文档库 最新最全的文档下载
当前位置:文档库 › GPS技术在工程变形监测中的应用研究

GPS技术在工程变形监测中的应用研究

GPS技术在工程变形监测中的应用研究
GPS技术在工程变形监测中的应用研究

[收稿日期] 2004208225

[作者简介] 韦汉金(1969-),男(壮族),广西武鸣人,广西南宁地区地产公司工程师,从事工程测量工作。

?测量与地质?

GPS 技术在工程变形监测中的应用研究

韦汉金1,李红祥2

(广西南宁地区地产公司,广西 南宁 530219;2.广西水利电力勘测设计研究院,广西 南宁 530023)

[摘要] 探讨GPS 在大桥等精密工程变形监测中的基准设计、图形结构强度设计、观测时段设计和监测周期设计,

提出一套在数据预处理过程中,利用连续观测、分历元进行数据预处理的方法,和GPS 技术进行工程变形观测的新思路。

[关键词] GPS ;变形;监测;设计

[中图分类号] TU196 [文献标识码] A [文章编号] 1003-1510(2004)04-0009-04

GPS (全球卫星定位系统)已广泛应用于导航、定位等领域,尤其在控制测量中起了划时代的作用。因为它在静态相对定位中的高精度、高效率、全天候、不需通视等优点,已逐渐用来代替常规的三角、三边、边角等方法,并在理论、实践中取得了可喜的成果。在精密工程变形监测中的应用也取得了较大

发展。本文将对GPS 在(工程)变形监测中的基准设计、图形结构强度设计、观测时段设计、监测周期设计等方面作进一步探讨,并提出一套在数据预处理过程中,利用连续观测、分历元进行数据预处理的方法。

1 基准设计

在工程变形监测中,基准设计(包括位置基准和内外部尺度基准设计)是一项关系到监测成果是否准确、可靠地反映变形体的变形情况的工作,用常规的手段,对某一工程整体变形监测,由于仪器和其它诸多因素的制约,使得监测网的基准点不能离开变形监测区域太远,但太近又要受自身变形的影响,不能准确地反映变形数值,所以比较困难。GPS 技术的不断完善和高精度仪器的面世(1mm +0.5ppm ),可以将基准点选在变形区外,从而保证了数

据的准确度。

2 图形结构强度设计

图形强度设计指变形点之间,变形点与基准点之间的几何图形配置,网中独立基线数目和相互连接方式设计。首先,在图形选择过程中,必须顾及基准点对变形点的有效控制,同时基准点之间又要能相互检校;其次,模型识别和参数识别设计会影响变形模型,正确的图形结构强度设计有利于分析引起变形的真正因素和采取相应的对策。2.1 模型识别设计

在设计参考模型时,应能有效地检测出网中任何一个不稳定点;在设计相对网时,应能正确地从几种可能的变形模型中检测和分离出真正的变形模

型。这一点可用下式来保证(可区分度指标[1])。αI J =b o

δo (λμ)min

(1)

式中:b o ———单位权方差因子;

δo —

——非中心参数边界值;(λμ)min —

——下列矩阵M I J 的最小特征值。M I J =B T I P a B I -B T I P d B T J (B T

J P d B J )

-1

B T

J P d B I

(2)

显然,对于M 个可能的变形模型,当(1)式中的

I 固定,J 取遍其所有可能的变形模型时,可得到最

大可区分度(α′I )max ,定义

[1]

:(α′I )max =Δ

max [α′I J ,A I ,J ,J ≠I ](3)

为该组变形模型的可区分度下限。

为了保证变形分析结果正确,还需要GPS 监测

9

网具有良好的粗差检测和定位能力。研究表明,当GPS 基线向量监测网中每个点发出的基线数目至少为3条时,网具有较好的可靠性。2.2 参数识别的设计模型

由上述可知,只要可区分度指标满足要求,则灵敏度一定满足要求,但最佳变形模型的参数常常还需要更为精确的估计。变形参数的协因数阵为[1]:

Q ^c =

[ΣN

j =1

B T

j

P xj B j -

ΣN

j =r

B T

j P xj ?(ΣN

j =0

P xj )

-ΣN j =1

P xj B j ]-1

(4)

取纯量精度标准中的A 标准作为精度准则,利

用2.1中其基线的可观测与不观测得GPS 监测网用于参数估计的设计模型[1]:

min S =Σn

i =1f i Y i

t r (Q ^c ≤Q o

)

(5)

式中:Q ———给定的精度要求。

3 观测时段和周期的设计

针对观测时段和周期,可以将工程及工程变形的性质(如剧烈变化,连续较快变化,长时期的缓慢变化等)结合起来分析,作出有利用于实现分析成果和监测意图的最佳观测周期,结合目前天空的卫星分布情况,卫星的健康状况,和时段的长短、白天、黑夜、气象等外界因素的各种分析,得出最佳的观测时段。

4 连续长时间观测,分历元数据处理

通常进行的相对静态定位方法是利用在某一时间段观测(同步)的数据,利用差分等手段,求得点与点之间的坐标向量;而对于连续不断的工程变形,获得的是这一时间段内点位之间最成熟的关系值。但我们常常需要知道一较小时段里,甚至某一时刻的最成熟的点与点之间的关系,在此,我们提出一套利用较长时间的同步观测数据进行分历元数据处理,求得该时刻最成熟的点与点之间关系的方法。

运用GPS 在某大桥变形观测施测实例的计算过程来说明。这里权取其中一个基准点和两个变形监测点,其中2号点为基准点,1号点和3号点为水平位移变形监测点,观测的总时段长为90min ,采样历元间隔15s ,截止高度角为15°,利用的相同型号的ASHTECH XII GPS 接收机观测,标称精度为:5mm +1ppmD 。

因为采样间隔为15s ,90min 有360个历元的数据量,如果按照相对静态定位模式进行基线计算:

三次差分计算 → 二次差分浮动解 → 双差固定解 先发现周跳, 让其浮动迭代计算 N 凑整 并给出测站 从标作为近似值

以上过程许多型号的接收机都可利用随机计算软件完成,因其计算的数学模型大同小异,不再罗列。360个历元全部进行预处理后,输出的成果基线向量见表5。

将1~360个历元的数据进行分历元计算,见表1~4,成果按1~90历元、90~180历元、180~270

历元、270~360历元分历元按相对静态预处理模式计算。分析这些分历元计算的成果我们可以发现以下的特点:

(1) 因为分历元的导航文件及其测站文件等都是按照整测段的数据计算,避免了按小段观测时(比如,只观测30min ,即1~90历元),整周模糊度不能确定成准确计算,并且单点定位成果甚至出现由于数据量太少而不能计算的情况。

(2) 如果需要第90历元(即开机后90历元×15s/60s =22.5min )时刻的监测点的最或然位置,

则选取(90+45历元)~(90-45历元)历元的间隔区段进行计算(因为GPS 天线也随着变形监测点的位移而移动)。

如果需要知道第180历元(即开机后180历元×15s/60s =45min )时刻的变形点最或然位置,则选取(180-45)~(180+45)历元间隔区段进行计算。

所计算的第90历元和第180历元的数据成果见表6,7。

从以上我们可以归纳出以下的计算经验公式:从开机时刻起算,第X min 的变形观测量,选取的历元为:

(X ×4-45)~(X ×4+45)

其中:(X ×4-45)>0

从开机时刻起算,第Y 历元时的变形观测量,选取的历元为:

(Y -45)~(Y +45) 其中(Y -45)>0

(3) 观测数据成果的分析。我们可以推导出

如下的变形量计算公式:

Δ=(X j ,i -X o ,I )-(X j ,A -X o ,A )式中:j ———变形点号;

i ———某时刻(或历元);

1

o ———基准点;

A ———某一认定的值或固定历元时的值;X ,j ,i ———i 时刻j 点的向量值(变形点相对

于基准点)。

表1 1~90历元对应图中位置1

边 号

ΔX/m

ΔY/m

ΔZ/m

S/m

2-1962.4256337.7587

349.56101078.2100

2-3585.5056

-98.5465694.618

4

913.79591-3

-376.9203-436.3050345.0575671.9342

基线闭合差

0.3mm

0.2mm

0.1mm

相对闭合差

ppm :0.14

表2 90~180历元对应图中位置2

边 号

ΔX/m

ΔY/m

ΔZ/m

S/m

2-1962.4256337.7553

349.55791078.2088

2-1585.5055-98.5453694.6196

913.7967

1-3

376.9208436.3014-345.0614671.9342基线闭合差

0.2mm

0.8mm

0.3mm

相对闭合差

ppm :0.33

表3 180~270历元对应图中位置3

边 号

ΔX/m

ΔY/m

ΔZ/m S/m

2-1962.4301337.7516

349.55761078.2107

2-3585.5087-98.5504694.6157

913.7963

1-3

376.9218436.3011-345.0586671.9331基线闭合差

0.5mm

0.9mm

0.5mm

相对闭合差

ppm :0.43

表4 270~360历元对应图中位置4

边 号

ΔX/m

ΔY/m

ΔZ/m S/m

2-1962.4297337.7503

349.55771078.2100

2-3585.5073-98.5476694.6190

913.7976

1-3

376.9221436.2987-345.0610671.9330闭合差

0.3mm

0.8mm

0.3mm

相对闭合差

ppm :0.34

表5 1~360历元基线向量表

边 号

ΔX/m

ΔY/m

ΔZ/m

S/m

2-1962.4275337.7546

349.55891078.2098

2-3585.5065-98.5471694.6184

913.7966

1-3

376.9211436.3017-345.0597671.9337

闭合差

0.1mm

0.2mm

相对闭合差

ppm :0.08

表6 45~135历元对应图中A 、C 位置

边 号

ΔX/m

ΔY/m

ΔZ/m S/m

2-1962.4258337.7570

349.55961078.2092

2-3

585.5069-98.5486694.6170

913.7959

1-3

376.9188436.3053-345.0574671.9335闭合差

0.1mm

0.3mm

相对闭合差

ppm :0.12

表7 135~225历元对应图中B 、D 位置

边 号

ΔX/m

ΔY/m

ΔZ/m S/m

2-1962.4299337.7546

349.55791078.2115

2-3

585.5064-98.5443694.6201

913.7975

1-3

376.9234436.2993-345.0621671.9346闭合差

0.1mm

0.4mm

0.1mm

相对闭合差

ppm :0.125

这样,针对算例,2号点为基准点,可把1号点

及3号点所计算的相对2号点的瞬时(或然)值,绘成如图1、图2所示的变形点相对于参考点的位置变化图。当然,为了能更为准确地显示它的变化规律,可以把数据分成若干个历元进行处理,则它的运动轨迹将能更好地反映出来,在此,只选择了表1~4所列数据进行展点(计算展点时,须对同步闭合差分配)。

点号 2-1

图1 点1相对于点2位置变化图

注:图中所采用数据均为WGS —84坐标系中的x 、y 分量所计算的,按二维方式的示意图,为了更确切地反映实际,应按所采用的投影平面进行坐标转化和高斯投影,故为能说明问题起见,在此未做此项,特此说明,图二同理。

由图1和图2,我们可以清楚地看出该变形点

基本上是呈什么样的运动形式位移的。

1

1

点号 2-3

图2 点3相对于点2位置变化图

5 结论

综上所述,可得出GPS技术在工程变形监测中的应用,有以下步骤:①根据监测的目的,在图上选点,然后到野外踏勘,以保证所选点位满足布网的要求和野外观测所具备的条件,最后得到要施测的概略点位;②按照每个点发出3条独立基线且边长分布较为均匀的原则并根据接收机台数的多少和布网原则,设计网的观测图形,并选定可能要追加施测的路线;③给定所需的可区分度指标(或精度指标)进行计算,直到达到给定的要求为止,最后得到增加独立观测基线后的最终施测方案;④观测时段和周期的设计;⑤采用连续观测分历元数据处理,或间断观测,整段数据处理方法进行数据计算;⑥利用观测值的统计,成因分析,一元或多元线性回归或逐步回归,利用图表等形式进行数据分析。

由以上方法可知,利用这一监测方式,可以解决同一变形体,由于受阳光、风力、外界因素干扰(如大桥上行驶的车辆对大桥的影响)等,在某一时刻,它们之间最或然的相对关系(相对位移及扰度等)及它们相对于参考基准点的绝对位移。分析它们各项因子对变形体影响的显著性,为工程设计,运营管理单位提供最可靠的最直观数据及分析资料。

参考文献

[1] 陈永奇.变型模型可区分变量[J].测绘学报,1993,

(1):11.

(责任编辑:刘征湛)

Application of G PS techniqu e in engineering deform ation monitoring

WEI Han2jin1,L I Hong2xiang2

(1.Guangxi Nanning Prefecture Land Corporation,Nanning530219,China;

2.Guangxi Water and Power Design Institute,Nanning530023,China)

Abstract:The application of GPS technique in precision engineering deformation monitoring is discussed in respects of datum design,graph structural strength design,observation and measurement period design, monitoring cycle design etc.A new idea is put forward to apply GPS technique in engineering deformation monitoring by continuous observation and measurement as well as data pre2processing with reference to various epochs.

K ey w ords:GPS;deformation;monitoring;design

?简 讯?

庆祝广西水利厅成立50周年书画摄影展在南宁举行

在丹桂飘香,硕果累累的金秋时节,我们迎来了广西水利厅成立50周年书画摄影展。

本次展览共收到征稿600多幅书画摄影作品。作品从不同视角反映广西水利系统职工践行“三个代表”重要思想,加强两个文明建设所取得的骄人业绩。作品题材广泛,内容丰富,具有浓郁的水利行业特色。在继承传统创作手法的同时,突显出新颖的时代特征。篆、隶、楷、行草不同书体,花鸟、人物、山水不同风格,水利建设、名山大川、民族风情多种题材皆能从内容与形式上达到和谐统一。充分表现出水利人求真务实,乐于奉献的无私品格。反映出水利人热爱生活,热爱大自然和积极探索的进取精神。

王大力、李洪旺、马顺德等20名作者分别获奖。

李洪旺 供稿21

建设工程建筑变形测量监测方案

精品文档 。 - 1 -欢迎下载 1、工程概况 拟建工程位于**市**区胜利和公园路交汇处东北侧,西邻度假村,南面和东面邻动物园。场地内原有建筑物已拆除,南侧偏西残留一小山丘,四周均已形成3~7m 高的较陡人工边坡。基坑开挖前将高出基坑顶面设计标高的土坡、山丘进行平整,后进行开挖。工程基坑底面标高分为34.00m 、33.50m 、31.20m ,基坑顶面标高为43.00m 至35.50m 。本工程采用放坡支护方案,基坑安全等级为三级。 地上为2~16层建筑,地下室1层,地下室埋深5.5m 。本工程主体结构采用天然地基下的扩展基础,局部采用高强混凝土预应力PHC 管桩基础。建筑主体分为:A 组团办公楼;B 组团餐厅;C 、D 、E 组团公寓;F 组团图书馆。 2、执行的标准和技术依据 ①《工程测量规范》(GB50026—2007); ②《国家一、二等水准测量规范》(GB12897—2006); ③《建筑变形测量规范》(JGJ8—2007); ④《建筑基坑工程监测技术规程》(GB50497-2009) ⑤《建筑基坑支护技术规程》(JGJ120-2012) ⑥《**市基坑支护技术规范》(SJG05-2011) ⑦委托人及设计单位有关技术要求; **建筑设计研究院的基坑支护图纸,基坑监测要求。 **建筑设计研究院的建筑物沉降观测监测要求。 ⑧《测绘产品检查验收规定》(CH1002—95);

**建设工程建筑变形监测监测方案 3、监测实施方案 3.1、监测流程 本工程监测工作按以下流程进行。

精品文档 。 - 3 -欢迎下载 3.2、实施方案 3.2.1、监测点位埋设 本工程的基坑监测部分共需埋沉降观测基准点3个,位移观测基准点3个,基坑顶沉降、位移监测点29个,建筑主体沉降监测点149个(办公楼沉降监测点42个、餐厅沉降监测点14个、公寓组团一沉降监测点24个、员公寓组团二沉降监测点24个、公寓组团三沉降监测点24个、图书馆沉降监测点12个、室外连廊沉降监测点3个、地下室沉降监测点6个)。 3.2.2、监测频率与周期 在工程施工过程中,按以下频率进行监测。 (1)基坑部分 ①基坑开挖前,各监测点采集稳定的初始值,且不少于2次; ②在基坑开挖过程中,监测频率为3天/次,结构施工为7天/次;基坑填至±0.00后停止监测。 ③当变形超过有关标准或场地条件变化较大时,进行加密监测,观测时间间隔现场定; ④当有危险事故征兆时,进行连续监测。 (2)建筑主体部分 ①观测工作从基础施工完成后即开始监测,建筑物每升高2层观测一次; ②结构封顶后每月观测一次; ③工程全部竣工后第一年每三个月观测一次; ④第二年每半年观测一次,以后每年一次,直到沉降变形稳定为止。 3.2.3、信息反馈 在工程的监测过程中,监测数据报送的的及时性是发挥监测工作作用的一个重要因素,包括监测快报、周报、月报等。

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

工程变形监测

工程变形监测 最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。 巴尔达的数据探测法对观测值中只存在一个粗差时有效,稳健估计法具有抵抗多个粗差影响的优点。建立改正数向量与观测值真误差向量之间的函数关系,可对多个粗差同时进行定位和定值,这种方法已在通用平差软件包中得到算法实现和应用。 方差和协方差分量估计实质上是精化平差的随机模型,过去一直仅停留在理论的研究上。实际中,要求对多种观测量进行综合处理,因此,方差分量估计已成为测量平差的必备内容了。目前,通用平差软件包中已增加了该功能,但还需要在测量规范中明确提出来。 需要指出的是:许多测量作业单位喜欢采用附合导线进行逐级加密,主要依据目前规范中有关一、二、三级导线和图根导线的规定。无疑附合导线具有许多优点,但由于多余观测少,发现和抵抗粗差的能力较弱,不宜滥用。建立一个区域的控制,首级网点采用GPS测量,下面

(完整word版)变形监测资料要点

变形监测完整版资料 1、变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。 2、变形监测的目的 1)分析和评价建筑物的安全状态 2)验证设计参数 3)反馈设计施工质量 4)研究正常的变形规律和预报变形的方法 3、变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 4、变形监测的特点 1)周期性重复观测 2)精度要求高 3)多种观测技术的综合应用

4)监测网着重于研究电位的变化 5、为了最大限度地测量出建筑物的变形特征数据,减少测量仪器、外界条件等引起的系统性误差影响,每次观测时,测量的人员、仪器、作业条件等都应相对固定。例如,在进行沉降观测时,要求在规定的日期,按照设计线路和精度进行观测,水准网形原则上不准改变,测量仪器一般也不准更改,对于某些测量要求较高的情况,测站的位置也应基本固定。 6、建筑物变形的一般分类 在通常情况下,变形可分为静态变形和动态变形两大类。静态变形主要指变形体随时间的变化而发生的变形,这种变形一般速度较慢,需要较长的时间才能被发觉。动态变形主要指变形体在外界荷载的作用下发生的变形,这种变形的大小和速度与荷载密切相关,在通常情况下,荷载的作用将使变形即刻发生。 7、按变形特征分类 变形可分为变形体自身的形变和变形体的刚体位移。 1)自身变形,伸缩,错动,弯曲扭转。 2)钢体的位移,整体平移,转动,升降,倾斜。 8、变形监测的主要内容 现场巡视;位移监测;渗流监测;应力监测等。 9、周边监测包括:滑坡监测、高边坡监测、渗流监测等。 10、变形监测的精度和周期如何确定,有何依据。 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的

变形监测技术与应用

1.什么是变形? .什么是变形监测?变形监测的目的是什么?变形监测的意义? 变形监测的主要内容有哪些? 答:变形是物体在外来因素作用下产生的形状和尺寸的改变。 变形监测是对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。 目的:1、分析和评价建筑物的安全状态。2、验证设计参数。3、反馈设计施工质量。4、研究正常的变形规律和预报变形的方法。 意义:1、对于机械技术设备:则保证设备安全、可靠、高效地运行:为改善产品质量和新产品的设计提供技术数据。 2、对于滑坡:通过监测其随时间的的变化过程:可进一步研究引起滑坡的成因:预报大的滑坡灾害。 3、通过对矿山由于矿藏开挖引起的实际变形的观测:可以控制开挖量和加固等方法:避免危险性变形的发生:同时可以改进变形预报模型。 4、在地壳构造运动监测方面:主要是大地测量学的任务。但对于近期地壳垂直和水平运动等地球动力学现象、粒子加速器、铁路工程也具有重要的工程意义。 内容:现场巡视、环境量监测、位移监测、渗流监测、应力、应变监测、周边监测。 2.变形监测技术的发展趋势。 答:由于变形监测的特殊要求:一般不允许监测系统中断监测:就要求监测系统能精确、安全、可靠长期而又实时地采集数据:而传统的设备难以满足要求:因此:科研人员在现有自动化监测技术的基础上:有针对性的研发精度高、稳定性好自动化监测仪器和设备。这方面成果有:自动化监测技术、光纤传感检测技术、CT技术的应用、GPS 在变形监测中应用、激光技术的应用、测量机器人技术、渗流热监测技术、安全监控专家系统 3. 变形监测工作有何特点:常用变形监测技术方法有哪些? 答:特点:1、周期性重复观测2、精度要求高3、多种观测技术的综合运用4、监测网着重于研究点位的变化。 测量技术:1、常规大地测量方法。如:三角测量、交会测量、水准测量。2、专门的测量方法。如:视准线、引张线测量方法。3、自动化监测方法。4、摄影测量方法。5、GPS等新技术的应用。 4. GPS用于变形测量有何优点? 答:速度快、全天候观测、测点间无需通视、自动化程度高:能进行同步变形监测:并实现了数据采集、传输、处理、分析、显示、存储等:测量精度可达到亚毫米级。6.变形观测中观测精度是如何确定的? 变形观测中确定观测周期的原则: 答:如果观测的目的是为了使变形值不超过某一允许的数值而确保建筑物的安全:则其观测的中误差应小于允许变形值的十分之一~二十分之一:如果观测的目的是为了研究其变形的过程:则其中误差应比这个数小得多。当存在多个变形监测精度要求时:应根据其最高精度选择相应的精度等级:当要求精度低于规范最低精度要求时:宜采用规范中规定的最低精度。变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则:根据单位时间内变形量的大小及外界影响因素确定。 7.为什么要对变形监测资料进行检核?检核的方法有哪些? 答:资料分析工作必须以准确可靠的的监测资料为基础:在计算分析之前:必须对实测资料进行校核检验:对监测系统和原始资料进行考证。这样才能得到正确的分析成果:发挥监测资料应有的作用。 校核方法:任意观测元素:如高差、方向值、偏离值。倾斜值等/:在野外观测中均具有本身的观测校核方法:可参考有关的规范要求。进一步校核是在室内所进行的工作:具体有:1、校核各项原始记录检查各次变形值的计算是否有误。可通过不同方法的验算、不同人员的重复计算来消除监测资料中可能带有的错误。2、原始资料的统计分析。可采用统计方法进行粗差检验。3、原始实测值的逻辑分析。根据监测点的内在物理意义来分析原始实测值的可靠性。 8.如何用一元线性回归分析法对变形资料进行检核? 答:1、利用式求得变量y和x的相关系数:查阅相关系数的临界值表:判断y和x线性相关是否密切。2、利用式na+[x]b-[y]=0[x]a+[xx]b-[xy]=0 (n:观测值的个数、[]:求和计算:求回归方程=a+bx的回归系数a,b,建立回归方程。3、在回归直线两侧根据2s画两条平行线:检查新的变形值是否出现在这两条直线所夹的区间内:当观测值超出这一区间时:应作专门分析。 9.变形观测资料整理的主要内容包括哪些?成果表达的形式有哪些? 答:内容:1、收集资料:如工程或观测对象的资料、考证资料、观测资料及有关文件等。2、审核资料:如检查收集的资料是否齐全:审查数据是否有误或精度是否符合要求:对间接资料进行转换计算:对各种需要修正的资料进行计算修正:审查平时分析的结论性意见是否合理等。3、填表和绘图:将审核过的数据资料分类填入成果统计表:绘制各种过程线、相关线、等值线图等:按一定顺序进行编排。 4、编写整理成果说明:如工程或其他观测对象情况、观测工作情况、观测成果说明等。 成果:文字、表格、图形:也可采用现代科技如多媒体技术、仿真技术、虚拟现实技术进行表达。变形监测、分析、预报的技术报告和总结是最重要的成果。 13.工程建筑物变形的原因是什么?工程建筑物变形监测的内容及意义是什么? 答:原因:建筑的自重、使用中的动载荷、振动或风力因素引起的附加载荷、地下水位的升降、地质勘探不充分、设计错误、施工质量差、施工方法不当等。 内容:1、垂直位移监测2、水平位移监测3、倾斜观测4、裂缝观测5、挠度观测6、摆动和转动观测 意义:1、掌握建筑物的稳定性:为安全运行诊断提供必要的信息:以便及时发现问题并采取措施。2、理解变形的

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。 钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。终孔验收后,及时进行倒垂孔保护管、

桥梁工程变形监测的方案.doc

桥梁工程变形监测方案 一、概述 大型桥梁,如斜拉桥、悬索桥自20 世纪 90 年代初期以来在我国如雨后春笋般的发展。这种桥梁的结构特点是跨度大、塔柱高 , 主跨段具有柔性特性。在这类桥梁的施工测量中, 人们已针对动态 施工测量作了一些研究并取得了一些经验。在竣工通车运营期间, 如何针对它们的柔性结构与动态 特性进行监测也是人们十分关心的另一问题。尽管目前有些桥梁已建立了了解结构内部物理量的变 化的“桥梁健康系统”, 它对于了解桥梁结构内力的变化、分析变形原因无疑有着十分重要的作用。 然而 , 要真正达到桥梁安全监测之目的, 了解桥梁的变化情况, 还必须及时测定它们几何量的变化及 大小。因此 , 在建立“桥梁健康系统”的同时,研究采用大地测量原理和各种专用的工程测量仪器和 方法建立大跨度桥梁的监测系统也是十分必要的。 二、变形监测内容 根据我国最新颁发的“公路技术养护规范”中的有关规定和要求, 以及大跨度桥梁塔柱高、跨 度大和主跨梁段为柔性梁的特点, 桥梁工程变形监观测的主要内容包括: 1)桥梁墩台沉陷观测、桥面线形与挠度观测、主梁横向水平位移观测、高塔柱摆动观测; 2)为了进行上述各项目的测量 , 还必须建立相应的水平位移基准网与沉陷基准网观测。 三、系统布置 1)桥墩沉陷与桥面线形观测点的布置 桥墩 ( 台) 沉陷观测点一般布置在与墩( 台 ) 顶面对应的桥面上;桥面线形与挠度观测点布置在主 梁上。对于大跨度的斜拉段, 线形观测点还与斜拉索锚固着力点位置对应;桥面水平位移观测点与 桥轴线一侧的桥面沉陷和线形观测点共点。 2)塔柱摆动观测点布置 塔柱摆动观测点布置在主塔上塔柱的顶部、上横梁顶面以上约m的上塔柱侧壁上, 每柱设 2 点。 3)水平位移监测基准点布置 水平位移观测基准网应结合桥梁两岸地形地质条件和其他建筑物分布、水平位移观测点的布置 与观测方法 , 以及基准网的观测方法等因素确定, 一般分两级布设, 基准网布设在岸上稳定的地方并 埋设深埋钻孔桩标志;在桥面用桥墩水平位移观测点作为工作基点, 用它们测定桥面观测点的水平 位移。 4)垂直位移监测基准网布置 为了便于观测和使用方便, 一般将岸上的平面基准网点纳入垂直位移基准网中, 同时还应在较稳定的地方增加深埋水准点作为水准基点, 它们是大桥垂直位移监测的基准;为统一两岸的高程系

变形监测方案

绿园污水处理厂 顶管施工基坑监测方案 编制: 审核: 审定: 二0一五年七月

目录 1.项目概述 (2) 1.1概况 (2) 1.2监测项目 (2) 2.第三方监测原则及技术规程 (2) 2.1监测原则及目的 (2) 2.2技术规程 (2) 3.监测实施程序 (3) 4.监测实施 (3) 4.1基坑围护结构顶部沉降监测 (3) 4.1.1水准控制网的设置 (3) 4.1.2监测点的埋设原则 (5) 4.1.3监测点的安设方法 (5) 4.1.4监测方法及精度控制 (6) 4.1.5沉降观测数据分析及成果表述 (7) 4.2基坑围护结构顶部水平位移监测 (7) 4.2.1水位位移监测控制网的布设形式 (7) 4.2.2水平位移监测控制网布设原则 (8) 4.2.3水平位移测点布置原则 (8) 4.2.4水平位移测点的埋设技术要求 (8) 4.2.5观测技术方法及精度控制 (9) 4.2.6观测数据分析及成果概述 (12) 4.3基坑自身监测频率 (13) 5报警的处理方法 (14) 5.1报警值的设定 (15) 5.2报警的处理办法 (15) 6实施组织计划 (14) 7本工程拟投入的主要仪器设备表 (15) 8人员组织实施 (16)

.项目概述 1.1概况 受0000000厂委托,00000000承担绿园污水处理厂配套管网基坑沉降变形观测工程,管道位于:东湖大街、滏阳路、朝阳大街、长安路、和平路、等路段,管线总长度约12263米,共计92个深基坑,我公司在基坑开挖至回填土完成期间,对基坑坡顶进行水平位移和沉降变形监测。 1.2监测项目 本方案监测项目有:基坑围护结构顶部沉降、水平位移监测。 2.第三方监测原则及技术规程 2.1监测原则及目的 在施工方对基坑支护结构进行实时监测前提下,我方监测在对施工方监测进行校核的基础上,独立地进行监测。 我方遵照委托方提出的要求,在基坑施工期间对基坑支护进行高精度监测,并从岩土工程专业的角度对监测数据、信息进行及时分析,向业主提供监测变形的情况,对异常情况及时提供建议,为施工安全和施工方案优化提供科学依据。 2.2技术规程 《建筑基坑工程监测技术规范》(GB50497-2009) 《建筑变形测量规范》(JGJ8-2007) 《国家一二等水准测量规范》(GB/T12897-2006) 《工程测量规范》(GB50026-2007) 《建筑地基基础设计规范》(GB 50007-2011) 《岩土工程勘察规范》(GB 20021-2001,2009版) 《建筑基坑工程监测技术规范》(GB50497-2009)

现代变形监测重点内容与思考题答案

第1章变形监测概述 一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。 分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测 五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。(二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。

边坡变形监测技术分析

边坡变形监测技术分析 ?简介:边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施 工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才 开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工 作。 ?关键字:边坡变形监测,技术分析,边坡监测技术 边坡的开挖、加固和防护,是矿山、水利、交通等领域中常涉及的工程项目,而边坡的稳定性,是工程技术人员经常关注和研究的课题。目前,我国对于边坡施工中的监测工作还不够重视,往往是在工程出现险情时,或是在项目实施过程中才开始考虑监测问题,导致工作被动,应该在项目开展的初期就着手边坡变形监测工作。 1 边坡变形监侧的作用 在土木工程各个建设领域中,通过边坡工程的监测,可以起到以下作用。 1. 1 评价边坡施工及其使用过程中边坡的稳定性,并作出有关预测预报,为业主、施工单位及监理提供预报数据,跟踪和控制施工过程,合理采用和调整有关施工工艺和步骤,取得最佳经济效益。 1.2 为防止滑坡及可能的滑动和蠕变提供及时支持。预测和预报滑坡的边界条件、规模滑动方向、发生时间及危害程度,并及时采取措施,以尽量避免和减轻灾害损失。 1. 3 监测已发生滑动破坏和加固处理后的滑坡,监测结果是评价滑坡处理效果的尺度。 1.4 为进行有关位移反分析及数值模拟计算提供参数。 2 边坡工程监测的方法 目前,我国边坡变形监测方法主要采用简易观测法、设站观测法、仪表观测法和远程监测法等。 2.1 简易观测法 简易观测法是通过人工观测边坡中地表裂缝、鼓胀、沉降、坍塌、建筑物变形及地下水位变化、地温变化等现象。

变形监测技术要求

针对目前变形监测项目应符合以下规范要求 基坑开挖对临近轻轨高架结构的影响主要集中在以下方面:一是坑外土体的位移;二是既有高架桥与基坑相对位置的关系;三是轻轨高架上下部的结构关系;四是轻轨高架的结构基础和埋深情况。五是轻轨高架自身的结构自重和轻轨高架中动载荷的控制与变化情况等。基坑周边轻轨高架在基坑开挖中的变形情况是复杂的,变形的原因是多元的,变形的效果是动态的。在实践工程中,基坑开挖将要造成土体的不均匀沉降和水平方向的位移,不仅要做好岩土工程计算,制定可行性基坑开挖方案,同时还要做好变形监测工作,防止各种因素对轻轨高架桥产生的影响。对于建筑基坑施工对周边轻轨高架的变形影响,高程和平面控制可参考规范二级要求。 变形监测应设置平面和高程基准点,要求设置在变形区域以外,位置稳定、易于长期保存的地方,并应定期复测。复测周期应视基准点所在位置的情况而定,在建筑基坑施工过程中宜1~2月复测一次,点位稳定后宜每季度或每半年复测一次。 1、沉降观测的高程基准点不应少于3个,应与工作基点形成闭合环或附合线路。高程基准点和工作基点布设应避开交通干道主路、地下管线、仓库堆栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀或破坏的地方,其点位与邻近建筑的距离应大于建筑基础最大宽度的2倍。当使用静力水准测量方法测量沉降时,用于联测观测点的工作基点宜与沉降观测点设在同一高程面上,偏差不应超过±1cm。不能满足这一要求时,应设置上下高程不同但位置垂直对应的辅助

点传递高程。实际工作中采用精度不低于1mm级水准仪配合铟瓦尺或条码尺进行水准测量,观测方式其中高程控制测量、工作基点联测及首次观测值应采用往返测或单程双测站法,其他各次沉降观测点可采用单程观测或单程双测站法。起始点高程宜采用测区原有高程系统。较小规模的监测项目可假定高程系统,较大规模的项目宜与国家水准网联测。二级水准视线长度应≤50m,前后视距差≤2.0m,前后视距差累积≤3.0m,视线高度(下丝)≥0.3m。用数字水准仪观测时最短视线长度不宜小于3m,最低水平视线高度不应低于0.6m。限差要求往返较差及附合或环线闭合差≤1.0√n(mm),单程双测站所测高差较差≤0.7√n(mm),检测已测段高差之差≤1.5√n(mm)。n为测站数。用于运营阶段的结构、轨道和道床的垂直沉降监测点高程中误差±0.5mm,相邻监测点高程中误差±0.3mm。同一项目在不同周期进行变形监测应采用相同的观测路线和观测方法,使用相同的仪器和设备,并应固定观测人员。首次观测应独立观测2次取平均值作为初始值。监测频率可按照设计要求结合基坑施工进度进行拟定,当发生较大沉降时可加密监测频率;连续一个月沉降趋势趋于稳定状态(无沉降差,纯属仪器误差)的情况下,可要求减少监测频率。在项目开始前和结束后应对使用的水准仪、水准标尺进行检验,二级水准观测仪器i角不得大于15”。水准仪i角的测定办法,如图所示:

天津市加强建筑工程变形观测控制的规定

天津市加强建筑工程变形观测控制的规定 建质安管〖1999〗529号 各局(集团总公司),各区、县建委及有关单位: 为确保我市建筑工程主体结构,使在施工和使用期间沉降变形得到有效控制,提高建筑工程的整体质量水平。结合我市的实际情况,制订了《天津市加强建筑工程变形观测控制的规定》。现发给你们,望严格遵照执行。本规定自一九九九年七月一日起,在我市执行。 第一条为加强建筑工程主体结构在施工及使用期间沉降变化的监控,规范监控行为和程序,准确反映建筑工程沉降及重要结构变形情况,确保我市建筑工程质量得到有效的控制,特制定本规定。 第二条凡现行的有关建筑标准规范及《天津市多层砖砌体住宅建筑沉降裂缝控制设计与施工若干暂行规定》中规定必须进行结构变形控制及沉降观测的建设工程均在本规定的范围之内。 第三条凡需进行变形观测控制的工程,其勘察单位必须在岩土勘探报告中提出相关意见与建议;设计单位必须在施工图中提出观测控制的要求和说明。 第四条凡需进行变形控制的工程,建设单位必须在工程开工前委托沉降观测单位签订观测合同,并由观测单位制定出观测方案后,方可报请开工。 沉降观测单位指有沉降变形观测资质并与地基基础处理、主体结构施工无关的具有相应资质的检测单位。 第五条建筑工程沉降变形观测应充分了解工程项目的技术要求,进行现场踏勘并应及时收集、分析和利用原有的合格资料,制定经济合理的技术观测方案。 第六条沉降变形观测应执行国家行业标准《建筑变形测量规程》(JGJ/T8-97),及其它规范规定的方法,能满足《建筑变形测量规程》规定要求的亦可采用。 第七条测量仪器和设备工具,必须经天津市技术监督局认定的计量单位检测合格,方能投入使用,且应随时检查测量仪器精度变化。 第八条沉降变形观测点的布设要均匀合理,必须能全面查明建筑工程项目的基础沉降和其他变形要求。观测点必须牢固稳定,能长期保存,要保证其具有良好的通视条件。 凡新建与原有建筑连接的工程和砖混结构住宅工程,设计单位必须在设计图纸上标明允许沉降量。 第九条

变形监测考试资料

变形监测定义 是指对被监测的对象或物体进行测量以确定其空间位置几内部形态随时间的变化特征。 变形监测的目的 1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工4)研究正常的变形监测规律和预报变形的方法 变形监测的意义 对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。 变形监测的特点 1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化 变形监测的主要内容 现场巡视;环境监测;位移监测;渗流监测;应力、应变监测;周边监测 变形监测的精度和周期如何确定,有何依据 精度:1917年国际测量工作者联合会(FIG)第十三届会议上工程测量组提出:如果观测的目的是为了使变形值不超过某一允许数值而确保建筑物的安全,则其观测的中误差应小于允许变形值的1/10~1/20;如果观测的目的是为了研究其变形的过程,则其中误差应比这个数小的多。 周期:变形监测的周期应以能系统反映所测变形的变化过程且不遗漏其变化时刻为原则,根据单位时间内变形量的大小及外界影响因素确定。 变形监测系统设计的原则 1)针对性2)完整性3)先进性4)可靠性5)经济性 变形监测系统设计主要内容 1)技术设计书2)有关建筑物自然条件和工艺生产过程的概述3)观测的原则方案4)控制点及监测点的布置方案5)测量的必要精度论证6)测量的方法及仪器7)成果的整理方法及其它要求或建议8)观测进度计划表9)观测人员的编制及预算 变形监测点的分类及每类要求 1)基准点:埋设再稳固的基岩上或变形区外,尽可能长期保存。每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。当确认基准点稳定可靠时,也可以少于3个,应进行定期观测。2)工作点:埋设再被研究对象附近,要求在观测期间保持点位的稳定,其点位由基准点定期监测。3)变形观测点:埋设再建筑物内部,0 变形呢监测点标石埋设后,应在其稳定后方可开始观测。稳定期一般不宜少于15天。 变行监测技术在哪几方面取得了较好的发展? ①自动化监测技术②光纤传感检测技术③CT(计算机层析成像)技术的应用④GPS在变形监中的应用⑤激光技术的应用⑥测量机器人技术⑦渗流热监测技术⑧安全监控专家系统 什么是垂直位移和沉降?建筑物沉降与哪些因素有关? 从词面来说,垂直位移能同时表示建筑物的下沉或上升,而沉降只能表示建筑物的下沉,对大多数建筑物来说特别是施工阶段,由于垂直方向上的变形特征和变形过程主要表现为沉降变化,因此实际应用中通常采用沉降一词。 影响建筑物沉降的因素有:(1)建筑物基础的设计(2)建筑的上部结构(3)施工中地下水的升降 监测方法与技术要求有哪些 视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 精密水准测量的误差来源有哪些?如何减弱i角误差对沉降观测结果的影响? 误差来源:1)仪器误差:水准仪i角误差;水准尺长与名义尺长不符2)外界环境引起的误差:高压输电线和变电站等强磁场的影响;温度和大气折光影响3)人为引起的误差 方法:减小i角误差的影响,必须严格控制前后视距差和前后视距累计差,又由于i角误差会受温度等影响,减弱其影响的有效方法是减少仪器受辐射热的影响;若i角误差与时间成比例地均匀变化,则可以采用改变观测程序(奇数站—后前前后;偶数站—前后后前)的方法减小i角误差影响。 精密水准测量监测方法与技术要求有哪些 方法:采用精密水准测量方法进行沉降监测时,从工作基点开始经过若干监测点,形成一个或多个闭合或附合路线,其中以闭合路线为佳,特别困难的监测点可以采用支水准路线往返测量。 要求:视线长度、前后视距差和视线高度;水准测量主要限差;沉降监测点的精度要求。 测点布设原则与方法 建筑物水平位移监测的测点宜按两个层次布设,即由控制点组成控制网,由观测点及所联测的控制点组成扩展网;对单个建筑物上部或构件的位移监测,可将控制点连同观测点按单一层次布设。 水平位移监测常用的观测方法有 1)大地测量法2)基准线法3)专用测量法4)GPS测量法 交会观测方法有几种及什么情况用哪种方法 1)测角交会法:采用测角交会法时,交会角最好接近90°若条件限制,也可设计在60°~120°,工作基点到测点的距离不宜大于300m。2)侧边交会法:r角通常应保持60°~120°,测距仔细,交会边长度a和b应力求相等,一般不大于600m;3)后方交会法 精密导线测量方法 1)边角导线法 2)弦矢导线法 数据处理和分析主要内容 1)粗差检查及处理2)点温度条件检查3)数据可靠性检查。 挠度及挠度观测及方法 定义:测定建筑物受力后挠曲程度的工作称为挠度观测。建筑物在应力的作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂

变形监测作业指导书

变形监测作业指导书(一)大坝变形监测施工与观测工艺流程图

(二)大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、

试谈工程建筑的变形监测

Unit19 DeformationMonitoring of Engineering Structure(工程建筑【Engineering Structure或者工程结构】的变形观测) Overview(概述【Overview纵览、总的看法】) Deformation refersto thechanges of a deformable body (naturalor man-madeobjects)undergoes inits shapes, dimensionandposition inspace and timedomain.(变形指一个形变体【deformable body】(自然或人工物体)在空间和时间范围【domain领域、范围】在形状、尺度和位置上经受【undergo经受、收到】的变化)【变形指一个形变体在空间和时间上经受的形状、尺度和位置的变化】 Due tofactors such as changes of ground waterlevel, tidalphenomena,tectonic phenomena, etc, engineering structures (such as dams, bridges,high rise buildings, etc.) are subject todeformation.(由于【Dueto】诸如地下水位变化、潮汐现象、地壳构造【tectonic构造的、地壳构造的】现象等等的因素【factor】,工程建筑物(如大坝、桥梁、高层建筑等等)受到变形【deformati on】影响【subject受……影响】) Deformation of engineering structuresis often measured in order to ensure that the structure is exhibiting asafedeformationbehavior.(工程建筑物的变形经常观测以保证建筑呈现【exhibit展现】安全变形行为)【工程建筑物的变形经常观测以保证建筑物的变形在安全范围内】

现代变形监测重点内容与思考题答案

第1章变形监测概述一、什么是工程建筑物的变形?对工程建筑物进行变形监测的意义何在? 工程建筑物的变形:由于各种相关因素的影响,工程建筑物及精密设备都有可能随时间的推移发生沉降、位移、挠曲、倾斜及裂缝等现象,这些现象统称为变形。 变形监测:利用专门的仪器和设备测定建(构)筑物及其地基在建(构)筑物荷载和外力作用下随时间而变形的测量工作。 内部变形监测内容主要有工程建筑物的内部应力、温度变化的测量,动力特性及其加速度的测定等; 外部变形监测又称变形观测,其主要内容有建(构)筑物的沉降观测、位移观测、倾斜观测、裂缝观测、挠度观测等。 意义:通过变形监测,可以检查各种工程建筑物及其地质构造的稳定性,及时发现问题,确保工程质量和使用安全; 更好地了解建(构)筑物变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的变形预报理论和方法; 以及对某种工程的新结构、新材料和新工艺的性能作出科学的客观评价。 二、工程建筑物产生变形的主要原因,及变形的分类? 原因:(1) 自然条件及其变化:建筑物地基的工程地质、水文地质、大气温度的变化,以及相邻建筑物的影响等。 (2) 与建筑物本身相联系的原因:如建筑物本身的荷重、建筑物的结构、形式以及动荷载的作用、工艺设备的重量等。 (3) 由于勘测、设计、施工以及运营管理方面的工作缺陷,还会引起建筑物产生额外变形。分类:(1)按变形性质可以分为周期性变形和瞬时变形(2)按变形状态则可分为静态变形和动态变形 三、变形监测的主要任务和目的? 任务:是周期性地对拟定的观测点进行重复观测,求得其在两个观测周期间的变化量;或采用自动遥测记录仪监测建(构)筑物的瞬时变形。 目的:(1)监测——以保证建(构)筑物的安全为目的,通过变形观测取得的资料,可以监视工程建筑物的变形的空间状态和时间特性;在发生不正常现象时,可以及时分析原因,采取措施,防止事故发生,以保证建(构)筑物的安全。(变形的几何分析) (2)科研——以积累资料、优化设计为目的,通过施工和运营期间对建筑物的观测,分析研究其资料,可以验证设计理论,所采用的各项参数与施工措施是否合理,为以后改进设计与施工方法提供依据。(变形的物理解释) 四、高层建筑的主要变形特点? (1)基础较深,需进行基坑回弹测量(2)沉降量较大,需进行沉降观测(3)楼体高力矩大,需进行倾斜观测(4)风荷载大,需进行风振测量(5)墙体温差大,需进行日照变形观测五、制约变形监测质量的主要因素有哪些? (1)观测点的布置;(2)观测的精度与频率;(3)观测所进行的时间。 六、确定变形监测精度的目的和原则? 变形监测的精度,取决于建筑物预计的允许变形值的大小和进行观测的目的。如何根据允许变形值来确定观测的精度,因其与观测条件和待测建(构)筑物的类型以及观测的目的相关。 七、确定变形监测的频率主要由哪些因素决定?应遵循什么原则? (一)因素:观测的频率取决于变形值的大小和变形速度,同时与观测目的也有关系。 (二)原则: 1.变形监测的频率应以既能系统地反映所测变形的变化过程,又不遗漏其变化的时刻为原则,根据单位时间内变形量的大小及外界因素的影响来确定。 2.当实际观测中发现异常情况时,则应及时相应地增加观测次数。 八、简述变形监测的主要技术和数据处理分析的主要内容。

相关文档