的供电输入,而器件的输出则包括8个高效开关电源和3个低功耗LDO,表l所列是其电源输出列表.需要注意的是,FSl610的输出电压和电流都会受到输入电压、电感、电容以及外部诸多元件因素的影响.

l 1电源输出

FSl610提供有8个开关电源.3个LDO电源和1个始终开启的电源.对这些电源输出的控制一般有三种方式:其一是通过外部的PWREN使能输人引控制;其二是通过串行命令在使用过程中根据具体情况进行控制;第三则是按照EEPROM中的设置程序来执行.

FS1610的电源输出主要用于降压转换、升压转换、白光LED驱动、低压差稳压、负升压转换和电池供电等.图I所示是用FSl610来驱动白光LED的驱动电路.

1.2电源输入

FSl610的供电电压范围是2.8~5.5 v.图2所示是S1610的供电输人以及AC适配器和电池之间的切换电路.其中VMAIN 为主电池比较器输入,用来直接监测电池的状态;VIN为主电源供电输入;DBOUT用于断开电池的输出,将它连接到一个外部的P 通道MOSFET,可当检测到电池的无电状态(DB)或者AC适配器有输入时,由该输出置位断开电池和主电源的连接;BATBU为备用电池输人,一般情况下,为了能使芯片正常操作,在BATBU输入引脚上一定要有电压;VBAT为始终开启的供电输出,可由内部开关控制,当SW[2]有效且稳定时,可将SW[2]连接到VBAT来提供电压;否则由BATBU给VBAT提供电压.

1 3其他功能

FSl610内有一个非易失存储器NVM(EEPROM),可用于保存启动的配置信息,这些信息包括通道电压、通道使能,禁止、个电源的开关顺序以及实时时钟、看门狗、中断等信息.

FSl610可通过晶体时钟提供实时时钟的操作.而其可编程报警器则可向CPU发出中断.FSl610片内还集成有一个看门狗定时器,可通过EEPROM编程设置,其定时时间达32s,时间间隔是1ms.但是,由于达到定时时间时,芯片就会复位,所以,为了避免这种情况的发生,主机必须在程序设置的定时周期结束之前,对WDT进行复位.

FSl610应由32.768 kHz晶振、或者具有合适的频率和电压的时钟源来为芯片提供内部时钟.而器件的CLKOUT输出引脚则能为外部提供32.768 kHz的输出.FSl610的nEXTON开关输人端一般连接到瞬间接触开关上,可用来控制芯片的开/关.FSl610分别为不同类型的处理器设计有两个复位输出nIRSTO和nRSTO,而手动复位输入nRSTI则主要用来启动一个硬件复位,以作为主机CPU的系统复位信号.

FSl610在需要的情况下可提供中断,并向主机发出警报.这些警报包括低电压,电源通道故障,RTC警报等.同时可以通过串行命令来对中断进行操作.

2 Fsl610的内部结构原理

图3是FSl610模块的内部结构示意图.由图可见,FSl610以电源管理控制器为核心,可为外部设备提供丰富的电源通道.另外,配合电源管理.FSl610还提供有非易失性存储器NVM、实时时钟RTC、看门狗定时器WDT、中断、复位等系统控制模块.

3工作模式

FS1610有两种操作模式,分别为串行模式和独立模式.FSl610芯片片可通过I2C、SPI和ART串口来接受主机的控制和管理,也可以在启动后根据EEPROM加载的参数独立工作.低功耗是FSl610的最突出优势之一.该芯片上的各个功能模块在不需要操作时都可以关闭.已进人休眠状态.FSl610会根据不同的环境条件在5种电源状态下自动切换,以使功耗最小化.这5种状态分别为:无电(NOPOWER)状态、关断(SHUTDOWN)状态(即SD状态)、就绪(READY)状态、工作(ACTIVE)状态、低功耗(LOWPOWER)状态.

设计时.可以对FS31610的多路电源进行灵活的配置和控制.除了对单个电源通道的开/关操作之外.还可以对电源通道进行分组,然后对各电源组进行操作.电源的启动和关闭顺序,也可以设置存储在EEPROM中,以便主机在操作的过程中来控制.

FSl610对芯片提供有可能出现的各种故障的监测和管理.这些监测包括:受监测电源正常状态、电源通道故障、电池电压和备用电池监测、热关断、中断.此外,FS1610芯片还可根据EEPROM中的设置,对监测到的不同状态进行不同的操作.

4基于FSl6l0的导航仪供电系统

FSl610的多电源输出和电源管理功能在便携式设备中应用非常方便.图4是FSl610电源管理控制芯片在基于Sumsang 公司的ARM9处理器S3C2440的导航仪上的供电电路.

根据系统的设计要求,该导航仪除了具有基本的GPS导航功能外.还需要高分辨率的液晶屏支持.为此,该系统选用的是LCD模块,该模块是已经包含了背光和控制电路的液晶屏,但需要+3.3 v和+5 v供电.表2所列出是该导航仪系统的电源需求.

由于该导航仪通常是采用电池供电,故需要最小化的功率消耗,而且要求各外设都要由系统控制.在图4中用FSl610对导航仪系统进行供电的电源分配方案中,需要注意的是,LCD背光需要400mA电流的+5v供电,而FSl610的升压电路不能提供这么大的电流,因此,设计时应用一个外加的升压电路来提供LCD的背光电源.

5结束语

本文介绍了高级电源管理控制芯片FS1610的原理和功能,给出了一个FSl610在基于ARM9处理器S3C2440设计的导航仪上的应用方案.采用该方案进行供电的导航仪,不但可以自由控制各个模块电源的开和关,而且可以在不需要的时候关闭模块,以便最小化整个系统的功耗.与传统的方法相比,选用FSl610不但可以明显节省电路板面积.提供更多的通道电压.而且控制也更加灵活

电源管理芯片在以太网供电中的应用

什么是以太网供电?

术语"以太网"是指 IEEE802.3 标准涵盖的各种局域网 (LAN) 系统.以太网协议是在工作场所,通过高速数据电缆将台式 PC 与中央文件服务器连接起来的协议.任何连接到以太网端口的设备,如数据终端、无线接入点、网络摄像机 (web cam) 或网络电话等,都需要通过电池或独立 AC 插座为自己供电.而更为优雅的方法则是能够向连接到以太网的任何设备同时传输电

源和数据.如果这种传输方式能够利用现有的以太网布线,则可以保持 100% 的历史兼容性,那将再好不过了.这正是

IEEE802.3af 规范中定义的以太网供电 (PoE) 标准所提供的内容.这一新标准于 2003 年 6 月由 IEEE 批准,是通过以太网

发送和接收电源信号的标准.PoE 的优点在于:

由于每个设备只需要一组连线,因此每个设备的布线更为简单和便宜;

免去了 AC 插座和适配器,使工作环境更安全、整洁,成本也更低;

可轻易地将设备从一处移至另一处;

无间断电源可确保在 AC 电源

断电时继续为设备供电;可对连接到以太网的设备进行远程监控.

正是这些优点使得以太网供电成为一项从本质上改变了低功耗设备供电方式的全新技术.但就目前而言,推动 PoE 总

有效市场增长 (TAM, Total Available Market) 的主力是两类用电设备:无线 LAN 接入点和 VoIP(网络语音)电话.至 2007 年,前者的复合年增长率 (CAGR) 为 38%,达 1500 万个(来源:iSuppli),而支持后者的企业网预计将达到 300 万个.对用电设备

的这种需求反过来将推动现有以太网交换机向支持 PoE 功能转移的需求.这是通过使用"中继"(midspan) 来实现的,如图1所示.这些单元的增长至 2007 年预计将达到 800 万,增长率为 68%.

在图1的示例中,源头的以太网交换机通过一个"中继"以太网供电集线器将电源"注入"局域网的双绞线电缆来提供 PoE 功能.新的以太网交换机将集成该"中继",从而实现向通过高速数据电缆连接的用电设备 (PD) 供电.这些用电设备可以是网络摄像机 (web cam)、网络语音电话、无线局域网接入点和其他电器设备.不间断电源 (UPS) 将提供备用电源,以防市电断电.

电源管理器件用于转换电压和电流,可以用在以太网交换机中,以太网供电"中继"集线器中,以及位于用电设备中的

DC-DC 转换单元中.下面各段将对这些功能中的每个功能分别进行讨论.

电源管理器件在以太网交换机中的应用

最新的以太网交换机可以通过 24 或 48 个独立端口向用电设备提供 PoE 连接性,并与非 PoE 系统保持历史兼容.每台用电设备均由其自己的48V电源供电,每台用电设备的最大允许功耗为15.4W,以太网交换机可以对每台设备的用电单独进行管理.

IEEE802.3af PoE 规范最多允许在每台用电设备处消耗大约 13W 的功率,而以太网交换机提供的最大 15.4W 的功率是为了弥补长电缆带来的一定程度的损耗.48V 电源实际上允许在用电设备端使用36~ 57V 之间的任意电压.电压要求大约为最大开关电压的 2 倍(应对开关尖脉冲等的经验法则),要求电源开关必须采用额定VDS为 100V的分立 MOSFET.

图2 显示了一个PoE控制器,通过分立 MOSFET控制四个端口.在该例中,使用的是飞利浦半导体公司的四个 PHT4NQ10T 器件.这种配置相当于每个以太网交换机或中继采用 12 个 IC 和 48 个 MOSFET.到2007 年,用于"中继"电源管理的 MOSFET 的总有效市场容量 (TAM) 将达到 5700 万美元(3 亿 8 千 4 百万只),而IC将达到 4800 万美元(9600 万片).

PoE 控制器通常指的是"热插拔"(Hot Swap) 控制器.这些 IC 的功能包括:

分别控制四个独立的 PoE 端口;

检测有效用电设备的连接; (使用低阻值的检测电阻)监测MOSFET 的稳态电流;

当一个用电设备第一次连接到个端口时,控制浪涌电流和MOSFET功耗;

具备欠流断开检测功能以确定用电设备是否已断开连接.

在正常工作情况下,当一个端口已经供电并且用电设备的旁路电容已经充电到端口电压时,外部 MOSFET 的功耗非常低.这意味着较小的 MOSFET 就能完成这个功能.然而,IEEE802.3af 的其他要求,例如加电时的浪涌电流以及不兼容的用电设备连接到端口的风险,要求 MOSFET 能承受很大的瞬态功耗.正是基于这些原因,才采用了分立 MOSFET 而不是集成方案.

对以太网交换机中的 MOSFET 的进一步要求是其在关断状态下的漏电流要非常低.IEEE802.3af 要求每端口绝对最大

漏电流不得高于 12 A,而且这个要求还包括了除 MOSFET 之外其他可能存在的保护电路的泄漏途径.飞利浦半导体公司的MOSFET 就是为满足此项要求而设计的,其最大漏电流仅为 1 A.

电源管理器件在用电设备 (PD) 中的应用

用电设备的框图如图 3 所示.来自以太网电缆的直流电源通过二极管桥式整流器恢复,因此消除了用电设备电路电压极性加反的可能性.当一个设备连接到一个 PoE 端口时,以太网交换机就执行一个"发现"程序以确定该设备是否为可接受以太网供电的设备,还是不支持 PoE 的老式设备.当用电设备断开时,也会执行"发现"程序.之所以需要这个发现程序是因为高电压(48V) 连到许多传统设备上会造成设备损毁.有鉴于此,当电压与已有的传统设备兼容时,就会执行"发现"程序,只有在"发现"符合要求时才会提供高电压直流电源.IEEE802.3af 的"发现"机制是基于特性阻抗的检测来实现的.

通过确定从每个端口吸收的功率,供电设备 (PSE) 可辅助系统电源管理协议,根据系统供电的输出能力,确定其所能支持的用电设备总数.为了实现这种电源管理,IEEE802.3af 标准中加入了一种称为"分类"的可选方法."分类"方法可以让用电设备向以太网交换机或"中继"集线器报告其最大功率需求,从而使电源管理协议能将未使用的功率分配给其他端口,充分利用已安装的电源容量.

接口控制器的功能是作为用电设备电路主电路的"通断开关",基于一个 100V 的 N 沟道 MOSFET 构建.仅当额定 48V 电源位于可接受容限以内时,接口控制器才会允许用电设备连接.此外,接口控制器通常还提供浪涌电流限制和故障电流限制功能.MOSFET 的浪涌性能则与上面以太网交换机应用中的 100V MOSFET 相当.

一旦"发现"过程完成,且接口控制器确定电源电压在容许范围内时,接口控制器的 MOSFET 就会开启,电源就施加到隔离 DC-DC 转换器.隔离 DC-DC 转换器需能在用电设备前端和用电设备电路的其他部分之间提供 1500V 的隔离(这是一种安全特性),并向用电设备电路的其他部分提供一个或多个低压直流电压,最大总功耗为 13W.该转换器的输入额定电压为 48V,采用通用的前向和返弛拓扑结构.这是常用的 DC-DC 转换器结构,与低功率电信电源极为相似.有多种控制器 IC 可以满足这一需求.如飞利浦半导体公司 GREENCHIPTM 系列中的开关电源 (SMPS) 控制器 IC 芯片 TEA1502.

据 VDC 预测,到 2007 年,高达 4.96 亿个端口将采用电源管理芯片.由于并不是所有的端口都会被利用到,当使用率为 50% 时,用电设备的总有效市场容量将为 2.48 亿.

小结

综上所述,PoE 是一项将改变设备供电方式的全新技术.假以时日,PoE 将成为很多设备所采用的普及技术.正是电源管理器件(既包括 IC 也包括 MOSFET)成就了这种改变.

基于电源管理芯片VB409的无变压器供电电源设计

在小型的MCU应用系统中,采用AC 220V供电时,一般要使用变压器对电源进行处理,将高压交流电降到低压后再进行直流处理,或者将交流电变为高压直流电后再进行高频变换,以得到MCU系统的工作电源.这对于结构没有特殊要求的系统,在设计上属于常规的问题,使用上述的线性电源技术或者开关电源技术,均能得到方便的解决.但是有些MCU应用系统在体积上要求极其小巧,甚至不能安放变压器,所以常规的电源处理就不能满足其要求了.因此,使用能够直接接收高压交流电并将其直接变换成低压直流的技术,是最佳的设计选择.VB409的出现有望实现这一设计思路.

1 VB409概述

VB409是ST公司推出的电源处理产品.其PENTAWATTHV(022Y)封装形式的产品大小与普通TO220封装的7805相近,只是引出脚为5个;还有一种PowerSO10封装的产品是10脚表面贴装式IC.输入端可以直接接入AC 220 V,且输入端允许的最高输入电压为AC 580 V.输出部分有2个: 一个是最终输出OUTPUT1,为+5V;另一个是芯片的中间输出OUTPUT2,典型值为16 V.对负载的供电能力为:OUTPUT1最大为80 mA,OUTPUT2最大为25mA.图1为VB409的内部结构图.

图1 VB409内部结构图

VB409采取的是导通角技术,即在交流电的一个周期中,根据负载的电流大小,自动调整每个周期的导通时间.也就是说,只在每个正周期的低压部分,从电源吸收电能,因此极大地降低了功耗,电流输出能力是线性电源的3倍.其工作波形如图2所示.

图2 VB409的工作波形

从图1中还可以看出,VB409还有输入、输出电流的限制和热保护功能.其作用在于:一方面当输出短路时限制电流的输出;另一方面当过载时关断芯片.

需要说明的是,OUTPUT1的输出范围为4.75~5.25 V,典型值为5 V,负载电流每增大1 mA,对输出影响为0.5mV,精度是比较高的;而OUTPUT2的输出范围为8~16V.因此,OUTPUT2的输出比较适合于作为继电器一类的驱动电源使用.如果想作为放大器的工作电源,则需要再进行一次降压式稳压.

2 VB409构成的电源系统

图3为VB409组成的电源电路.

图3 VB409组成的电源电路

图3中,D1实现半波整流,C2为涤纶电容,C3为高压电解电容,R1、R2为金属膜1/4 W电阻,C1耐压为25 V.

图1中,Vref1的电压为12V左右,Threshold端的电压高于Vref1将关断输入向输出的传送,Threshold端的工作电流最小为30μA.因此,R1与R2之和决定工作电流,R1与R2之比确定加在Threshold端的最高电压.图2中,t1、t2所处的位置对应的输入电压V1即关断的门限电压值.这个值的大小为: V1=Vref1.

V1是变化的交流电,变化规律为:

在这里,将VIN等比例缩小至V1,可以提高期间的工作可靠性.

当输入电压为AC 220 V,Threshold端的工作电流约为120 μA时,R1+R2=1.86 MΩ.按此参数设置,当输入电压为AC 60 V时,Threshold端的工作电流约为30 μA,还能够正常工作.同理,适当配置R1和R2的值,还可以确定输入电压的有效范

围,VB409允许最小输入电压可至12V.C1值的确定参见图1和图2.

C1提供输入短路关断时维持输出电路的电压,同时提供OUTPUT2较为稳定的输出.由于充、放电时间变慢,C1的值越大,OUTPUT2的输出电压值越低,但是能够提供较大的输出电流;反之,C1的值小,充、放电时间越快,OUTPUT2的输出电压值也就越高,但是能够提供的输出电流变小.一般C1的值在47~220 μF之间选择,典型值为100 μF.

3 实例MCU应用系统

使用VB409为主电源供给MCU应用系统,在设计之前,应首先估算系统的5 V电源的总功耗.计算时要将灌电流、拉电流一并计算.

图4为笔者设计的一个典型应用系统的原理图.图4为测量电能并在LCD上显示的MCU应用系统.CPU采用AT89C55WD,最大耗电量为20 mA(若采用STC89C58RD+,则耗电量可降至9 mA左右);LCD选用SO12864,采用COG式,连同背光最大耗电为20mA;功率/电能计量芯片CS5460的最大耗电量为5 mA,加上复位、键盘等最大耗电量小于50 mA;继电器输出没有画出,耗电量为12mA.因此,完全可以使用VB409供电,且系统体积小,完全可以放置在LCD背后.

图4 一个典型应用系统原理图

结语

由于没有变压器,因此就失去了电流的绝缘,所以采用VB409作为供电电源,要用在对电流绝缘没有要求的场合,例如洗衣机、中央供热、功率计量等.对于需要电流绝缘的场合,需在供电输入端加一个1∶1的小型隔离变压器,因为输入功率低,所以变压器的尺寸可以做得比较小,同时变压器的输出还可以使用电阻分压后再输入到VB409中.

(仅供参考)常用电源管理IC系列

型号(规格)器件简介相同型号 LM2940CT-1515V低压差稳压器 LP2950ACZ-3.3 3.3V低压差微功耗稳压器LP2950ACN-3.3(SIPEX) LP2954I/AI 5.0V低压差微功耗稳压器AS2954BM3-5.0(SIPEX) LM123K(NS)5V稳压器(3A) LM323K(NS)5V稳压器(3A) LM117K(NS) 1.2V to37V三端正可调稳压器(1.5A) LM317LZ(NS) 1.2V to37V三端正可调稳压器(0.1A) LM317T(NS) 1.2V to37V三端正可调稳压器(1.5A) LM317K(NS) 1.2V to37V三端正可调稳压器(1.5A) LM133K(NS)三端可调-1.2V to-37V稳压器(3.0A) LM333K(NS)三端可调-1.2V to-37V稳压器(3.0A) LM337K(NS)三端可调-1.2V to-37V稳压器(1.5A) LM337T(NS)三端可调-1.2V to-37V稳压器(1.5A) LM337LZ(NS)三端可调-1.2V to-37V稳压器(0.1A) LM150K(NS)三端可调1.2V to32V稳压器(3A) LM350K(NS)三端可调1.2V to32V稳压器(3A) LM350T(NS)三端可调1.2V to32V稳压器(3A) LM138K(NS)三端正可调1.2V to32V稳压器(5A) LM338T(NS)三端正可调1.2V to32V稳压器(5A) LM338K(NS)三端正可调1.2V to32V稳压器(5A) LM336Z-2.5(NS) 2.5V精密基准电压源KA336Z-2.5(FSC) LM336Z-5.0(NS) 5.0V精密基准电压源KA336Z-5.0(FSC) LM385Z-1.2(NS) 1.2V精密基准电压源 LM385Z-2.5(NS) 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ(NS)精密可调2.5V to36V基准稳压源LM431ACZ(FSC)

笔记本常见的芯片 (修改)

红色:代表我见过的 紫色:代表我见过加上去的 千兆网卡芯片:88E8001、RTL8101L 笔记本电脑温度传感器芯片:ADM1032、DS1620、LM26、 1、LM 75 76 78 79 LM 75负责CPU温度LM 75负责电压CPU风扇转速及主板温度。 2、S:S5597/5595,内速温控功能。 3、WINBOLD 系列:83781B 温度监控芯片 83782B 温度监控芯片 83783B 温度监控芯片支持6MA33/66芯片 笔记本电脑指纹传感器: AES2501A\ 笔记本电脑液晶显示器高压驱动芯片:BA9741F、BD9766FV、BD9882F、BD9883FV、MAX1522/MAX1523/MAX1524 、OZ960、L1451、TL5001、 笔记本电源管理芯片:(可待换) RT9221---SC1164 RT9222---SC1165 RT9223---SC1153 RT9224---HIP6004B RT9224B---CL6911E RT9224C---HIP6004D RT9227A---HIP6016 RT9228---HIP6018B RTL9229---HIP6019B RT9230---HIP6020 RT9231---HIP6021 RT-9231A---HIP6021A RT9238---ISL6524 RT9239---HIP6021 笔记本待机控制芯片:max1631 TB62501 PMH4 H8 笔记本电脑开机控制芯片:BD4175KV、BD4176KVT、IPC47N253、PC87551、TB62506、PC8394T(T43) 笔记本电脑I/O芯片:FDC37N97、IT8716FCX、IT8705F 、IT8712F 、IT8712G 、IT8702 、W83627HF 、W8671F 、

笔记本电池起死回生的妙招

当本本使用了一段时间后,你会发现续航能力大不如以前,这时你会以为电池坏掉了,其实不然,我来传授妙招。适用于XP/VISTA/WIN7操作系统。 方法一 笔记本电池特别是锂电池闲置太久或者刚维修过,它的充电曲线和放电曲线都产生的一定的偏移,需要用进行真正的充满放完的几个循环步骤纠正修复其充放电曲线,我们也叫电池的自学习过程. 1.设置(这是最关系到能把电池修复到最佳状态的最重要的一步.请大家勿必要注意啦) 打开我的电脑-控制面板-电源选项-电源使用方案如图。 把使用电池这项的时间参数全选为从不 将警报项的两个选项勾去掉,目的是当电池降到百分之几的时候让程序不响应。相应的操作,让笔记本电池的电量真正的放完,从而让电池本身修正其最低电量与曲线0%同步。 2.充放电:如上设置完之后,就按充满放完原则给电池充放电,来回两三次,就可以将电池偏移的曲线修复过来.

注意事项:充电的时候一定要让电池充满,最好的办法是关机充几个小时或一个晚上,然后拔掉电源放电,直至电脑自动掉关机。这样来回至少两个循环 方法二 电池在使用和充电中的不稳定因素会造成电池的容量下降,但这种下降并不是由于老化而造成,所以适当的进行校准是可以使这部分丢失的容量恢复的。因此定期进行电池校准工作是非常有必要的一件事情,比如1-2月一次。 像Compaq和IBM这样笔记本电脑自身就在BIOS或电源管理程序中提供了电池校准功能,所以使用这两个品牌的朋友可以照提示操作即可。对于那些没有提供这个功能品牌的用户可以遵照我下面的步骤: 1.将屏幕保护设置为“无” 2.在Windows电源管理中将电源使用方案设置为“一直开着”,并且将下面的关闭设备相关菜单全部设置为“从不” 3.在警报选项卡中将“电量不足警报”设置为10%,操作设置为“不进行任何操作”;将“电量严重短缺警报”设置为3%,操作为“待机” 4.屏幕亮度调到最高 5.确认关闭了所有的窗口,并且保存了所有之前工作的数据 6.确认电池充电在80%以上后,拔掉电源和一切外接设备,此时如果屏幕亮度自动降低,那么请将它打到最亮 OK,你可以去睡觉了,放电结束后笔记本会自动关机,之后将电源插上让笔记本充电,注意一定要等 完全充满后再开机,然后将电源方案恢复到校准之前的设置。 这样做的目的是让电池持续小电流放电,而这种放电状态在我们的日常使用中是不可能达到的,因为正常状态我们难免进行各种会使电流上上下下变动的操作。 方法三 使用BatteryMon软件来进行恢复 1.下载BatteryMon软件后并解压缩 2.点击继续

Power Management-电源管理IC

Yuming电子知识系列 Power Management Power Management 电源管理 IC Yuming Sun Jul, 2011 Jul2011 yuming924@https://www.wendangku.net/doc/9a4655237.html,

CONTENTS 础知识 ?基础知识 ?LDO Regulator ?Switching Regulator (DC-DC) ?Charge Pump(电荷泵) Ch P ?W-LED Driver ?Voltage Reference (电压参考/基准源) Voltage Reference( ?Reset IC (Voltage Detector) ?MOSFET Driver ?PWM Controller

基础知识

Portable Device

便携电子产品常用电源

电力资源-电源管理IC-用电设备 IC :5、3.3、2.5、1.8、1.2、0.9V 等;电力用电电 源管马达:3、6、12V ;LED 灯背光;资源 设备理 IC LCD 屏:12、-5V ;AC Rectifier/PWM IC )AC :110、220V DC C t 升降压DC DC Ch P 等整流:PWM IC (3843或VIPER12)、开关电源DC 或电池 DC Converter :LDO 、升降压DC-DC 、Charge Pump 等。Reset IC 或电压检测:如808、809。电池管理:保护IC 、充电管理(4054Fuel Gauge 等。电池管理保护、充电管理)、g 等DC 或电池AC Inverter/逆变:for CCFL …… (比喻:电荷-水、电流-水流、电容-水桶、电压-水压。)

2020年电源管理芯片企业三年发展战略规划

2020年电源管理芯片企业三年发展战略规划 2020年2月

目录 一、公司发展战略和目标 (3) 1、公司发展战略 (3) 2、未来三年公司业务发展目标 (3) 二、公司规划采取的措施 (4) 1、持续产品研发和升级,提升盈利能力 (4) 2、关注技术创新和新领域拓展,拓展市场应用面 (4) (1)电源芯片内核数字化技术 (4) (2)电源芯片集成化技术 (5) (3)GaN宽禁带半导体电源技术 (5) 3、加强市场开发能力与网络建设计划 (5) 4、加快对优秀人才的培养和引进 (6)

一、公司发展战略和目标 1、公司发展战略 公司致力于发展高效低耗的电源管理集成电路,对公司未来发展进行审慎布局,坚持技术进步,推出在性能、集成度和可靠性等方面具有国际领先水平,在价格和技术支持等方面具备较强国际竞争力的新一代电源管理芯片。 公司将一直秉持“进取、承诺、和谐”的企业文化,为员工提供精彩的发展空间,为客户提供精良的产品服务,不断巩固和提高公司在集成电路行业的地位,致力于成为国际一流的专业化电源管理芯片设计公司。 2、未来三年公司业务发展目标 公司未来三年的具体发展目标是:巩固和加强公司在电源管理芯片的国内行业地位。通过建设研发中心,扩大研发队伍,加强自主创新研发能力;通过开拓产品线、提升产品性能和拓宽产品应用领域,不断开发效率更高、功耗更低、集成度更高、智能交互更佳、输出功率段更齐全的电源管理芯片产品,提升公司核心竞争力;通过大力推进贴近客户的应用支持团队的建设和布局,优化管理流程,提升公司的品牌影响力和美誉度,扩大行业和区域覆盖面,积极开拓海内外市场。

8种常见电源管理IC芯片介绍

8种常见电源管理IC芯片介绍 在日常生活中,人们对电子设备的依赖越来越严重,电子技术的更新换代,也同时意味着人们对电源的技术发展寄予厚望,下面就为大家介绍电源管理技 术的主要分类。 电源管理半导体从所包含的器件来说,明确强调电源管理集成电路(电源管 理IC,简称电源管理芯片)的位置和作用。电源管理半导体包括两部分,即电源管理集成电路和电源管理分立式半导体器件。 电源管理集成电路包括很多种类别,大致又分成电压调整和接口电路两方面。电压凋整器包含线性低压降稳压器(即LDO),以及正、负输出系列电路,此 外不有脉宽调制(PWM)型的开关型电路等。因技术进步,集成电路芯片内数字电路的物理尺寸越来越小,因而工作电源向低电压发展,一系列新型电压 调整器应运而生。电源管理用接口电路主要有接口驱动器、马达驱动器、功率场效应晶体管(MOSFET)驱动器以及高电压/大电流的显示驱动器等等。 电源管理分立式半导体器件则包括一些传统的功率半导体器件,可将它分为 两大类,一类包含整流器和晶闸管;另一类是三极管型,包含功率双极性晶体管,含有MOS 结构的功率场效应晶体管(MOSFET)和绝缘栅双极型晶体管(IGBT)等。 在某种程度上来说,正是因为电源管理IC 的大量发展,功率半导体才改称 为电源管理半导体。也正是因为这么多的集成电路(IC)进入电源领域,人们 才更多地以电源管理来称呼现阶段的电源技术。 电源管理半导体本中的主导部分是电源管理IC,大致可归纳为下述8 种。 1、AC/DC 调制IC。内含低电压控制电路及高压开关晶体管。 2、DC/DC 调制IC。包括升压/降压调节器,以及电荷泵。

电源管理芯片

笔记本电源管理芯片,i/o (2009-11-06 22:23:06) 转载 标签: 杂谈 笔记本:ADP3421/ADP3410/ADP3205/ADP3180/ADP3806/ADP3203/ADP3020 RT9237/RT9237CS/RT9231/RT9241/RT9231A/RT9241A/RT9241B RT9221/RT9600/RT9602/RT9603/RT9222/RT9224/RT9224A/RT9223 RT9227A/RT9228/RT9238/RT9248A/RT9173/RT9202/RC5051M 5090MTC/RC5093MTC/5098MTC/SC1470/SC1205/SC1214TS SC1155CSW/SC1154CSW/SC1153CSW/SC1189SW//SC1185ACSW SC1402ISS/SC2422ACS//SC1164CSW/SC1150/ISL6524CB/RC5053M /ISL6522CB/ISL6556BCB/ISL6566CRZ/4500M/HIP6501ACB HIP6521CB/HIP6502/HIP6016CB/HIP6017CB/HIP6018BCB/HIP6019BCB HIP6020CB/HIP6021CB/HIP6601/HIP6602BCB/HIP6603CB/HIP6004ECB HIP6620BAB/HIP6301CB/HIP6520/HIP6302CB/HIP6303CS/SC1163 SC1159/SC1486/ST75185C/SC2434SW/SC1480/SC1403/SC1404 SC1485/SC1486/SC1474/SC1476/SC1211/SC451/SC1470 IRU3013/IRU3004CW/IRU3055CQTR/IRU1150CM/MS-5/MS-7/5322 CS5301/L6916D/L6917CB/LM2637M/LM2638M/ICE2AS01/KA7500B 笔记本电源管理芯片 ADP3421/ADP3410/ADP3205/ADP3180/ADP3806/ADP3203/ADP3020 笔记本电源管理芯片 ADP3170/ADP3188/ADP3181/ADP3166/ADP3163/ADP3165/ADP3168 笔记本电源管理芯片

【完整版】2019-2025年中国电源管理芯片行业高端市场开拓策略研究报告

(二零一二年十二月) 2019-2025年中国电源管理芯片行业高端市场开拓策略研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一节研究报告简介 (5) 第二节研究原则与方法 (5) 一、研究原则 (5) 二、研究方法 (6) 第三节研究高端市场开拓策略的重要性及意义 (8) 一、重要性 (8) 二、研究意义 (8) 第二章市场调研:2018-2019年中国电源管理芯片行业市场深度调研 (9) 第一节电源管理芯片概述 (9) 一、电源芯片的作用和分类 (9) 二、应用领域 (10) 第二节我国电源管理芯片行业监管体制与发展特征 (10) 一、行业分类 (10) 二、行业主管部门及监管体制 (10) 三、行业主要法律和政策 (11) 四、行业技术水平及技术特点 (13) (1)行业技术水平 (13) (2)行业技术特点 (14) 五、行业的经营模式 (14) (1)集成电路设计子行业经营模式 (15) (2)集成电路制造子行业经营模式 (16) (3)集成电路封装测试子行业经营模式 (16) 六、行业周期性、区域性、季节性 (16) (1)周期性 (16) (2)区域性 (16) (3)季节性 (16) 七、行业与上、下游行业之间的关联性 (17) (一)上游行业对本行业的影响 (17) (二)下游行业对本行业的影响 (17) 第三节2018-2019年中国电源管理芯片行业发展情况分析 (17) 一、2018年集成电路行业运行情况 (17) 二、2019年集成电路行业运行情况分析 (20) (一)集成电路产量情况 (20) (二)集成电路进出口情况 (21) 三、2019年集成电路行业未来展望 (25) 四、电源管理芯片及其应用市场容量和发展前景 (26) (一)中国锂电池市场容量和发展前景 (27) (二)中国移动电源市场容量和发展前景 (28) 五、全球电源管理芯片厂商梳理及趋势分析 (29) (一)产业未来发展方向和趋势 (29) (二)全球主要代表厂商及格局 (30)

电源管理芯片引脚定义(精)

电源管理芯片引脚定义 1、VCC 电源管理芯片供电 2、VDD 门驱动器供电电压输入或初级控制信号供电源 3、VID-4 CPU与CPU供电管理芯片VID信号连接引脚,主要指示芯片的输出信号,使两个场管输出正确的工作电压。 4、RUN SD SHDN EN 不同芯片的开始工作引脚。 5、PGOOD PG cpu内核供电电路正常工作信号输出。 6、VTTGOOD cpu外核供电正常信号输出。 7、UGATE 高端场管的控制信号。 8、LGATE 低端场管的控制信号。 9、PHASE 相电压引脚连接过压保护端。 10、VSEN 电压检测引脚。 11、FB 电流反馈输入即检测电流输出的大小。 12、COMP 电流补偿控制引脚。 13、DRIVE cpu外核场管驱动信号输出。 14、OCSET 12v供电电路过流保护输入端。 15、BOOT 次级驱动信号器过流保护输入端。 16、VIN cpu外核供电转换电路供电来源芯片连接引脚。 17、VOUT cpu外核供电电路输出端与芯片连接。 18、SS 芯片启动延时控制端,一般接电容。 19、AGND GND PGND 模拟地地线电源地 20、FAULT 过耗指示器输出,为其损耗功率:如温度超过135度时高电平转到低电平指示该芯片过耗。 21、SET 调整电流限制输入。

22、SKIP 静音控制,接地为低噪声。 23、TON 计时选择控制输入。 24、REF 基准电压输出。 25、OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连VCC丧失过压保护功能。 26、FBS 电压输出远端反馈感应输入。 27、STEER 逻辑控制第二反馈输入。 28、TIME/ON 5 双重用途时电容和开或关控制输入 29、RESET 复位输出V1-0v跳变,低电平时复位。 30、SEQ 选择PWM电源电平轮换器的次序:SEQ接地时 5v输出在3.3v之前。SEQ接REF上,3.3v 5v各自独立。SEQ接v1上时 3.3v输出在5v之前。 31、RT 定时电阻。 32、CT 定时电容。 33、ILIM 电流限制门限调整。 34、SYNC 振荡器同步和频率选择,150Khz操作时,sync连接到GND, 300Khz时连接到REF上,用0-5v驱使sync 使频率在340-195Khz. 35、VIN 电压输入 36、VREFEN 参考电压 37、VOUT 电压输出 38、VCNTL 供电

笔记本电脑电池的保养和优化

笔记本电脑电池的保养和优化 “移动性”是笔记本电脑区别于台式机的一个重要特征之一。也正是由于有了这个特征,使笔记本电脑的电池在不经意之间就承担起了维护形象的重任。一部缺少长久的电池续航能力的笔记本电脑,是不可能担当起长时间移动办公需要的。而缺少了电池强力帮助的笔记本电脑,其“Anytime,Anywhere”的优势也就更是无从谈起了。 目前,很多笔记本电脑的使用者对于电池的使用还仅仅停留在初级阶段,对于究竟该如何保护电池以及合理地利用电池一概不知晓。每当这些用户大肆地抱怨电池使用时间太短或是电池寿命不长的同时是不是首先仔细地从自己平时的使用中找找原因呢?当然造成这两个问题的原因也不排除电池自身质量的因素,但是就目前绝大多数情况来看,人为使用不当是一个很普遍的情况。 很多人认为笔记本电脑的电池是按照使用年限来计算寿命的,其实不然,真正起到决定作用的因素应该是完全充放电次数。这并不是笔记本电脑的特例,但凡所有的充电电池都是如此。在正常的情况下,目前普遍被应用于笔记本电脑中的锂离子电池为400次左右的充放寿命;镍氢电池的寿命要长很多,可以达到千次的充放,但由于具有很强的电记忆效应,因此虽然在寿命上要强于锂离子电池,但是就其日常使用状态而言,镍氢电池的性能大大不如锂离子电池。 同我们人类的生老病死一样,电池也是在逐渐的衰老之后而最终走向死亡的。因此,正确地使用和保养电池就显得尤为重要了。 一般新机器的电池中都会预先充入一定的电量以供在试机时使用,因此当你将机器抱回家后首先要将这部分电量消耗殆尽后再进行充电工作。并且今后的每一次充电都要保证在电池中的剩余电量尽可能地被消耗干净后再进行。 如果需要对电池进行长时间地搁置保存,那么要保证电池中留有一定的电量,各个厂家对究竟该留多少剩余电量众说纷纭,不过笔者建议大家还是充满电后保存为好;另外长期不使用的电池在一个月内至少进行一次深度放电和充电也是必须要做的工作,这样做的目的是防止电池离子在长期未被使用的情况下失去电活性而导致再也无法再次充电。 在电脑使用环境供电稳定的情况下,建议大家将电池取下,而单独采用电源适配器供电。这样做的目的很简单,就是避免电池频繁的在不完全放电情况下被充电。我们所处的环境是不可能绝对绝缘的,因此电池即使未被使用也同样会出现自然耗电,这样当电源再次接通时,便会对电池进行充电。这种做法对有很强电记忆效应的镍氢电池损伤是非常大的,虽然锂离子电池的电记忆效应几乎可以忽略不计,但是长时间的不完全充放电也会在一定程度上减少电池的寿命。当然,如果你使用电脑的环境供电状况非常糟糕,就不要这么做了,和价格上万的笔记本电脑相比而言,一块电池还算是比较廉价的,拣了芝麻丢了瓜就不合算了。

dcdc开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。

笔记本风扇控制电路详解

笔记本风扇控制电路详解 如图3-5-1所示,是整个笔记本电脑CPU散热风扇基本控制系统示意图。它构成的几个要件有CPU内部温度传感器、主板温度控制芯片、主板电源管理芯片、CPU散热风扇供电线路和CPU散热风扇散热模组。整个系统的组成,最终还是为了实现CPU降温来服务的。现在分步来看。 电脑家园 1

图 3-5-1 典型CPU散热风扇控制模型 ■CPU内部温度传感器 集成在CPU芯片内部一个热敏二极管的电气特性会随着CPU内核的温度变化而变化。二极管传感器的变化信息,将通过CPU的两个引脚传递到主板上CPU底座附近温控芯片的两个引脚上去。 ■主板温度控制芯片 该温控芯片的主要职责就是将CPU内部温度传感器引脚传递来温度信息转换成符合SMBUS总线规范的数字信息,并最终传递给主板上的电源管理芯片。不仅如此,当CPU温度升高到CPU规格限定值时,温控芯片通常能够直接去控制系统电源部分,关闭整个主机电源,避免CPU和其他相关模块因温度过高而损坏。如图3-5-2所示,典型CPU温控芯片主板视图。 图 3-5-2 典型温控芯片视图 电脑家园 2

■主板电源管理芯片 电源管理芯片通过温控芯片侦测到CPU温度信息,并通过EC BIOS内部CPU温度控制列表,发出相应的控制信号,来控制CPU散热风扇工作电压进而实现风扇转速的调节。下图3-5-3所列,为典型笔记本电脑机型CPU散热风扇转速控制信息清单。 图 3-5-3 典型风扇转速控制清单 电脑家园 3

■ CPU散热风扇散热模组及其供电线路 CPU散热风扇散热模组自身运转与否及其转速高低,最终还是由加在风扇引脚上面电压的高低决定。普通可调节CPU散热风扇都是3PIN的,它们分别是电源、转速控制和接地脚。当CPU散热风扇电源脚工作电压被电源管理芯片发出来的控制信号关闭后,风扇将停止运转。在CPU散热风扇工作电压开启的情况下,可以通过连接到电源管理芯片上的转速控制脚来实现风扇的转速调节。该引脚信号是一个矩形方波,EC通过调节方波电压信号的占空比,来实现CPU散热风扇工作的电压差。不同占空比的控制信号可以实现CPU散热风扇的低、中及高速运转。https://www.wendangku.net/doc/9a4655237.html, 如图3-5-4所示,典型笔记本电脑CPU散热风扇散热模组温控及供电线路原理图。 电脑家园 4

WIN7电源管理功能全解析

很多用过和正在使用Windows Vista系统的朋友都知道,相比此前微软的操作系统,这一版本的电源管理功能更加强大,用户可根据实际需要,设置电源使用模式,让移动计算机用户在使用电池续航的情况下,依然能最大限度发挥功效。延长使用时间,保护电池寿命。而相比Vista版本,Windows 7操作系统的电源管理功能同样强大,不但继承了Vista系统的特色,还在细节上更加贴近用户的使用需求。并方便用户更快、更好的设置和调整电源属性。 本文基于Windows 7 beta版 + 中文语言包,翻译内容可能和英文原版略有差异,但步骤和选项相同。 1.全新设计的电池使用方案 为给使用电池续航的笔记本用户进一步节约能耗,在Windows 7系统中,为用户提供了包括已平衡、节能程序等多个电源使用计划和方案,同时,相比Windows Vista系统,还可快速通过电源查看选项,调整当前屏幕亮度和查看电池状态(如电源连接状态、充电状态、续航状态等)。 在默认情况下,Windows 7系统为用户提供的是已平衡使用方案。这一方案可使系统在使用电池续航的情况下,2分钟内自动灰阶显示器(通过降低亮度解决耗电)、5分钟后自动关闭显示、并在15分钟后自动将计算机进入休眠状态。同时,用户还可直接在电源选项中,对在使用电池模式和接通电源模式下,默认的屏幕亮度进行调整。 同时,节能程序计划和高性能计划的灰阶显示器、关闭显示器、进入睡眠状态设置,则分别会为用户提供如如下使用方案。 此外,用户若希望对电源使用方案,和相应功能进行详细设置,还可在Windows 7操作系统的控制面板选项中,进入电源设置选项,并通过自定义电源设置,对相应功能详细进行调整。 2.自定电源使用方案。 考虑到不同环境下,用户的实际使用需求,在Windows 7操作系统中,用户还可通过控制面板中电源选项,创建新的电源使用方案。在详细的功能设置列表中,过呢据实际需求对其进行调整。 在功能列表中,用户可分别对电池使用模式、硬盘耗电模式、无线适配器设置、睡眠时间、电源按钮和笔记本合盖后的状态进行调整。同时在创建过程中若出现失误,还可通过还原计划默认值选项进行恢复。 同时,在电源选项中。,用户也可对电源按钮进行定制,例如关机按钮、休眠按钮和关闭笔记本盖子后的状态。还可设置唤醒密码,为系统提供安全保护(唤醒密码默认为系统帐户密码)。

电源管理芯片引脚定义

电源管理芯片引脚定义 1 VCC 电源管理芯片供电 2 VDD 门驱动器供电电压输入或初级控制信号供电源 3 VID0- 4 CPU与cpu供电管理芯片VID信号连接引脚,主要指示芯片的输出信号, 使两个场管输出正确的工作电压。 4 RUN SD SHDN EN 不同芯片的开始工作引脚 5 PGOOD PG cpu内核供电电路正常工作信号输出 6 VTTGOOD cpu外核供电正常信号输出 7 UGATE 高端场管的控制信号 8 LGATE 低端场管的控制信号 9 PHASE 相电压引脚连接过压保护端 10 VSEN 电压检测引脚 11 FB 电流反馈输入即检测电流输出的大小 12 COMP 电流补偿控制引脚 13 DRIVE cpu 外核场管驱动信号输出 14 OCSET 12v供电电路过流保护输入端 15 BOOT 次级驱动信号器过流保护输入端 16 VIN cpu外核供电转换电路供电来源芯片连接引脚 17 VOUT cpu外核供电电路输出端与芯片连接 18 SS 芯片启动延时控制端,一般接电容 19 AGND GND PGND 模拟地地电源地 20 FAULT 过耗指示器输出,为其损耗功率:如温度超过135.c时由高电平转到低电平指示该芯片过耗. 21 SET 调整电流限制输入 22 SKIP 静音控制,接地为低噪声 23 TON 计时选择控制输入 24 REF 基准电压输出 25 OVP 过压保护控制输入脚,接地为正常操作和具有过压保护功能,连vcc丧失过压保护功能。 26 FBS 电压输出远端反馈感应输入 27 STEER 逻辑控制第二反馈输入 28 TIME/ON 5 双重用途定时电容和开或关控制输入 29 RESET 复位输出vl-0v跳变,低电平时复位 30 SEQ 选择pwm电源电平转换器的次序 SEQ接地时5v输出在3.3v之前 SEQ 接REF上,3.3v 5v 各自独立 SEQ 接vl上时 3.3v输出在5v之前 31 RT 定时电阻 32 CT 定时电容 33 ILIM 电流限制门限调整 34 SYNC 振荡器同步和频率选择,150khz操作时,sync连接到gnd 300khz时 连接到ref上,用0-5v驱使sync 使频率在340-195khz

2017年电源管理芯片企业三年发展战略规划

2017年电源管理芯片企业三年发展战略规划 2一、公司发展战略和目标 ........................................................................ 2 1、公司未来发展战略 ............................................................................................ 2、未来三年公司业务发展目标 (2) 3、公司拟采取的具体发展规划 (3) (1)持续产品研发和升级,提升盈利能力 (3) (2)关注技术创新和新领域拓展,拓展市场应用面 (3) (3)加强市场开发能力与网络建设计划 (4) (4)可持续的人力资源发展规划 (4) 二、发展规划的假设条件 ........................................................................ 5 5 三、可能面临的主要困难 ........................................................................ 1、资金瓶颈 ............................................................................................................ 6 6 2、人才及技术瓶颈 ................................................................................................ 6 3、管理瓶颈 ............................................................................................................ 四、确保实现发展规划采用的方法或途径 (7) 1、加快对优秀人才的培养和引进 (7) 7 2、多元化融资方式 ................................................................................................ 3、深化公司治理结构完善计划 (7) 五、业务发展规划和目标与现有业务的关系 (8)

笔记本常用电源管理芯片测试引脚

笔记本常用电源管理芯片测试引脚

笔记本常用电源管理芯片测试引脚 芯片型号主供 电脚 总控制 SHDN ON/OFF 线性 5V 基准电压PG信号说明 主要应 用机型 MAX1632/163522237 28219-2.5V11 5V5-18.9V 4-12V MAX1902--32Pin2122 4 2820791-12V 2- MAX1631/163422237 2821911 SC1403/140422237 2821911 MAX786/SB30522312 3 132210-3.3V MAX1902-28Pin22237 28219-5V11-RST4-12V MAX1902-32Pin2122 4 282079 MAX1999/1834206 3 45 17 18 85-5V 25-3.3V MAX8734206 3 4188225-3V LTC1628/3707246 1 152110-3.3V28 LTC1628-32Pin23313 28207-3.3V27 LT372823313 282110-3.3V28 MAX1901/1904-28pin22237 2821911不能和 1631/1632互换 MAX1901/1904-32Pin21227 282079 TPS51020-30pin249 10228-10V12 SC24501487 28 SI786LG2312 3 132210-3.3v 笔记本常用电源管理芯片测试引脚汇总--CPU篇2009-11-26 12:32:23| 分类:笔记本电源管理芯| 标签:|字号大中小订阅 芯片型号主供 电脚 总控制 SHDN 系统5V输 入 基准电压PG信号 5V激 放 电压识别说明 主要应用 机型 ADP3203 16 24-3.3V 26 12 10 4---8 ADP3204 ADP3415 5V 10 ADP3205 19 22-3.3V 9 14 10 3---9 ADP3207 8 31-5V 2 34--40 ADP3419 5 10 ISL6218 6 19 1 15 34 9---14 ISL6262-48pin 20 3 48-3.3v 1 31 37--43

笔记本的电源使用方案应该怎么设置

三星笔记本电脑R518应该如何设置"电源使用方案"才是最佳的方案,现在电脑上的电池并不常用 10 [ 标签:三星笔记本,电源使用方案,电池 ] 怎么用最正确?笔记本电池使用问题解答 2009-12-07 11:13:04来源: 太平洋电脑网https://www.wendangku.net/doc/9a4655237.html,(北京)跟贴1 条手机看新闻 【12月7日太平洋电脑网黑龙江哈尔滨讯】昨天,我们邀请到了诚阳网络公司,为大家解答了一些在选购笔记本电池过程中遇到的问题。今天,我们再次请诚阳网络公司为我们解答一些笔记本电池在使用过程中会遇到的问题。 笔记本电池使用常见问题 1.问:第一次充电若干小时后,电池电量仍然只显示30%,这是为什么?该怎么做才能达到100% 满充? 答:碰到此问题,您可以参照第三条所述的校正您的笔记本电池以达到最佳性能进行操作。如仍然不能解决,请联系您的供应商要求更换。

2.问:新电池能够驱动电脑多久时间? 答:笔记本电池的运行时间很难确定。实际的运行时间取决于设备对电量的要求,屏幕的大小、硬盘以及其它附件都消耗额外的电量,大大地缩短其运行时间,电池的总运行时间也取决于设备的设计。 3.问:电池没有完全用完就充电是否会减少寿命? 答:电池的寿命一般按照完全充电次数计算,锂电池一般为300-400次。当然你不必担心接通电源对电池进行一次充电,电池的充电次数一般只有当完成完整的充放电才会增加一次。 4.问:电池充到一定百分比甚至100%之后,断掉AC电源,电池不放电,电脑立刻关机,为什么? 答:(1)要看您的工作环境温度是不是太高,如果在气温较高的地区,长时间使用则电池会发生保护,为了防止意外,电脑启动程序就终止电脑工作,此时您可以将您的计算机关掉,您可以把电池取出来,重新放回去。 (2)计算机的充电电路在充电的时候是最容易生发问题,的另外的一种可能就是您的计算机在充电的过程中,发生了问题。请检查您的计算机,。此时您可以找到原装电池,看计算机是否可以工作。 5.问:我的戴尔笔记本无法识别电池,并显示“电池无法兼容这台电脑,请插入戴尔电池”之类的信息,且指示灯不停地闪烁,这是怎么回事? 答:此信息表示电池的兼容性不好,当发生这种故障时,请联系您的供应商要求更换。 6.问:当我将电池放入电脑内,电脑自动关机,而将电池取出,则电脑可以正常工作,这是为什么? 答:这说明电池已经有故障。这种情况非常少,原因可能是电池接口部位短路保护所引起的技术故障。遇到此故障,请联系您的供应商要求更换电池。 7.问:新电池不能充电是为什么呢? 答:所有笔记本电池生产厂商在出货时,笔记本电池都会充40-50的电量。一般我们建议充电一整夜(约12小时)。新的笔记本电池初期使用应该循环充电(深度充电,然后深度放电)3至5次,使电池性能达到最优。(注:在进行充放电过程中电池有一定的温度是很正常的)。新电池很难用适配器充电,因为他们从来没有深度充电。如果发生这种情况,取出电池,然后重新插入。充电周期的应重新开始。第一次电池充电时这种情况可能多次发生。别担心,这是完全正常的。 8.问:我的原装电池的标称电压是14.4V或10.8V,而恒盈普泰所销售的相应型号的电池标称电压与我的不符,其标称电压只有14.8V或11.1V,但又注明是可以用在同一款机型上,我应如何做出选择? 答:一台笔记本电脑,它所工作的直流安全电压范围,是在5.5V至24V之间。我们所配备的电池,都是一个额定工作所需的安全电压值范围。大家都知道,我们所使用的电池都是锂离子电池,而锂离子电池自身的特性是:充电时电池电压会增高;放完电时电压会降低。例

电源管理芯片LDO和DC-DC的区别

电源管理芯片LDO和DC-DC的区别

————————————————————————————————作者:————————————————————————————————日期:

DC/DC和LDO的区别 LDO :LOW DROPOUT VOLTAGE 低压差线性稳压器,故名思意,为线性的稳压器,仅能使用在降压应用中。也就是输出电压必需小于输入电压。 优点:稳定性好,负载响应快。输出纹波小 缺点:效率低,输入输出的电压差不能太大。负载不能太大,目前最大的LDO 为5A(但要保证5A的输出还有很多的限制条件) DC/DC:直流电压转直流电压。严格来讲,LDO也是DC/DC的一种,但目前DC/DC多指开关电源。 具有很多种拓朴结构,如BUCK,BOOST。等。。 优点:效率高,输入电压范围较宽。 缺点:负载响应比LDO差,输出纹波比LDO大。 DC / DC 和LDO的区别是什么? DC/DC 转换器一般由控制芯片,电杆线圈,二极管,三极管,电容构成。DC/DC 转换器为转变输入电压后有效输出固定电压的电压转换器。DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。根据需求可采用三类控制。PWM控制型效率高并具有良好的输出电压纹波和噪声。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。PWM/PFM转换型小负载时实行PFM控制,且在重负载时自动转换到PWM控制。目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。 LDO是low dropout voltage regulator的缩写,整流器. DC-DC,其实内部是先把DC直流电源转变为交流电电源AC。通常是一种自激震荡电路,所以外面需要电感等分立元件。 然后在输出端再通过积分滤波,又回到DC电源。由于产生AC电源,所以可以很轻松的进行升压跟降压。两次转换,必然会产生损耗,这就是大家都在努力研究的如何提高DC-DC效率的问题。 1.DCtoDC包括boost(升压)、buck(降压)、Boost/buck(升/降压)和反相结构,具有高效率、高输出电流、低静态电流等特点,随着集成度的提高,许多新型DC-DC 转换器的外围电路仅需电感和滤波电容;但该类电源控制器的输出纹波和开关噪声较大、成本相对较高。 2.LDO:低压差线性稳压器的突出优点是具有最低的成本,最低的噪声和最低的静态电流。它的外围器件也很少,通常只有一两个旁路电容。新型LDO可达到以下指标:30μV 输出噪声、60dB PSRR、6μA 静态电流及100mV 的压差。LDO 线性稳压器能够实现这些特性的主要原因在于内部调整管采用了P 沟道场效应管,而不是通常线性稳压器中的PNP 晶体管。P 沟道的场效应管不需要基极电流驱动,所以大大降低了器件本身的电源电流;另一方面,在采用PNP 管的结

笔记本常用芯片

线性稳压块:2951、LP2951、m5236、2950 开机芯片:东芝TM87XX、IBM:TB6805F、TB6806F、TB6808F、TB62501F、TMP48U I/O芯片:PC97338、PC87391、PC87392、pc87393、SMSC系列:FDC7N869、FDC37N958、LPC47N227、LPC47N267 系统供电芯片:MAX1632、MAX1631、MAX1904、MAX1634、MAX785、MAX786、SB3052、SC1402、LTC1628 CPU供电芯片:MAX1711、MAX1714、MAX1717、MAX1718、MAX1897 供电芯片搭配使用:ADP3203/ADP3415、ADP3410/ADP3421、ADP3410/ADP3422 充电芯片:MAX1645、MAX745、MAX1772、MAX1773、ADP3806、TC490/591、MB3887、MB3878、MAX1908 ,LT1505G CPU温度控制芯片:MAX1617、MAX1020A、AD1030A、CM8500 MAX1989 显卡品牌:ATI、NVIDIA、S3、NEOMAGIC、TRIDENT、SMI、INTEL、FW82807和CH7001A 搭配使用网卡芯片:RTL8100、RTL8139、Intel DA82562、RC82540、3COM、BCM440 网卡隔离:LF8423、LF-H80P、H-0023、H0024、H0019、ATPL-119 声卡芯片:ESS1921、ESS1980S、STAC9704、AU8810、4299-JQ、TPA0202、4297-JQ、8552TS、8542TS、CS4239-KQ、BA7786、AD1981B、AN12942 PC卡芯片:R5C551、R5C552、R5C476、R54472 PC卡供电芯片:TPS2205、TPS2206、TPS2216、TPS2211、PU2211、M2562A、M2563A、M2564A COM口芯片:MAX3243、MAX213、ADM213、HIN213、SP3243、MC145583 键盘芯片:H8C/2471、H8/3434、H8/3431、PC87570、PC87591 键盘芯片:具有开机功能:H8/3434、H8/3437、H8/2147、H8/2149、H8/2161、H8/2168、PC87570、PC87591、H8S/XXX M38857、M38867、M38869 笔记本IO芯片大全PC87591S(VPCQ01)/PC 87591L(VPC01)/PC 97317IBW/PC 87393 VGJ 笔记本IO芯片大全TB 62501F/TB62506F/TB6808F/KB910QF/KB910QB4/KB910LQF/KB910LQFA1 笔记本IO芯片大全KB3910QB0/KB910SFC1/KB3910SF/PC87591E-VLB/IT8510E/PS5130 笔记本IO芯片大全PC87591E (-VPCI01),(VPCQ01)/PC 97551-VPC/PC 87570-ICC/VPC 笔记本IO芯片大全PC87391VGJ/TB6807F/W83L950D/LPC47N249-AQQ/PCI4510/PC8394T 笔记本IO芯片大全PC87392/PC87541L/PC87541V/LPC47N253-AQQ/PC87591E-VLB 笔记本IO芯片大全LPC47N250-SD/LPC47N252-SG/LPC47N254-AQQ AA T3200低压差稳压器 AAI3680笔记本电脑充电控制芯片 AA T4280端口限流保护芯片 AD1885主板声卡芯片 ADl888主板声卡芯片 ADl981主板声卡芯片 ADP3160/ADP3167笔记本电脑供电控制芯片 ADP3166主板CPU供电控制芯片 ADP3168笔记本电脑供电控制芯片 ADP3170主板CPU供电控制芯片 ADP3180主板CPU供电控制芯片 ADP3181笔记本电脑CPU供电芯片 ADP3203笔记本电脑CPU供电芯片 ADP3421笔记本电脑CPU供电芯片 ADP3806笔记本电脑电池充/放电控制芯片 AIC1567主板CPU供电控制芯片 ALC200主板声卡芯片

相关文档
相关文档 最新文档