文档库 最新最全的文档下载
当前位置:文档库 › 数学发展历史

数学发展历史

数学发展历史
数学发展历史

数学史

数学是一门古老的学科,它伴随着人类文明的产生而产生,至少有四、五千年的历史.但它不是某一个民族或某一个地区的产物,而是世界许多民族、诸多地区世世代代的产物,是人们在生产斗争和科学实践中逐渐形成和发展而成的。数学的最初的概念和原理在远古时代就萌芽了,经过四千多年世界许多民族的共同努力,才发展到今天这样内容丰富、分支众多、应用广泛的庞大系统。

第一节发展历史

一般认为,从远古到现在,数学经历了五个历史阶段.

一、数学萌芽时期(公元6世纪以前)

在人类历史上,这是原始社会和奴隶社会的初期。这个时期数学的成就以巴比伦、埃及和中国的数学为代表。古巴比伦是位于幼发拉底河和底格里斯河两河流域的一个文明古国。巴比伦王国形成于约公元前19世纪,从出土的古巴比伦的泥板上的楔形文字中发现,古巴比伦人具有算术和代数方面的知识,建立了60进位制的记数系统,掌握了自然数的四则运算,广泛使用了分数,能进行平方、立方和简单的开平方、开立方运算.他们迈出了代数的第一步,能用一些特别的术语和符号代表未知数,能解特殊的几种一元一次、二元一次方程和一元二次方程,甚至某些三次、四次(可化为二次的)和个别指数方程,并且能够把它们应用于天文学和商业等实际问题中去。几何方面掌握了简单平面图形的面积和简单立体体积的计算方法。

中国是最早使用十进位值制记数法的国家。早在三千多年前的商代中期,在甲骨文中产生了一套十进制数字和记数法,最大的数字为三万.与此同时,殷人用十个天干和十二个地支组成六十甲子,用以记日、记月、记年。用阴(——)、阳(一)符号构成八卦表示8种事物,后来发展为64卦。春秋战国之际,筹算已普遍应用,其记数法是十进位值制。数的概念从整数扩充到分数、负数,建立了数的四则运算的算术系统。几何方面,4500年前就有测量工具规、矩、准、绳,有圆方平直的概念。公元前1100年左右的商高知道“勾三股四弦五”的勾股定理.春秋末战国初的墨子在《墨经》中给出了一些数学定义,包含有许多算术、几何方面的知识和无穷、极限的概念。

在这个历史时期,由于生产水平很低,商品生产极其有限,社会实践对数学

的要求不高.因此只是在长期实践中逐渐形成了数的概念,初步掌握了数的运算方法,积累了几何学的一些知识.但这些知识是片断的、零碎的,没有形成体系,缺少逻辑因素,没有命题的证明.数学这门学科的最显著的特点之一的演绎推理和公理法在这个时期没有出现.

二、初等数学时期(从公元前5世纪到公元17世纪)

在人类历史上,这是发达的奴隶社会和整个封建社会时期.这个时期外国数学发展的中心先在古希腊,后在印度和阿拉伯国家,之后又转到西欧诸国.这时期的中国数学独立发展,在许多方面居世界领先地位.在数学内容上,2世纪以前是几何优先发展阶段,2世纪以后是代数优先发展阶段.如果说古希腊的几何证明的较突出,则中国和印度的代数计算可与其媲美.这个时期的数学发生了本质的变化,数学(主要是几何学)由具体的、实用阶段发展到抽象的、理论阶段;从以实验和观察为依据的经验学科过渡到演绎的科学,并形成了自己的体系,初等几何、算术、初等代数和三角学都已成为独立的学科.这个时期的研究内容是常量和不变的图形,因此又称为常量数学。

从公元前6世纪到公元前3世纪是希腊数学的古典时期.这段时期,古希腊形成了很多学派,广泛探讨哲学和自然科学问题,促进了数学理论的建立.在数学方面主要在初等几何取得了辉煌的成就,不仅创造了逻辑推理的演绎方法,而且使几何形成系统的理论.在数的研究方面,使算术应用过渡到理论讨论,建立了整除性理论,产生了数论。数学成就的精华是欧几里得的《几何原本》和阿波罗尼斯的《圆锥曲线论》。希腊数学的第二个时期.即亚历山大里亚时期的数学特点是基础研究与应用紧密结合,几何学开始了定量的研究,阿基米德求面积与体积的计算接近于微积分的计算方法。丢番图发展了巴比伦的代数,采用了一整套符号,使代数发展到一个新阶段。

从9世纪开始,外国数学发展的中心转向了阿拉伯和中亚细亚地区.阿拉伯数学起着承前启后的作用,阿拉伯人大量搜集、翻译古希腊的著作,并把这些著作及印度数码、计数法及中国的四大发明(火药、印刷术、指南针和造纸术)传到欧洲.他们发展了代数,建立了解方程的方法,得到一元二次方程的求根公式,并把三角学发展成一门独立的系统的学科。1427年伊朗数学家阿尔·卡西求得圆周率的17位准确值。

中世纪的欧洲,由于罗马和基督教的统治使欧洲数学一直处于落后状态.文艺复兴时期(15-17世纪上半叶)欧洲数学开始繁荣,他们吸取古希腊和东方数学的精华,取得了许多重要成就.在代数方面,韦达等系统地使用符号,使代数产生巨大变革.意大利数学家得到三次、四次方程的公式解法、韦达得到根与系数之间的关系定理、笛卡尔引人了待定系数原理、帕斯卡得到指数是正整数的二项式展开定理,牛顿又把指数推广到分数和实数.17世纪上半叶,初等代数的理论和内容才全部完成了.初等代数的建立,标志着常量数学也就是初等数学时期的结束,接着是向高等数学——变量数学过渡。

三、变量数学时期(17世纪上半叶-19世纪20年代)

这是社会生产力急剧增长,自然科学蓬勃发展的时期。变量数学是以笛卡尔的解析几何为开始的.1637年,笛卡尔通过引进坐标把几何曲线表示成代数方程,然后通过方程的研究来揭示曲线的性质.并把变量、函数引进数学,把几何和代数密切地联系起来,这是数学史上的一个转折点,也是变量数学发展的第一个决定性步骤.第二个决定性步骤是牛顿和莱布尼兹在17世纪后半叶各自独立地建立了微积分,由于力学问题的研究、函数概念的产生和几何问题可以用代数方法来解决等的影响,促使了微积分的产生.17世纪还创立了概率论和射影几何等新的数学学科.17世纪的另一特点是代数化的趋势.古希腊数学的主体是几何学,三角学从属于几何,代数问题也往往要用几何方法论证.17世纪代数比几何占有重要的地位,几何问题常常反过来用代数方法去解决.18世纪是变量数学发展阶段.在18世纪,微积分产生若干新科目,如微分方程、变分法、级数论、函数论等,形成广阔的分析领域. 18世纪的数学有三个特征:第一是数学家从物理、力学、天文学的研究中发现并创立了许多数学新分支,如变分法、常微分方程、偏微分方程、微分几何和高等代数等.第二个特征是自古以来的几何论证方法在17世纪被代数的方法所代替,到18世纪又被分析方法代替了,代数也变成从属于数学分析.第三个特征是直觉性和经验性.因为缺乏严密逻辑和理论基础,由物理见解所指引,所以是直观的,又因为领域太广阔,还来不及打基础,因而是不严密的.数学分析中任何一个比较细微的问题,如级数和积分的收敛性、微分积分的次序交换、高阶微分的使用,以及微分方程解的存在性问题,结果出现谬误越来越多的混乱局面.为此,到19世纪在德国

数学家的倡导下,对数学进行了一场批判性的检查运动.这场运动不仅使数学奠定了坚实的基础,而且产生了公理化方法和许多新颖学科.

四、近代数学时期(19世纪20年代-20世纪40年代)

近代数学时期是数学的全面发展和成熟阶段,数学的面貌发生了深刻的变化,数学绝大多数分支在这个时期都已形成,整个数学呈现全面繁荣的景象。

变量数学时期兴起的许多数学分支,蓬勃地向前发展,内容不断充实、扩大,方法不断地更新. 19世纪是几何复兴时期,继罗巴切夫斯基几何之后,又出现了更广泛的一类非欧几何——黎曼几何,并产生拓扑流形的概念.克莱因提出爱尔朗根纲领,用群的观点统一了各种度量几何.在这个时期还产生了一系列新的几何分支——画法几何、射影几何、微分几何和拓扑学.在代数方面,不仅开创了抽象代数,而且产生了以方程论为主要内容的、包括行列式与矩阵理论、二次型和线性变换在内的高等代数.分析的严格化是从波尔察诺和柯西开始的,他们用极限概念给出了导数和连续的定义。19世纪末,关于数学基础的讨论形成了三大学派,以罗素为代表的逻辑主义学派、以布劳维尔为代表的直觉主义学派和以希尔伯特为代表的形式主义学派,三大学派激烈论战,对数学基础进行了深入的考察.集合论的建立、数理逻辑、罗素悖论、哥德尔定理的出现更深化了数学基础的研究.

五、现代数学时期(20世纪40年代以来)

第二次世界大战以后,科学技术突飞猛进,原子能的利用、电子计算机的发明、空间技术的发展,促使数学发生剧烈的变化.数学的三大特点:高度的抽象性、体系的严谨性和应用的广泛性更明显地表露出来.纯粹数学不断向纵深发展,集合论的观点渗透到各个领域,公理化方法日臻完善,数理逻辑和数学基础已成为整个数学大厦的基础,而现代数学理论的三大支柱是泛函分析,抽象代数和拓扑学,代数拓扑和微分拓扑成为数学的主流.

20世纪的数学出现了三种新趋势:一是不同分支交错发展.多种理论高度综合,数学逐步走向统一的趋势.自从克莱因用“群”的观点统一了当时的各种度量几何以后,许多数学家试图提出各种不同的方案来统一整个数学. 1938年法国布尔巴基学派提出“数学结构”的观点来统一整个数学,1948年爱伦伯克和桑·麦克伦提出用范畴和函子理论作为统一数学的基础.二是边缘学科、综合

性学科和交叉学科与日俱增的趋势.现代数学在代数、几何、分析等原有基础学科的邻接领域产生出一系列的边缘学科.综合性学科是以多学科的理论知识和方法对特定的数学对象进行研究.数学与其他学科产生许多交叉学科,如计算物理学、生物数学、经济数学,数理语言学等.正是科学研究的不断深人、扩大所引起的,也是现代数学进展的重大标志.

60年代以后数学界的思想异常活跃,出现了多种新思潮一一非标准分析、模糊数学、突变理论和泛系理论等.非标准分析使无穷小重返数坛,微积分的基础又得到新发展.突变理论使数学由研究连续变量和平滑过程发展到研究不连续(突变)过程.模糊数学使数学由研究精确领域发展到研究模糊领域和模拟人脑功能的领域.泛系理论应用广泛,在科学方法、思维科学数学化方面有重要意义.现代科学技术和生产实践将向数学提出更多、更复杂的新课题,必将产生许多更深刻的数学思想和更强有力的数学方法,数学将向更高、更广、更深的领域去探索、去开发,成为分析和理解世界上各种现象的工具和手段.

第二节数学发展的内在机制

数学发展的内在机制, 实际上就是数学内部各要素之间的相互作用怎样推

动数学发展的机制。

对怀尔德所述的关于数学发展的11种力量进行综合分析,容易看出,这一论述在整体上存在有一定的缺陷和不足。特别是,怀尔德在此首先强调了关于数学发展的外部力量(“环境力量”)与内在力量(“遗传力量”)的区分,但在后面的讨论中却未能把这种“二分”的思想贯彻到底,从而在整体上就造成了一定的混乱。怀尔德所谓的“一体化”,不仅是指数学不同分支之间的相互渗透,而且也是指数学与外部成分的相互渗透.类似地,所谓的“文化阻滞”不仅是指一般文化传统对于数学发展的消极影响,而且是指已有的数学传统也可能阻碍数学的发展,从而在此就无法把这两者明确地归结到环境力量或遗传力量中去。另外,怀尔德在讨论中还常常把“抽象”、“一般化”等说成是与“遗传力量”相并列的内在力量,从而也就造成了一定的层次混乱。

正是出于上述的考虑,就要对怀尔德所说的各种力量重新进行整理和归类。无论就数学发展的外部力量或内在力量而言,它们既可能促进数学的发展,也可能阻碍数学的发展。好的数学传统可以促进数学的发展,不好的数学传统(特

别是思想的僵化)则就会阻碍数学的发展。由于以往的研究往往只是注意到了各种因素对于数学发展的促进作用,而怀尔德则十分明确地指出了两个方向上的作用,因此,这就是一个重要的进步。

就数学发展的外部力量、也即怀尔德所谓的“环境力量”而言,我们不仅应当看到“物质成分”的作用,而且也应看到“文化成分”的作用。就后者而言,除去其他科学,特别是物理学研究的需要以外,我们又应清楚地看到整个文化环境对于数学发展的重大影响。例如,古希腊数学的发展即是与古希腊社会在整体上的繁荣相适应的,更受到了古希腊哲学的直接影响。另外,政治上的封闭则就可能成为数学发展的“文化阻滞”。

我们可对数学发展的内在力量,也即怀尔德所谓的“遗传力量”作出如下的进一步分析:我们不仅应当看到已有的数学工作与已有的数学传统(这即是“数学活动”的两个组成部分),对于数学发展的作用,而且应当看到在这两者之间所存在的辩证关系。

具体地说,由数学的历史可以看出,处于一定数学传统之下的数学家并不是盲目地去从事符号化、一般化、严格化、系统化等方面的研究的;恰恰相反,这种研究在很大程度上是由数学发展的现状所决定的。例如,矛盾(悖论)的发现就将促使数学家去从事严格化的工作;理论的多样化则将直接导致统一性的研究;某个领域中长期未能得到解决的问题的存在为不同学科的渗透(“一体化”)提供了直接的动力;理论在数量上的增长则又必然会引起系统化和严格化的任务,等等。

由此可见,在数学活动的这两种成分,即已有的数学工作与已有的数学传单之间事实上存在着相互促进、互相依赖的辩证关系,而这种辩证关系也就为数学的进一步发展提供了必要的内在机制。

依据上面的分析,我们就可以把数学发展的内在力量归结为“知识成分”与“数学传统”这样两种成分。从而,从整体上说,对于导致数学发展的各种力量就可归结如下:环境力量(外部力量)包括物质成分和文化成分; 遗传力量(内在力量)包括知识成分和文化传统.

另外,如果对问题作广义的理解,即不仅是指已有的数学理论中所存在的、尚未得到的问题,包括已有数学工作中的种种不足之处,而且也是指由数学外部

所提出的问题,那么,数学发展的主要形式就可归结为以下的模式:

第三节数学认识论

一、数形概念的深化

数学的发展是以数和形两个基本概念为主干的,整个数学就是围绕数与形两个概念的提炼、演变和发展而发展的.数学发展史中一直存在着数与形两条并行不悖的发展路线,一条以发展计算为中心的算术代数路线,一条以发展形为主的几何路线.前者有两个源头,一个源头是独立发展的中国数学,另一源头是古巴比伦数学.这一路线在古希腊亚里山大里亚时期进一步得到发展,在中国、印度和阿拉伯国家发扬光大,到17世纪的欧洲才形成完整的初等代数学.这两种数学在17世纪在欧洲汇合,经过进一步发展,导致了解析几何的产生,产生了变量数学.随后由于微积分的产生,开始了数学的巨大变革,产生了数学分析这一广阔的领域,形成了代数、几何、分析三足鼎立的形势.18、19世纪由于数学的不断分化,代数、几何、分析形成了各自不同的研究领域.数学研究的对象日益彰、展,数与形的概念不断扩大,日趋抽象化,以至不再有任何原始计算与简单图形的踪影了。

几何不仅研究物质世界的空间形式,而且研究同空间形式和关系相似的其他形式和关系,产生了各种新“空间”:罗巴切夫斯基空间、射影空间、四维的黎曼空间、各种拓扑空间等都成为几何研究的对象。现代化数学所考察的对象是具有更普遍的“量”,如向量、矩阵、张量、旋量、超复数、群等,并且研究这些量的运算.这些运算在某种程度上和算术中的四则运算类似,但复杂得多.矢量是简单的例子,矢量的加法是按照平行四边形法则相加的.在现代代数中进行的抽象达到这样的程度。以致“量”这个术语也失去本身的意义,而一般地变成讨论“对象”了.对于这种“对象”可以进行同普通代数运算相似的运算.不但“数”是变的,在泛函分析中,函数本身也被看作是变的.某一给定函数的性质在这里不能单独地确定,而是在这个函数对另外一些函数的关系上确定的.因此考察的

已经不是一些单个的函数,而是所有以这种或那种共同性质作为特征的函数的集合.函数的这种集合结合成“函数空间”.现代数学的发展促使数和形的概念不断深化,形成了多种多样的边缘学科.这些学科不仅没有加深各学科间的分离,而且导致了各学科的互相联系和渗透,使以前基本分离的领域互相沟通了起来,并且填满了基本学科之间中断了的部分.各门学科形成了一个牢固联系的有机整体.各门科学的数学化,使得数学和其他学科交叉结合,产生许多交叉学科二、数学思想的演变

数学思想的发展大致可划分为常量数学思想、变量数学思想、随机数学思想三个阶段.每个阶段不仅体现数学思想发生质的变化,而且标志着数学研究对象和方法的重大变化.

常量数学思想阶段即初等数学时期,数学研究的对象是不变的数量关系和固定的空间形式,数与形是分开研究的.研究数的学科是算术和代数,算术是研究离散固定的数,代数研究方程的固定解,几何则是研究平面或空间的固定图形.常量数学思想是与当时的生产和科学发展的水平相适应的,是对现实世界固定的数与形关系的抽象,是孤立、静止地研究现实世界的数量关系.

变量数学思想阶段是从17世纪上半叶开始的,这时资本主义处于上升时期,天体运行轨道推算、航海导航,抛射体弹道曲线的计算,力学中对变速运动规律的描述等等,使数学突破常量数学传统研究范围,开始了数学发展的一个本质不同的崭新时期.数学研究对象从常量转到变量,这是数学发展史上的一个转折点,数学发展到用运动、发展和联系的辩证观点来分析把握对象的数与形的统一关系,其主要标志是解析几何和微积分的诞生.解析几何在数学概念思维领域里实现了数与形关系的沟通,微积分使人类思维进入无限小分析领域,使人类视野由有限发展到无限,由静止发展到运动,微积分为人们描述宇宙运动及变化过程提供了简明而精确的数学语言和工具,成为自然科学和技术发展中精确表述它们规律和解决它们问题的有力武器.

随机数学思想阶段是以概率论为其标志的.概率论使数学研究的领域由确定性领域进人非确定性领域.如果初等数学和数学分析称为研究确定性现象的数学的话,概率论则是研究非确定性(随机性)现象的数学,这是近代数学发展的一个转折点.它标志着直接以不确定性现象为研究对象,并提供把握“大势所趋”的

途径,为偶然性和必然性之间的转化提供了数学刻划的手段.

数学思想从常量数学——变量数学——随机数学的演进,与人类实践活动水平的提高,认识活动中心的转移,以及科学数学化的过程,存在着某种同步发展的内在统一性.当人类认识以自然为中心时,精确的经典数学(包括常量与变量数学)在自然科学中取得巨大的成就.当人们的视野重心转向社会规律考察时,随机数学向社会科学渗透.当人们注意到自身思维机制的研究时,近来的模糊数学又为思维科学的发展提供有效的社会工具.

第四节数学方法论

定理证明和数值计算是数学中两项最主要的活动形式.证明主要是用演绎法,以公理化思想为主;计算若是按一定程序,即按一种机械的过程进行就叫做机械化思想的算法.贯穿在整个数学发展历史过程中,有两个中心思想,一个是公理化思想,另一个是机械化思想.公理化思想导源于古希腊,欧几里得的《几何原本》是公理化思想的代表.机械化思想则贯穿于整个中国古代数学,《九章算术》为其代表.作为数学两种主流的公理化思想和机械化思想都对数学的发展起过巨大的作用.现在我们从思想方法论的角度,即从数学发展中以公理化思想为主的演绎倾向和以机械化思想为主的算法倾向交替取得主导地位的线索来描述整个数学发展史.

古代巴比伦和埃及的原始算法最早占主导地位,后来被希腊式的演绎几何所接替.19世纪初,特别是70年代起,几何演绎倾向又重新在比古希腊几何高得多的水准上占优势.近代数学时期的演绎倾向是从19世纪20至30年代开始,在70年代以后进入全盛时期.这个新的演绎时代与古希腊一个显著的不同是演绎方法的运用远远超出了几何而扩展到其他领域,首先是数学分析.探讨微积分运算的严格的逻辑基础,导致了从柯西极限论到外尔斯特拉斯的极限算术化和康托尔集合论贯穿了整个19世纪的分析严格化运动.如果说,17世纪将代数算法运用于几何而发展出解析几何,19世纪则反过来,将几何演绎运用于代数而产生抽象代数.抽象代数则充满了演绎精神.19世纪开辟的新的演绎数学,在几何领域本身也是远远超过了古希腊时代,对欧几里得公理系统的内部结构的掌握,导致了希尔伯特公理化方法.这种公理化方法,不仅严格了各个几何分支的逻辑基础,而且渗透到几乎所有的纯数学及某些物理的领域.

直到20世纪前半叶,数学中演绎倾向有增无减,数学变成研究任意结构的学问.抽象代数从局部性研究转向系统结构的整体性分析研究.布尔巴基学派用公理化的结构主义观点看待整个数学,认为整个数学可以建立在不求助于直观的彻底公理化基础上.综上所述,整个数学史又可看成一部算法倾向与演绎倾向交替繁荣的历史.

第五节对数学史的见解

数学史是研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科,在很多方面都有重要的意义

(一)科学意义及作用

每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则。

(二)文化意义及作用

“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。

中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使我们了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。

数学的发展历史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这一点上,它与通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它与通常历史科学研究的对象又不相同,所以,我们既可以在数学中学到历史,又可以在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,并不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有一个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,与现代数学联系起来,对数学历史的考证有巨大的作用。 2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用

的资料,进行整理,这是一种比较常见的方法。 四、探究结果: (一)数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:一纵十横,百立千僵,千、十相望,万、百相当〕,并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。

中国数学发展史

中国数学发展史——宋元数学 中国数学发展史概述 中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。 中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。

世界数学发展史

第一节数学发展的主要阶段 2009-10-12 10:05:28 来源:中外数学网浏览:7次 乔治·萨顿曾说过:“科学史是人类认识自然的经验的历史回顾。”数学史是数学发展历史的回顾,它研究数学产生发展的历史过程,探求其发展的规律。研究数学史,可以通过历史留下的丰富材料,了解数学何时兴旺发达,何时停滞衰退,从中总结经验教训,以利于数学更进一步的发展。关于数学发展史的分期,一般来说,可以按照数学本身由低级到高级分阶段进行,也就是分成四个本质不同的发展时期,每一新时期的开始都以卓越的科学成就作标志,这些成就确定了数学向本质上崭新的状态过渡.这里我们主要介绍世界数学史的发展。 一、数学的萌芽时期 这一时期大体上从远古到公元前六世纪.根据目前考古学的成果,可以追溯到几十万年以前.这一时期可以分为两段,一是史前时期,从几十万年前到公元前大约五千年;二是从公元前五千年到公元前六世纪. 数学萌芽时期的特点,是人类在长期的生产实践中,逐步形成了数的概念,并初步掌握了数的运算方法,积累了一些数学知识.由于土地丈量和天文观测的需要,几何知识初步兴起,但是这些知识是片断和零碎的,缺乏逻辑因素,基本上看不到命题的证明.这个时期的数学还未形成演绎的科学. 这一时期对数学的发展作出贡献的主要是中国、埃及、巴比伦和印度.从很久以前的年代起,我们中华民族勤劳的祖先就已经懂得数和形的概念了. 在漫长的萌芽时期中,数学迈出了十分重要的一步,形成了最初的数学概念,如自然数、分数;最简单的几何图形,如正方形、矩形、三角形、圆形等.一些简单的数学计算知识也开始产生了,如数的符号、记数方法、计算方法等等.中小学数学中关于算术和几何的最简单的概念,就是在这个时期的日常生活实践基础上形成的. 总之,这一时期是最初的数学知识积累时期,是数学发展过程中的渐变阶段. 二、初等数学时期 从公元前六世纪到公元十七世纪初,是数学发展的第二个时期,通常称为常量数学或初等数学时期.这一时期也可以分成两段,一是初等数学的开创时代,二是初等数学的交流和发展时代. 1.初等数学的开创时代. 这一时代主要是希腊数学.从泰勒斯(Thales,公元前636—前546)到公元641年亚历山大图书馆被焚,前后延续千余年之久,一般把它划分为以下几个阶段: (1)爱奥尼亚阶段(公元前600—前480年); (2)雅典阶段(公元前480—前330年); (3)希腊化阶段(公元前330—前200年); (4)罗马阶段(公元前200—公元600年). 爱奥尼亚阶段的主要代表有米利都学派、毕达哥拉斯(Pythagoras,公元前572—前497)学派和巧辩学派.在这个阶段上数学取得了极为重要的成就,其中有:开始了命题的逻辑证明,发现了不可通约量,提出了几何作图的三大难题——三等分任意角、倍立方和化圆为方,并且试图用“穷竭法”去解决化圆为方的问题.所有这些成就,对数学后来的发展产生了深远的影响. 雅典阶段的主要代表有柏拉图(Plato,公元前427—前347)学派、亚里斯多德(Aristotle,公元前384—前322)的吕园学派、埃利亚学派和原子学派.他们在数学上取得的成果,十分令人赞叹,如柏拉图强调几何对培养逻辑思维能力的重要作用;亚里斯多德建立了形式逻辑,并且把它作为证明的工具.所有这些成就把数学向前推进了一大步. 上述两个阶段称为古典时期.这一时期的数学发展,在希腊化阶段上开花结果,取得了

数学发展简史

数学发展简史 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

数学发展简史数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前 5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前 5 世纪——公元 17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前 5 世纪——公元 17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》

托勒密——三角学 丢番图——不定方程 2.东方(公元 2 世纪——15 世纪) 1)中国 西汉(前 2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元 3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元 10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元 8 世纪)——印度数码、有 0;十进制

(后经阿拉伯传入欧洲,也称阿拉伯记数法) 数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元 499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元 8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法

简述中国数学发展史

中国数学发展史 【摘要】数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。该论文就围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 【关键词】中国数学;数学发展史;数学思想 一、中国数学的发展历程 1.1中国数学的起源与早期发展 据《易·系辞》记载:“伏羲作结绳”,“上古结绳而治”,后世圣人易之以书契。其中有十进制制的记数法,出现最大的数字为三万。这是位值制的最早使用。算筹是中国古代的计算工具,这种方法称为筹算。筹算在春秋时代已很普遍。 在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现“勾三股四弦五”这个勾股定理﹝西方称勾股定理﹞的特例。在公元前2500年,我国已有圆、方、平、直的概念。对几何工具也有深刻认识。 算术四则运算在春秋时期已经确立,乘法运算已广为流行。“九九表”一直流行了约1600年。

战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题。《庄子》中则强调抽象的数学思想。其中几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 1.2 中国数学体系的形成与奠基 这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期。在这一时期,数学知识系统化、理论化,数学方面的专书陆续出现。 现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》。 西汉末年﹝公元前一世纪﹞编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)分数、等差数列、勾股定理于测量术;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有比例知识。 《九章算术》是一部经几代人整理、删减补充和修订而成的古代数学经典著作,约成书于东汉初年。全书编排方法是:先举出例子,然后给出答案,通过对一类问题解法的考察和研究,最后给出“术”。它的成书标志着我国传统数学理论体系——初等数学理论体系的形成。比欧洲早了1400多年。

(发展战略)数学的发展历史最全版

(发展战略)数学的发展历 史

七年级九班 李蕙茹 一、探究背景: 研究数学发展历史的学科,是数学的壹个分支,也是自然科学史研究下属的壹个重要分支。和所有的自然科学史壹样,数学史也是自然科学和历史科学之间的交叉学科。数学史研究所使用的方法主要是历史科学的方法,在这壹点上,它和通常的数学研究方法不同。它研究的对象是数学发展的历史,因此它和通常历史科学研究的对象又不相同,所以,我们既能够在数学中学到历史,又能够在历史中学到数学。数学是研究现实世界的图形和数量关系的科学,包括代数、几何、三角、微积分等。它来源于生产,服务于生活,且不是空中楼阁,而是人类智慧的结晶。 二、目的意义: 对数学产生兴趣,轻松学好数学。通过查找名人趣事、数学常识等资料,对数学的功用问题有壹个正确的认识,从而让我们对数学产生兴趣,提高数学成绩,开发我们的脑力,使自己不断提高能力,从而达到事倍功半的效果。 三、探究方法: 1、历史研究法,又叫历史考证法。数学自东汉以来的《九章算术》到现代的《微积分》,上上下下经历了几千年的时间,和现代数学联系起来,对数学历史的考证有巨大的作用。

2,自主探究法。所谓自主探究,就是通过各种途径找到对自己有用的资料,进行整理,这是壹种比较常见的方法。 四、探究结果: (壹)数学的起源和早期发展 据《易?系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从壹到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。 算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但能够肯定的是筹算在春秋时代已很普遍。 用算筹记数,有纵、横俩种方式: 表示壹个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间〔法则是:壹纵十横,百立千僵,千、十相望,万、百相当〕,且以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。 筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。 在几何学方面《史记?夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,且早已发现「勾三股四弦五」这个勾股定理〔西方称勾股定理〕的特例。战国时期,齐国人着的

浅析中国数学发展史

浅析中国数学发展史 摘要:数学发展史就是数学这门学科的发展历程。人们的思想在不断的发生变化,数学中的很多思想也是人类不断发展的体现。本文围绕中国数学的发展历程和思想进行了简单的概括和论述。介绍了从古至今中国数学的发展历程,讲述了中国数学思想的特点及中国数学对世界的影响以及中外数学文化的交流影响,总结了从数学发展史中得到的启示。 关键词:中国数学史、数学思想、数学历史 一、中国古代数学 数学在中国历史久矣。在殷墟出土的甲骨文中有一些是记录数字的文字,包括从一至十,以及百、千、万,最大的数字为三万;司马迁的史记提到大禹治水使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五”;据说《易经》还包含组合数学与二进制思想。2002年在湖南发掘的秦代古墓中,考古人员发现了距今大约2200多年的九九乘法表,与现代小学生使用的乘法口诀“小九九”十分相似。 算筹是中国古代的计算工具,它在春秋时期已经很普遍;使用算筹进行计算称为筹算。中国古代数学的最大特点是建立在筹算基础之上,这与西方及阿拉伯数学是明显不同的。 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的"孙子算经"(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。"孙子算经"用十六字来表明它,"一从十横,百立千僵,千十相望,万百相当。"和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书"九章算术"(约公元一世纪前后)的分数运算法则是世界上最早的文献,"九章算术"的分数四则运算和现在我们所用的几乎完全一样。 中国数学发展繁荣时期大约在西汉末期至隋朝中叶。这是中国数学理论的第一个高峰期。这个高峰的标志就是数学专著<九章算术>的诞生。至少有1800年的《九章算术》,其作者是谁?由谁编纂?至今无从考证。史学家们只知道,它是中国秦汉时期一二百年的数学知识结晶,到公元1世纪时开始流传使用。中国数学的全盛时期是隋中叶至元后期。在

数学发展简史

数学发展简史 数学发展史大致可以分为四个阶段。 一、数学形成时期(——公元前5 世纪) 建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。 二、常量数学时期(前5 世纪——公元17 世纪) 也称初等数学时期,形成了初等数学的主要分支:算术、几 何、代数、三角。该时期的基本成果,构成中学数学的主要内容。 1.古希腊(前5 世纪——公元17 世纪) 毕达哥拉斯——“万物皆数” 欧几里得——《几何原本》 阿基米德——面积、体积 阿波罗尼奥斯——《圆锥曲线论》 托勒密——三角学

丢番图——不定方程 2.东方(公元2 世纪——15 世纪) 1)中国 西汉(前2 世纪)——《周髀算经》、《九章算术》 魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π 宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰 天元术、正负开方术——高次方程数值求解; 大衍总数术——一次同余式组求解 2)印度 现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)

数学与天文学交织在一起 阿耶波多——《阿耶波多历数书》(公元499 年) 开创弧度制度量 婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵 婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学 3)阿拉伯国家(公元8 世纪——15 世纪) 花粒子米——《代数学》曾长期作为欧洲的数学课本 “代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。 阿布尔.维法 奥马尔.海亚姆

中国数学发展简史起源

中国数学发展简史—起源 翻开任何一部中国数学发展史,你都不难发现,祖先们每前进一步,都伴随着奋斗的汗水。 (1)中国数学的起源(上古~西汉末期) 古希腊学者毕达哥拉斯(约公元约前580~约前500年)有这样一句名言:“凡物皆数”。的确,一个没有数的世界是不堪设想的。 今天,我们会不屑一顾从1数到10这样的小事,然而上万年以前,我们祖先为了这事可煞费苦心了。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,如果要问他们所捕的4只野兽是多少,他们会回答:“很多只”。如果当时要有人能数到10,那一定会被认为是杰出的天才了。后来人们慢慢地会把数字和双手联系在一起了。每只手各拿一件东西,就是2。数到3时又被难住了,于是把第3件东西放在脚边,“难题”才得到解决。 就这样,在逐步摸索中,祖先从混混沌沌的世界中走出来了。先是结绳记数,然后又发展到“书契”,五六千年前就会写 1~30的数字,到了2019多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。在金文周《※鼎》中有这样一段话:“东宫迺曰:偿※禾十秭,遗十秭为廾秭,来岁弗偿,则付秭。”这段话包含着一个利滚利的问题。说的是,如果借了10捆粟子,晚点还,就从借时的10

捆变成20捆。如果隔年才还,就得从借时的10捆涨到40捆。用数学式子表达即: 10+10=20 20×2=40 除了在记数和算法上有了较大的进步外,祖先还开始把一些数字知识记载在书上。春秋时代孔子(公元前551~前479)年修改过的古典书籍之一《周易》中,就出现了八卦。这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 到了战国时期,祖先们的数学知识已远远超出了会数1~3000的水平。这一阶段他们在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。最令后人惊异的是,在这一时期出现了“对策论”的萌芽,对策论是现代应用数学领域的问题。它是运筹学的一个分支,主要是用数学方法来研究有利害冲突的双方,在竞争性的活动中,是否存自己制胜对方的最优策略,以及如何找出这些策略等问题。这一数学分支是在本世纪第二次世界大战期间或以后,才作为一门学科形成的,可是早在2019多年前,战国时期著名的军事家孙膑(公元

数学发展的三个时期

在人类的知识宝库中有三大类科学,即自然科学、社会科学、认识和思维的科学。自然科学又分为数学、物理学、化学、天文学、地理学、生物学、工程学、农学、医学等学科。数学是自然科学的一种,是其它科学的基础和工具。在世界上的几百卷百科全书中,它通常都是处于第一卷的地位。 从本质上看,数学是研究现实世界的数量关系与空间形式的科学。或简单讲,数学是研究数与形的科学。对这里的数与形应作广义的理解,它们随着数学的发展,而不断取得新的容,不断扩大着涵。 数学来源于人类的生产实践活动,即来源于原始人捕获猎物和分配猎物、丈量土地和测量容积、计算时间和制造器皿等实践,并随着人类社会生产力的发展而发展。对于非数学专业的人们来讲,可以从三个大的发展时期来大致了解数学的发展。 一、初等数学时期 初等数学时期是指从原始人时代到17世纪中叶,这期间数学研究的主要对象是常数、常量和不变的图形。 在这一时期,数学经过漫长时间的萌芽阶段,在生产的基础上积累了丰富的有关数和形的感性知识。到了公元前六世纪,希腊几何学的出现成为第一个转折点,数学从此由具体的、实验的阶段,过渡到抽象的、理论的阶段,开始创立初等数学。此后又经过不断的发展和交流,最后形成了几何、算术、代数、三角等独立学科。这一时期的成果可以用“初等数学”(即常量数学)来概括,它大致相当于现在中小学数学课的主要容。 世界上最古老的几个国家都位于大河流域:黄河流域的中国;尼罗河下游的埃及;幼发拉底河与底格里斯河的巴比伦国;印度河与恒河的印度。这些国家都是在农业的基础上发展起来的,从事耕作的人们日出而作、日落而息,因此他们就必须掌握四季气候变迁的规律。

游牧民族的迁徙,也要辨清方向:白天以太阳为指南,晚上以星月为向导。因此,在世界各民族文化发展的过程中,天文学总是发展较早的科学,而天文学又推动了数学的发展。 随着生产实践的需要,大约在公元前3000年左右,在四大文明古国—巴比伦、埃及、中国、印度出现了萌芽数学。 现在对于古巴比伦数学的了解主要是根据巴比伦泥版,这些泥版是在胶泥还软的时候刻上字,然后晒干制成的(早期是一种断面呈三角形的“笔”在泥版上按不同方向刻出楔形刻痕,叫楔形文字)。 已经发现的泥版上面载有数字表(约200件)和一批数学问题(约100件),大致可以分为三组。第一组大约创制于公元前2100年,第二组大约从公元前1792年到公元前1600年,第三组大约从公元前600年到公元300年。 这些数学泥版表明,巴比伦自公元前2000年左右即开始使用60进位制的记数法进行较复杂的计算了,并出现了60进位的分数,用与整数同样的法则进行计算;已经有了关于倒数、乘法、平方、立方、平方根、立方根的数表;借助于倒数表,除法常转化为乘法进行计算。公元前300年左右,已得到60进位的达17位的大数;一些应用问题的解法,表明已具有解一次、二次(个别甚至有三次、四次)数字方程的经验公式;会计算简单直边形的面积和简单立体的体积,并且可能知道勾股定理的一般形式。巴比伦人对于天文、历法很有研究,因而算术和代数比较发达。巴比伦数学具有算术和代数的特征,几何只是表达代数问题的一种方法。这时还没有产生数学的理论。 对埃及古代数学的了解,主要是根据两卷纸草书。纸草是尼罗河下游的一种植物,把它的茎制成薄片压平后,用“墨水”写上文字(最早的是象形文字)。同时把许多纸草纸粘在一起连成长幅,卷在杆干上,形成卷轴。已经发现的一卷约写于公元前1850年,包含25个问题(叫“莫斯科纸草文书”,现存莫斯科);另一卷约写于公元前1650年,包含85个问题(叫“莱因德纸草文书”,是英国人莱因德于1858年发现的)。

中国数学发展史论文

中国的数学文化史 鲍是吉 郑州师院初教院S12数学与科学 123116082001 学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不

允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。纵观中国数学发展史总体就用一句话来概括“中国数学起源早到时发展缓慢” 一、中国古代数学家 数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

数学发展历史

数学在提出问题和解答问题方面,已经形成了一门特殊的科学。在数学的发展史上,有很多的例子可以说明,数学问题是数学发展的主要源泉。数学家门为了解答这些问题,要花费较大力量和时间。尽管还有一些问题仍然没有得到解答,然而在这个过程中,他们创立了不少的新概念、新理论、新方法,这些才是数学中最有价值的东西。◇公元前600年以前◇据中国战国时尸佼著《尸子》记载:"古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉",这相当于在公元前2500年前,已有"圆、方、平、直"等形的概念。公元前2100年左右,美索不达米亚人已有了乘法表,其中使用着六十进位制的算法。公元前2000年左右,古埃及已有基于十进制的记数法、将乘法简化为加法的算术、分数计算法。并已有三角形及圆的面积、正方角锥体、锥台体积的度量法等。中国殷代甲骨文卜辞记录已有十进制记数,最大数字是三万。公元前约1950年,巴比伦人能解二个变数的一次和二次方程,已经知道"勾股定理"。◇公元前600--1年◇公元前六世纪,发展了初等几何学(古希腊泰勒斯)。约公元前六世纪,古希腊毕达哥拉斯学派认为数是万物的本原,宇宙的组织是数及其关系的和谐体系。证明了勾股定理,发现了无理数,引起了所谓第一次数学危机。公元前六世纪,印度人求出√2=1.4142156。公元前462年左右,意大利的埃利亚学派指出了在运动和变化中的各种矛盾,提出了飞矢不动等有关时间、空间和数的芝诺悖理(古希腊巴门尼德、芝诺等).。公元前五世纪,研究了以直线及圆弧形所围成的平面图形的面积,指出相似弓形的面积与其弦的平方成正比(古希腊丘斯的希波克拉底)。公元前四世纪,把比例论推广到不可通约量上,发现了"穷竭法"(古希腊,欧多克斯)。公元前四世纪,古希腊德谟克利特学派用"原子法"计算面积和体积,一个线段、一个面积或一个体积被设想为由很多不可分的"原子"所组成。公元前四世纪,建立了亚里士多德学派,对数学、动物学等进行了综合的研究(古希腊,亚里士多德等)。公元前四世纪末,提出圆锥曲线,得到了三次方程式的最古老的解法(古希腊,密内凯莫)。公元前三世纪,《几何学原本》十三卷发表,把以前有的和他本人的发现系统化了,成为古希腊数学的代表作(古希腊,欧几里得)。公元前三世纪,研究了曲线图和曲面体所围成的面积、体积;研究了抛物面、双曲面、椭圆面;讨论了圆柱、圆锥半球之关系;还研究了螺线(古希腊,阿基米德)。公元前三世纪,筹算是当时中国的主要计算方法。公元前三至前二世纪,发表了八本《圆锥曲线学》,是一部最早的关于椭圆、抛物线和双曲线的论著(古希腊阿波罗尼)。约公元前一世纪,中国的《周髀算经》发表。其中阐述了"盖天说"和四分历法,使用分数算法和开方法等。公元前一世纪,《大戴礼》记载,中国古代有象征吉祥的河图洛书纵横图,即为"九宫算"这被认为是现代"组合数学"最古老的发现。◇1-400年◇继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。一世纪左右,发表《球学》,其中包括球的几何学,并附有球面三角形的讨论(古希腊,梅内劳)。一世纪左右,写了关于几何学、计算的和力学科目的百科全书。在其中的《度量论》中,以几何形式推算出三角形面积的"希隆公式"(古希腊,希隆)。100年左右,古希腊的尼寇马克写了《算术引论》一书,此后算术开始成为独立学科。 150年左右,求出π=3.14166,提出透视投影法与球面上经纬度的讨论,这是古代坐标的示例(古希腊,托勒密)。三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊,丢番都)。三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题

数学发展史_论文

数学史与数学文化课 期末小论文 数学家与数学发展史 班级:中华旅企13-3班姓名:罗礼雄 学号:201305006820 数学家与数学发展史

数学是研究现实世界中数量关系和形式的学问,简单的说就是研究数和形的科学。众所周知数学与人类社会的发展和人们的生活息息相关,随着社会的进步,科学的发展,数学也在不停地前进;而数学的发展又离不开数学家们的探索和研究,数学家在数学发展史中占据这不可磨灭的作用。 数学从产生到茁壮成长再到成熟经历了数千年的时间,时至今日,自然科学的众多分支在各个行业和领域大放异彩,但是数学可以说仍然是科学界的女皇。那么到底是一股什么样的神秘力量在不断地推动数学的发展?数学是怎样对人类社会产生深远的影响?答案是显而易见的,数学家一直是不断地推动数学的发展力量之一。 由于生产和劳动上的需求,在古代便产生了以简单的为基础的古代数学,他们用手指或实物计数,由于生产力的需求和发展,他们逐渐过度到用数字计数。 经过一个上了一个学期的有关数学发展史课程和10多年来不断学习数学的学习经历,我个人认为数学的发展有三大动力。 恩格斯很早时就指出:“科学的发生和发展,一开始就是由生产决定的”,这里的生产是指人们使用工具来创造各种生产资料和生活资料。数学作为研究客观物质世界的数量关系和空间形式的一门科学,它的发生和发展也是由生产决定的。 尽管数与形的最初观念可以追溯到原始社会,但是由于当时生产水平的低下,虽然经历了上万年的漫长时间,也只积累了一些零碎的、萌芽的数学知识。到了古希腊奴隶社会最发达时期,社会生产有了较

大发展,几何学才取得了决定性的进步。 文艺复兴时期,机械的广泛使用,航海事业的迅速发展,以及我国四大发明的传播,促成了西欧生产的巨大变化,推动了自然科学的迅速发展。在这时期,在意大利的封建社会中,代数学取得了快速的发展。17世纪欧洲生产的发展,促进了力学和技术的发展,从而向数学提出了从一般的形态上研究运动的问题。出于研究运动,变量的观念产生了,并且成了数学研究的主要对象,同时也产生了函数的概念。数学向着研究变量和函数方面发展,随后就产生了解析几何、微积分等数学分支。 微积分的基本理论在实践中的成功应用,证明它反映了生产和科学技术的某些客观规律,数学终于在较短的时间里取得了辉煌的成就。在古代虽然已有了朴素的极限思想,但是那时候的生产水平低下,科学技术不发达,研究都停留在静力学和固定不动的范围内,不可能产生微积分。 1705年,英国物理学家纽可门制成了第一个能供实用的蒸汽机;1768年,瓦特制成了近代蒸汽机。由此引起的工业革命,大大提高了人类社会生产力,从而促进了十八、十九世纪数学的大繁荣。 20世纪40年代,生产力得到进一步发展,科学技术突飞猛进。1945年,第一颗原子弹爆炸、第一台电子计算机问世;1957年,第一颗人造地球卫星发射成功。超高温、超高压、微观、宏观及大科学出现,于是现代数学发展神速、硕果累累。 综上所述,数学的发展不能脱离社会生产的发展。在绝大多数情

中国数学发展的简单历史知识1

xx数学发展的简单历史知识 中国古代是一个世界上数学先进的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方面都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。 乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356。

中国数学简史

数学文化课程报告 论文题目:中国数学简史 定义 数学(mathematics或math),是研究数量、结构、变化、空间以及

信息等概念的一门学科,从某种角度看属于形式科学的一种。 上述是百度百科对数学所下的定义,在我看来数学是有所不同的。最早,在幼儿园的时候,老师就开始教我们阿拉伯数字。被蒙在鼓里很久才知道阿拉伯数字并不是由阿拉伯人创造,而是由印度人发明,由阿拉伯人传入欧洲将其现代化。因为阿拉伯人的传播,成为该种数字最终被国际通用的关键节点,所以人们称其为“阿拉伯数字”。 从幼儿园到小学,从小学到初中到高中,直到现在,至始至终数学都陪伴在我们身边。第一次感受到数学的魅力是在小学阶段,那时还没有学设未知数求解。脑子里总觉得少了个东西,前后思维连不上。后来在大哥的指导下,用设未知数的方法很快便把问题解决了。我看着结果,愣了好半天。这种新的思维新方法让我对数学这门学科产生了浓厚的学习兴趣。 再后来随着笛卡尔坐标系、三维坐标系的学习,我深深地感受到数学并不是他们所说的那么高深,它来源于生活,能在纸上用数学的简洁形式表现出来,它可以理想化,取微元、求极限,它用自己独特的方式展现着不同寻常的美。 回望人类光辉的发展史,数学在其中扮演着举足轻重的角色。各种科学只有在成功应用了数学才算达到真正完善的地步。 数学分支 1:数学史2:数理逻辑与数学基础3:数论4:代数学5:代数几何学6:几何学7:拓扑学8:数学分析9:非标准分析10:函数论11:常微分方程

12:偏微分方程13:动力系统14:积分方程15:泛函分析16:计算数学17:概率论18:数理统计学19:应用统计数学20:应用统计数学其他学科21:运筹学22:组合数学23:模糊数学24:量子数学25:应用数学(具体应用入有关学科)26:数学其他学科 中国数学简史 中国数学从远古走来,分为先秦萌芽时期、汉唐奠基时期、宋元全盛时期、西学输入时期以及近现代数学发展时期五个阶段。 上古至先秦萌芽时期 1.传说(4000年前):上古结绳而治;皇帝使吏首作数;伏羲造八卦、规矩。 2.考古(3000年前):殷商甲骨文;周代金文;俘人十又六,鹿五十又六,计数最大到三万;陶瓷为规则的几何图形。 3.文献:周公制礼:“礼、乐、射、御、书、数”。 4.河图,洛书,算筹。 5.战国时期:墨家、名家 汉唐奠基时期(公元前202-公元907) 1.战国至两汉确立了中国传统数学的基本框架 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”

数学的发展史

数学的发展史 学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。 知识简介:尼罗河-世界上最长的大河 尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。尼罗河——阿拉伯语意为“大河”。“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。古埃及人在这里创造出高度的文明。 世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江 中国第一大河——长江 长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。以干流长度和入海水量论,长江均居世界第三位。 长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。 长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游 长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。 长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡) 世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年) 中华民族的母亲河—黄河 黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。 干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游. 数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。 一、数学萌芽时期(公元前6世纪以前) 1.“数”概念的产生 早在远古时代,人类就已具备了识别事物多少的能力。逐渐地,这种原始的“数觉”经过漫长的历史演进,发展并形成了“数”的概念。早期人类在对事物数量共性的认识与提炼中,获取数的概念,从而播下了人类文明史上的数学火种。大约发生于30万年以前的这一过程可能与早期人类对火的认识与使用一样悠久而漫长。数对于人类文明的意义决不亚于火的使用。 当对“数”的认识变得越来越明确时,人们开始对其表达萌生了一种冲动,于是就有了记数(实物记数、书写记数)的产生。 最早比较成功的计数方式可能来自于最方便的实物工具,那就是人类自己的手指。一只手上的五个指头可以被现成地用来表示五个以内事物的集合。两只手上的指头合在一起,不超过10个元素的集合就有办法表示。 当十指不够用时,随处可见的石子便成了当然的替代与补充。但记数的石子堆,很难长久保存信息,于是又有了结绳记数和书契(qi)记数。 结绳记数是我国原始公社时期的一种计量方法,是原始公社时期社会生产力发展到一定程

相关文档