文档库 最新最全的文档下载
当前位置:文档库 › 最小混相压力

最小混相压力

SPE 165966

Minimum Miscibility Pressure Measurement with Slim Tube Apparatus - How Unique is the Value?

Jamiu M. Ekundayo, Abu Dhabi Co. Onshore Oil Opn.; Shawket G. Ghedan, Computer Modeling Group, Ltd.

Copyright 2013, Society of Petroleum Engineers

This paper was prepared for presentation at the SPE Reservoir Characterisation and Simulation Conference and Exhibition held in Abu Dhabi, UAE, 16–18 September 2013.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract

Over the years, the slim tube experiment has been the most commonly used laboratory technique for determination of minimum miscibility pressure (MMP) for designing field miscible floods. However, till now, the design of these experiments is not standardized, neither in terms of set-up nor procedure. Often, the set-up, characteristics of the slim tube coil and even the experimental procedures are left to the discretion of the experimentalist, leading to very uncertain and non-unique MMP values, to say the least. Not just the uniqueness is of great concern, but also the lack of measurement repeatability; two measurements using same fluid samples under the “same experimental conditions” may result in too different MMP values. Matching these experiments with any PVT simulation package may pose a challenge, which even if a match is achieved, may be of questionable reliability. It is on this premise that this work was based.

Slim tube experiments were designed and performed to study the effects of some parameters on the uniqueness and repeatability of the MMP measurements. It was found that MMP measurements are different with different injection rates. The lowest tested rate showed slightly lower MMP and better recovery performance than the other tested rates. No clear trend was noted, however. MMP was found to be lower for the larger coil diameter of the two investigated. MMP decreased as the coil length increased. The decrease in MMP with increase in coil length followed a parabolic trend.

It was, therefore, concluded that laboratory measurements of MMP using the slim tube apparatus is a function of not just the characteristics of the interacting fluids but also those of the coil used as well as the choice of injection rates. The experimental design and procedure need to be unified to produce more reliable MMP data. It is the recommendation of the authors to design the experimental injection rate based on the expected field gas injection, to use the largest coil diameter possible, and to design the coil length, based on the expected well spacing between the injector and producer.

Introduction

One of the important parameters to consider when designing a miscible gas flooding project is the minimum miscibility pressure (MMP). MMP is defined as the threshold pressure to achieve miscibility in-situ between the injection gas and the reservoir oil. To obtain the maximum benefits from a miscible gas flooding project, it is necessary to operate close to this threshold value. The success of miscible gas flooding projects, therefore, undoubtedly depends strongly on how representative the laboratory-measured or simulated MMP is when implemented in the field. Thus, measurements of MMP have become an integral part of the design of gas injection projects (Ayirala et al., 2007). MMP can be determined by several techniques broadly classified as computational or experimental; each with its inherent pros and cons. The focus of this paper is on slim tube experimental approach because such experiments have been unequivocally adopted as the standard for MMP measurement.

The slim tube experiment has been used for decades to measure MMP because of its ability to simulate the 1-D displacement of reservoir oil by injected gas based on the interaction of gas-oil thermodynamic properties in the grain-packed coil of considerably large length and relatively small diameter. The procedure involves the injection of selected gas to contact the reservoir oil that has been pre-charged into the slim tube apparatus and stabilized at the reservoir temperature and displacement pressure.

Different approaches have been published for determining the MMP from a slim tube test. According to Holm et al. (1974), MMP is the pressure that achieves a recovery of more than 80% of the IOIP at gas breakthrough and an ultimate recovery of more than 94% of the IOIP (Holm et al., 1974). According to Yellig et al. (1980), displacement is tagged miscible if recovery at 1.2PV is near maximum. The authors also used the appearance of a transition-zone fluid in a sight glass as an indication of

miscibility. They considered color degradation from dark oil to yellow fluid as an indication of multi-contact miscibility whereas the production of clear vapor and dark oil implied immiscible flood (Yellig et al., 1980). Elsharkawy et al. (1992) assumed MMP to be the break-over pressure in the plots of oil recovery at gas breakthrough or at 1PV to 1.2PV of injected gas or ultimate oil recovery against displacement pressure. However, if the break-over is not sharp, the authors suggested taking MMP as the pressure for which incremental oil recovery per incremental pressure increase is less than some arbitrary value (Elsharkawy et al., 1992).

In attempts to standardize the procedures for slim tube experiments, moderate to low flow rates of the injection gas, long coil lengths and small tube diameters have been suggested by earlier researchers to avoid unfavorable effects of fingering, transition zone length and transverse compositional variations (Elsharkawy et al., 1992, and Randall et al., 1988). Thus, slim tube experiments are time consuming and it may take weeks to complete one set of miscibility experiments (Ayirala et al., 2007) depending on the pore volume, porosity and permeability of the coil as well as the choice of injection rate. The type and size of the packing material controls these properties of the coil and is therefore another interesting factor to consider when designing a slim tube experiment for MMP measurement. Omole et al. (1989) studied the effects of length of sand-packs on MMP for a CO2-crude oil system in a vertical displacement mode. Although they observed recoveries comparable to those of slim tubes of comparable lengths, they did not observe any relationship between the measured MMP and core length for the range of lengths they investigated (Omole et al., 1989). It should be pointed out however that the lengths explored by the authors were in the range 0.5m to 6m (less than 2ft to less than 20ft) which might well be below the minimum length needed for miscibility to develop. Flock et al. (1984) studied the effects of injection rate and coil length on MMP measured with slim tube apparatus. They observed that while there was no clear relationship between the injection rate and the measured MMP, the break in slope was accentuated as the injection rate increased to promote viscous fingering. On the contrary, the authors observed that increasing the length implied a more clearly defined break in slope. They also observed that for any injection rate, the total recovery increased as the coil length increased; the rate of increase in the total recovery was observed to also follow the same trend. This trend was thought to be as a result of the stabilizing effect of increased length on the transition zone. Based on their observations, the authors concluded that the measured MMPs depended to a great extent on the coil length and to a lesser extent on the injection rate for sufficiently long coil,and also that the larger the coil length, the lesser the gravity and viscous fingering effects, and the better the MMP estimation (Flock et al., 1984). They recommended a minimum coil length of 40ft to achieve a stable displacement.

Objectives

It is obvious from the above discussions that there are varying opinions on the effects of different properties of slim tube coil on MMP. The same can be said about the effect of injection rate. This invariably means there is need for further investigations in this area. With this in mind and in an attempt to obtain the most representative MMP (from slim tube experiments) for EOS tuning, we decided to perform series of slim tube experiments varying selected properties of the coil as well as the injection rate. For this part of the project, three parameters (coil length, coil diameter and injection rate) were investigated. In each case, the coil was packed with 80-120 mesh Ottawa sand in order to keep the porosity and permeability approximately constant for all the cases.

Sample Preparation and Fluid Studies

The fluid sample used in this study was a recombined sample produced from selected separator oil and gas samples. The separator samples were collected at 362.5psig and 161.6o F. The samples were validated in the laboratory and then analyzed for compositions. Expected wellstream composition at the reservoir temperature of 265o F was calculated and physical recombination based on GOR followed. The recombined sample was analyzed for composition and the obtained composition was compared with that of the calculated wellstream and found to match reasonably well. Table 1 presents the compositions of the recombined sample and the injection gas.

Selected PVT tests (constant composition expansion and atmospheric flash tests) were performed on the produced live oil (recombined sample). The fluid study was necessary to confirm the integrity of the recombined sample with respect to the original reservoir fluid and also to obtain the reservoir fluid properties needed for oil recovery and material balance calculations.

Another validity check was performed on the produced oil sample. The experimental bubble point pressure and GOR were compared with the field values. As shown in Table 2, the experimental values were found to compare reasonably with the field values.

The injection gas used in this work was synthetic lean gas. After composition analysis, constant composition experiment was performed with the sample to obtain gas deviation factor, and other gas properties needed for recovery and material balance calculations.

Slim-Tube Experiments

The miscibility experiments in this paper were performed in a commercial laboratory using the experimental set-up displayed in Figure 1. The set-up comprised two sections namely the upstream and the downstream sections. On the upstream side was an ISCO pump connected to valve A which was connected to the injection gas cylinder with a flow-line. The valve was used to

regulate the flow of water in and out of the cylinder fixed in the air bath at the reservoir temperature (265o F). Another flow-line connected the injection gas cylinder to a valve B which was connected to the inlet valve D of the slim tube coil (also situated in the air bath at reservoir temperature and desired/run pressure) through the valve C. On the downstream side was the outlet valve E of the slim tube coil, the valve F, the downstream pressure transducer and indicator, the back-pressure regular (BPR), the two-way valve G, and the effluent handling equipment (not shown) comprising of a liquid, a mass balance, and the Brook’s gas vol-U-meter calibrator to measure the volume and temperature of the evolved gas at atmospheric pressure. Apart from varying desired parameters in the course of this study, the standard procedures followed in the laboratory were followed all through. The tests were performed with three high-pressure slim tube coils of varied lengths and each packed with 80-120 mesh Ottawa sand.

The pore volume was measured by charging the coil to displacement pressure with toluene and the individual volumes measured from valves C to G. The system was heated to reservoir temperature and reservoir fluid was then injected to displace toluene from the coil by controlling the column’s end-pressure, using a backpressure regulator (BPR). The test gas was injected through valve C and the evolved products were continuously collected. The evolved gas volume, along with the weight and density of residual liquid were measured every 1 hour prior to breakthrough and ? an hour thereafter and logged into an Excel? spreadsheet for pore volume injected, oil recovery, GOR and material balance error calculations. The oil recovery and the GOR in addition to the pressure drop across the coil and the produced liquid density provided an instantaneous check on the performance of the experiment while the material balance error provided overall indication of the performance of the experiment. The effluent gas compositions were analysed at selected stages of the experiment because the gas chromatography was not available for continuous use. However, the results of the effluent gas composition analyses are not discussed in this paper.

Usually the test was performed until 1.2 to 1.4 pore volume of test gas had been injected or when the produced GOR is observed to be greater than 100,000SCF/STB. All valves were closed in a sequential order. The remaining gas within the coil was “blown down” and the atmosphe ric volume was recorded. Any residual oil produced during this process was also collected and weighed. The temperature of the system was then dropped to ambient and the coil disconnected and weighed to determine the weight of residual oil remaining at the end of the test. This way we were able to perform material balance to check for the validity of the experiment.

Table 3 summarizes the sensistivities performed in this study. A total of 30 runs are been presented in this paper; 26 of which were performed using a coil of diameter 0.12in (OD = 0.25in) and varied lengths. For these set of runs, 2 to 3 points were performed in the miscible region and another 2 to 3 runs in the immiscible region using displacement pressures from 4500psi to 6500psi at an interval of 500psi except for the case of the 80ft coil which was extended to 4300psi in order to see the break in slopes more clearly. The remaining 4 runs were performed with the same oil and injection gas samples but using a coil of 0.18in inner diameter and length 60ft and at the base rate.

Results and Discussions

Our interpretation was based on the definition of MMP as the break in slope from the plot of cumulative oil recovery (in percentage) at 1.2 pore volume of injected gas against displacement pressure (Elsharkawy et al., 1992). The instantaneous pore volume of injected gas at any stage i (where i = 1, 2, 3…) was calculated using the following equation;

()

Where water density was calculated as a function of temperature (in o C) using the Theisen-Scheal-Diesselhorst (TSD)’s

equation;

(?)[()

()

]()

Finally the cumulative pore volume injected was calculated using the equation;

Figures 2-7 show the MMP plots for each of set up miscibility runs shown in Table 3. Further discussions on these results follow in the following sub-sections:

Effects of Injection Rate

Table 4 shows a summary of the percentage cumulative oil recovery at 1.2PV and the resulting material balance error at each displacement pressure for each injection rate. It can be seen that oil recovery is slightly higher with the low injection rate in the miscible region and lowest with the high rate for almost all the displacement pressures used. Also, higher recoveries are obtained with the base rate in the immiscible region. A look at the material balance errors in the same tables also suggests that the low injection rate performs better, resulting in slightly lower percentage error in material balance for each of the displacement pressures used. The error becomes more pronounced as the injection rate increases. Figure 8 shows the MMPs

for the different injection rates used. It is can be seen clearly that the relationship between MMP and injection rate is not unique although the lowest MMP was obtained with the low injection rate. As was shown in Figure 4, two possible MMPs were obtained for the high injection rate. The higher of these two MMP values considered the point of 5500 Psi as immiscible. However, considering the oil recovery was approximately 93.5%, it would be justifiable to consider the point as miscible. This led to the second, slightly lower MMP value at the same displacement pressure. Although the higher of the two MMP values obtained at the high injection rate followed our expected trend of increasing MMP with increasing injection rate, the lower value was off trend. We therefore concluded that there is no trend between the observed MMPs and the injection rates used in this study. One possible explanation for this ambiguity at high injection rate is that miscibility might not be truly achieved (considering the time it will take the gas to contact the oil) with a high injection rate since the injection gas would likely override the reservoir oil leaving behind a considerable amount of uncontacted oil.

Effects of Coil Length

The results presented in Table 5indicate that at corresponding flood pressures, oil recovery increases as the coil length increases. This is in agreement with the conclusions of Flock and Nour (1984) about oil recovery and coil length. The higher recovery obtained with increased length can be attributed to the increased stabilizing effect of increased length on the transition zone in the coil. This fact is corroborated by the material balance error (and other performance indicators not presented here) obtained for each case. It was observed that the material balance errors are lowest for the largest length (80ft) used, suggesting better performance than the other cases. The same trend was observed with the 60ft coil below the observed MMP as compared to the 40ft coil. Unfortunately, the trend changed in the miscible region; the material balance errors became more pronounced than those of 40ft coil at the same displacement pressures. There is no known reason for this change in trend because every other parameter (pressure drop across the coil, and breakthrough time, etc.) agreed with the expected trend with increasing coil length. Figure 9 exhibits the observed relationship between measured MMP and coil length. It is can be seen that the MMP is lowest with the largest length and largest with the lowest coil length. This is in agreement with the observations earlier made with the oil recovery and the proposition on the stability of the transition zone. The trend observed in Figure 9 was fitted to quadratic function which showed that beyond the investigated lengths, there exists a coil length at which MMP is lowest for the given reservoir fluid-injection gas system.

Effects of Coil Diameter

Table 6 shows a summary of the percentage cumulative oil recovery at 1.2PV and the resulting material balance error at each displacement pressure for each of the two coil diameters tested. It can be seen that the 0.18inch diameter coil gave lower material balance errors at corresponding pressures than the 0.12inch diameter coil. This implied that the performance of the larger diameter coil was better and thus the observed MMP was lower.

Simulation of PVT Experiments

In order to simulate the above PVT experiments, three sets of compositional data were entered into PVT simulation package for EOS tuning using SRK-Peneloux, as highlighted below:

?Case 1: Composition as reported from the lab (that is up to C36+);

?Case 2: Composition after adding the defined components to their respective fractions based on boiling point;

?Case 3: Compositions from case 2 with the heavier components lumped to C7+.

All the experiments could be simulated in case 1 except the MMP calculation which required a maximum of 30 components in the composition entry. Cases 2 and 3 allowed the simulation of all the experiments. Table 7 shows the results of the PVT simulation in comparison with the experimental data. For cases 1 and 2, the experimental GOR, saturation pressure, relative volume, and oil FVF at separator condition were reasonably matched without any regression. However, the Y-factor was not matched. Attempts to match the Y-function by regression failed to produce any meaningful results and were thus discarded. MMP could not be calculated for case 1 and the calculated value for case 2 before and after regression were grossly unreliable and are therefore not reported. Case 3, after regression, provided acceptable matches for GOR, saturation pressure, and FVF and also matched the Y-function reasonably in addition to providing MMP of 4918Psi with the method of characteristics and 5060Psi with the multiple mixing cell approach. However, these MMP values only compare respectively with the experimental value for the 80ft coil of ID 0.12in and that of the 60ft coil of ID 0.18in. Figures 10-12 show the results of the matched experimental data.

Conclusions and Recommendations

In order to check the uniqueness of the MMP values measured by slim-tube approach as well as to obtain the most reliable MMP for EOS tuning, series of slim tube experiments were performed. Selected parameters were varied to achieve this objective. Based on the results presented in this paper, the following observations can be made:

1.No unique trend was found between MMP and injection rate. Of the three injection rate cases tested, the low rate case

gave the lowest MMP and best performances based on the used experimental performance indicators. The deviation from the expected trend of increasing MMP with increasing injection rate was because two different values of MMP were

obtained for the high rate case. True miscibility was probably not achieved with the high rate since the gas would most likely not have enough time to interact with the oil.

2.MMP showed a decreasing trend with increasing coil length. The longest coil tested gave the lowest MMP and the best

performances. This may be attributed to the stabilizing effect of increased coil length on the transition zone in the coil.

The trend observed between MMP and the coil length was fitted to a quadratic function which suggested that beyond the coil lengths used, there exists a length at which measured MMP will be lowest for the given reservoir fluid-injection gas system.

3.MMP was also found to be lower for the larger of the two coil diameters tested. Although, the oil recoveries were found

higher for the smaller diameter case, the material balance errors were found to be smaller in the larger diameter case.

4.While the MMP calculated using the method of characteristics in PVT simulation package corresponded to the value

obtained from the longest coil tested, the multiple mixing cell approach in the same software gave a value closer to that from the larger coil diameter case.

Overall, it can be concluded that MMP measurement by the slim tube experiment is not unique. It depends grossly on the properties of the coil, and at least the choice of injection rate, all of which are sometimes at the discretion of the investigator and most times, the commercial laboratory. Overreliance on such a value in tuning an EOS at the expense of other experiments may be highly misleading.

We would recommend that to obtain a “reliable” value of MMP from a slim tube experiment, the experiment should be designed to use the longest coil with a moderately large diameter and the experiment should be performed using the lowest injection rate possible.

Nomenclature

BPR Back Pressure Regulator

CPV Cumulative Pore Volume injected, cc

EOS Equation of State

GOR Gas-Oil Ratio, Scf/Stb

ID, OD Inner, outer diameter, inch

MMP Minimum Miscibility Pressure, Psi

PVT Pressure Volume Temperature

k Pump constant

r i, r i+1Two Successive Pump Readings, cc

ρw Water Density, g/cc

T p Pump Temperature, o C

T Run (reservoir) Temperature, o C

Acknowledgement

The authors would like to thank The Petroleum Institute, Abu Dhabi and the R & D committee of the ADNOC group for financing this project, ADCO for providing the samples used in this work and ADNOC for permission to publish this paper. We would also like to thank the management of Core Laboratories, Abu Dhabi for providing an enabling environment and the technical support for this work, and Ms. Uzoamaka Audrey Nzimako (ADCO) for her effort and time in proof-reading this paper.

References

1.Ayirala S.C. and Rao D.N; “Miscibility Determination from Gas-Oil Interfacial Tension and P-R Equation of State” The Canadian

Journal of Chemical Engineering, Volume 85, Pages 302-312, June 2007.

2.Holm L.W. and Josendal V.A; “Mechanisms of Oil Displacement by Carbon Dioxide”, Journal of Petroleum Technology, Society of

Petroleum Engineers of AIME, pages 1427-1438, December 1974.

3.Yellig W. F., and Metcalfe R. S.; “Determination and Prediction of CO2 Minimum Miscibility Pressures”, Journal of Petroleum

Technology, Pages 160-168 (1980).

4.Elsharkawy A. M., Poettmann F. H., and Christiansen R. L.; “Measuring Minimum Miscibility Pressure: Slim-Tube or Rising-Bubble

Me thod”, SPE Paper 24114, 8th Symposium on Enhanced Oil Recovery, Tulsa, USA, April 22-24, 1992.

5.Randall T. E. and Bennion D. B.; “Recent Developments in Slim Tube Testing for Hydrocarbon-Miscible Flood (HCMF) Solvent

Design”, Journal of Canadian Petroleum T echnology, Volume 27, Pages 33-44 (1988).

6.Omole O. and Osoba J.S.; “Effect of Column Length on CO2-Crude Oil Miscibility Pressure”, Journals of Canadian Petroleum

Technology, Volume 28, No. 4, pp 97-102, July-Aug. 1989.

7.Flock, D. L., and Nouar, A.; "Parametric Analysis on the determination of Minimum Miscibility Pressure in Slim-Tube Displacement",

Journal Canadian Petroleum Technology 23, Number 5, Pages 80-88, September-October 1984.

Table 1: Fluids’ Compositions

Table 2: Validation of Recombined Sample with Field Data

Table 3: Sensistivity Analysis for the Slim Tube Experiments

Table 4: Comparison of the Recoveries and Performances for Different Injection Rates

Table 5: Comparison of the Recoveries and Performances for Different Coil Lengths

Table 6: Comparison of the Recoveries and Performances for Different Coil Diameters

Table 7: Comparison of Simulation Results with Experimental Data

Fig. 1: Slim Tube Experimental Set-up

Fig. 2: MMP Plot for Runs 1-5 (0.12in, 40ft coil at low rate) Fig. 3: MMP Plot for Runs 6-10 (0.12in, 40ft coil at base rate)

8082

84868890929496

98

1004000

45005000

5500

600065007000

C u m u l a t i v e O i l R e c o v e r y @ 1.2 P V I n j e c t e d , %

Run Pressure, Psi

MMP Plot for 40ft Coil @ Base Rate

Fig. 4: MMP Plot for Runs 11-15 (0.12in, 40ft coil at high rate) Fig. 5: MMP Plot for Runs 16-20 (0.12in, 60ft coil at base rate)

Fig. 6: MMP Plot for Runs 21-26 (0.12in, 80ft coil at base rate) Fig. 7: MMP Plot for Runs 27-30 (0.18in, 60ft coil at base rate)

Fig. 8: Effect of Injection Rate (based on 0.12inch ID) Fig. 9: Effect of Coil Length (based on 0.12inch ID)

45005000

5500

Run Pressure, Psi

Fig. 10: Plots of Relative Volumes before and after Regression to Experimental Data

Fig. 11: Plots of Y-function before and after Regression to Experimental Data

Fig. 12: MMP Determination from Multiple Mixing Cell Approach

缓解压力的十个小方法

压力并不是指坐立不安,而是指一种紧张的感觉。人在受到身体或精神压力的情况下,会本能地保护机体,产生身心紧张。人不可能没有压力,但是压力太大、持续时间过长,就会对身体产生危害。要解除压力困扰、保持健康的心理状态,就应该养成良好正确的生活习惯,掌握适合自己的缓解压力的方法。我上网查找了一些缓解压力的小方法,希望能对大家有所帮助。 1、说出压力:感觉千头万绪,不知所措时,找一位知心好友,或专业辅导员,或有经验的长辈,说出内心的恐惧和问题。有时候,所面临的问题并不严重,只是在心慌意乱时无法冷静思考,如果能够经过倾吐、发泄,或听听别人的意见,而看清问题的症结所在,找出解决方法。即可豁然开朗。 2、写出压力:当面对複杂却又无法逃避的问题时,不妨写出来,然后再写出可能的解决方法,无论是否能达成日标,但此种渲泄方式也可减轻内心的压力。 3、呼出压力:感觉压力很重时,最简单、快速的方法就是深呼吸,也就是深深的吸一口气,闭气二、三秒,再微微张开嘴巴,缓缓吐气,如此反覆做几次,可使血液循环恢复正常,心跳减速,心情自然较为平静。 4、跑出压力:可在户外找个清静地方,慢跑或步行二、三十分锺,使全身肌肉松弛,紧张压力随之而解。 5、打出压力:如果压力是来自权威的力量而又无法当面发泄时,可找一个沙袋或布偶等痛打一阵,可适当舒解内心压力。 6、泡出压力:热水澡可以促进血液循环,使肌肉松弛,减轻压力。 7、甩出压力:。开始先轻轻甩动手腕、手臂,再逐渐加大摆动姿势,甩掉手臂肌肉的紧张,再用同样的方法甩动双腿、躯干和颈部,使全身肌肉放松下来。 8、唱出压力,喜欢唱歌的人,可在感觉压力时,唱唱自己喜欢的歌,借由歌曲抒发心情。 9、坐出压力:禅坐也是可行的方法之一,不过,初学者必须先请专人指点正确坐姿和相关理论再尝试,如果方法正确,可在禅坐中,借由深沈规律的呼吸,将肌肉放鬆,同时使心灵宁静无杂念,让思绪清新。 10、其他:包括一些较情绪化的发泄,例如找一个旷野尽情吶喊,或者放声大哭,都可渲泄内心压力。(采购部王璐供稿)

多种方法确定CO2驱最小混相压力

多种方法确定CO2驱最小混相压力 摘要: co2最小混相压力是确定油藏能否采用co2混相驱的重要依据。细管实验是测定最小混相压力的首选实验方法。它通常被用来确定某一给定的原油最小混相压力。在获得的驱油效率与注入孔隙体积倍数以及驱油效率与驱替压力的关系曲线中,曲线拐点所对应的压力(或组分组成)即为最低混相压力。除了细管实验外,本文还采用了经验公式计算和状态方程法等方法预测最小混相压力,最后确定co2混相驱最小混相压力,为进行二氧化碳混相驱先导试验提供决策依据。 abstract: an important parameter used to determine the feasibility of miscible displacement is the minimum miscibility pressure. slimtube measurements are the preferred method for establishing minimum miscibility pressures experimentally. slim-tube displacement tests are commonly used to determine an mmp for a given crude oil. the minimum miscibility pressure is defined as the pressure of which the oil recovery vs. pressure curve (as generated from the slimtube test) shows a sharp change in slope, i.e. the inflection point. in addition to the slimtube simulations,several algorithms for estimating the minimum miscibility pressure have been compared. minimum miscibility pressure between formation crude and co2 is determined. it will provide

缓解压力的七种有效方法

缓解压力的七种有效方法 缓解压力的方法一 尽管身边有许多人背负沉重的压力,但也有人总能轻松释压,以最佳心态投入工作和生活。专家调查发现,这些“无压”人士几乎无一例外地具备以下特征: 一、善于整体规划 “一切尽在掌握”,这种感觉本身就能很好地缓解压力。有选择地而不是被动地接受所面临的各种事情,或许使人感到轻松很多。最好的办法就是根据事情的轻重缓急列出清单,既能有一个整体规划,又能帮助将看似无绪的一堆问题分解成若干具体的小事,一件件应付起来就容易多了。完成一件,就在清单上划去一件,这样做带来的成就感足以鼓舞你将这一做法继续下去。 二、困惑时及早倾诉 “无压”人士在感到困惑、棘手或难过的时候,总会毫不掩饰地寻求朋友的帮助。 当事情变得非常困难或身陷焦虑的时候,向朋友吐露诉说,仅仅是倾诉本身,也能使人获得释放,或许还会得到好的建议。 三、尽量保持乐观 “无压”人士深信,事情总能朝着所期望的方向发展。所以,总是以最乐观的心情想象最好的结果。需要做的所有事都已经在进展当中,即使遇到麻烦,也一定会以最快的速度重新调整状态。 四、从不耽搁xx 能在今天办完的事不会拖到明天,能在当时办完的事不要拖到数个小时之后。因为很多事情搁着未做,本身就能造成巨大的心理压力。 五、善于分配任务

“无压”人士从来不会认为任何事都非得亲力亲为不可。分配任务,很多人都会认为是上司对下属的事。其实,除了对下级分配任务以外,还可以分配给自己的同事或合伙人、分配给其他服务性机构。 六、每天都做深呼吸 日常的深呼吸能将感觉到的压力水平减半: 挺直后背,两肩放松,由鼻将空气深深地吸入肺部,集中精力感受空气渗透到每个细胞,然后全力将空气呼出,想象体内的压力也随着气流一起排到体外。 七、经常幻想美好前景 用渡过这次难关以后的美好前景来鼓励自己。“一个月以后,我还会为这事而懊悔吗?”“一周以后,我还会为错过了这次会议而自责吗?”“5分钟以后,我还会为同事刚才给我难堪而恼火吗?”这种将情景推向将来的假设,一定能让眼前的压力逐渐释放。 八、知道适时说“不” “无压”人士感到力所不能及时,会坚定地说“不”。“我很想帮你,但我手头还有另外的事要办。”在分身无术或无能为力时,“无压”人士不会一味逞能。 在拒绝别人的时候,不一定要把原因解释得一清二楚。 九、拥有自己的娱乐方式 “无压”人士总能安排出一定的时间尽情去做和工作无关而又一直想做的事。娱乐方式各种各样,但效果却非常相似: 让自己释放压力,领略到生活中美好的、值得享受的内容,从而恢复对生活和工作的激情和热爱。缓解压力的方法二 工作压力、人际压力、情感压力等,现代人的背上驮着一堆压力,生活忙碌,再加上睡不好,身心状况都亮起了红灯,于是,又影响了情绪和人际关系,就这样恶性循环下去。

二氧化碳一氮气混合气体与原油最小混相压力研究

二氧化碳一氮气混合气体与原油最小混相压力研究本文是十三五国家科技重大专项课题(2017ZX05009004)“低渗-致密油藏高效提高采收率新技术”之任务“低渗-特低渗油藏复合气体改善CO2气驱可行性研究”的部分研究内容,论文运用CMG预测了纯二氧化碳与原油的最小混相压力、二氧化碳-氮气混合气体与原油最小混相压力以及二氧化碳加氮气段塞组合驱替的驱油效率。首先运用细管实验法分别测得榆树林油田树101区块原油在油层温度为90℃时和108℃时二氧化碳与原油的最小混相压力分别为25.9 MPa和27.8 MPa,以此作为参考值。 利用油藏数值模拟软件Eclipse中PVTI对数据进行拟合,运用CMG法预测出榆树林油田树101区块在油层温度为90℃和108℃时,二氧化碳与原油的最小混相压力分别为25.66MPa和29.44MPa,与细管实验法实测值的相对误差分别是1.21%和5.56%,平均为3.39%。并选用适应性相对良好多种的经验公式法计算出在相同条件下树101区块中二氧化碳与原油的最小混相压力,发现误差最小的Silva法和Emera-Sarma法的相对误差平均值分别是3.30%和4.68%,均比运用CMG计算的结果误差大,表明运用CMG计算二氧化碳与原油最小混相压力准确可靠。 其次,运用CMG中的组分模型GEM建立均质概念模型,经过计算和拟合,模拟了二氧化碳混入不同比例氮气时与原油的最小混相压力,绘制出最小混相压力与不同氮气含量混合气体的关系曲线,呈指数型函数曲线,随着混合气体中氮气含量的增加混相压力迅速增大,混合气体中氮气含量每增加1%,混相压力将平均增加1.15 MPa,使混合气体驱油的适应性变差,并且达到混相驱时的驱油效率逐步降低。最后,模拟了0.3PV CO2+后续N2段塞驱油,得到采收率为

《情绪管理与压力缓解》培训心得

《情绪管理与压力缓解》培训心得抓住人际交往的技巧——《情绪管理与压力缓解》培训心得 上月我有幸参加了公司组织的《情绪与压力管理》培训课堂上,老师通过诙谐幽默、活泼互动的授课方式,为我们揭示了压力的来源、缓压的方法、情绪的控制等多方面的知识。整个培训轻松愉快、形式新颖、内容丰富,使我受益良多。现代社会经济迅猛发展,物质及精神生活日益丰富,与此同时、来自工作、家庭、社会的压力也越来越大,这些压力对我们的情绪产生着潜移默化的影响,负面情绪的积累会影响我们的身体健康,降低我们清晰思考的能力,影响工作效率。因此、有效地控制负面情绪,甚至将负面情绪转化为正面情绪不仅可以使我们自己保持身心愉快,而且能够有效提升工作效率,进而提升企业的整体绩效与企业文化。然而"说着容易做着难"如何才能抑制负面情绪对我们的影响,这是困扰大多数人的重要问题。针对这个问题老师特别教授了快速和谐法。快速和谐法强调"心"的力量,通过排除外界干扰,回归本身的方法、将我们的注意力从外界的纷纷扰扰回归到本体之内,回归到自己的心、用心呼吸中。"用心感受"通过改善自己的心率模式,进而改善情绪状态,通过调动以往的积极情绪记忆,改善自主情绪与压力管理能力。

对我而言,这是一种简单易学的技巧,它让我在消极情绪出现时,能够防止情绪恶化,快速地恢复到平静状态。此外、对积极情绪记忆的调动,让我们对自己有了一个更深的认识压力有一些来自外界,有一些来自自己的内心。经过这次培训,让我深有感触,也让我对压力与情绪管理有了一个全新的认识。也学会怎样去分析自己受挫反应,同时也明白了自己产生情绪的更深层次的原因。从而可以正确调整自己的情绪让自己在负面情绪的影响值降至自我控制的最低极限时刻保持"积极的心态"认真对待每一天。"抱怨""喜悦"我们都要渡过每一天,为何要选择"抱怨"而不选择"喜悦"呢?保持乐观,不要"抱怨",提升自我,不要被挫折所吓倒,打不死的磨难也是一笔宝贵的财富,"塞翁失马,焉知非福".让我们发现美好,宽容过去,用好当下,服务他人,提升情商,向着成功迈进。 1、学习到了情绪管理不压力管理的一些基础知识对压力不情绪管理有了更清晰的认识。使我们能够分析压力源形成的内外原因懂得压力不工作绩效的关系

考试十分钟缓解压力的方法

考试十分钟缓解压力的方法考试快到了,在你的身上有很大的压力,别怕,别担心,阳光总在风雨后。你的面前不管有什么问题,都要寻找一片能躲避压力的安静天地,因为连续不断的精神负担对心脏不利,甚至引发动脉梗塞。最新资料显示,压力能引起血液里的应激反应激素急剧突变,从而削弱机体的免疫力,变得难以抵御感染。所有疾病,甚至连记忆力衰退都跟压力有关,呵呵,是不有点恐怖。虽然生活压力不小,但你也不必焦虑不安。1. 静坐休息哪怕一天里用5-10分钟安静地坐一坐,什么也不要做,把精力集中到周围的声音上,集中到自己的感觉上,自己是否有哪个部位感到不舒服。当你静坐时,心跳放慢、血压下降,也就是说,压力的症状有所减缓,有能力控制局势了。当局势失控时,也是压力最大的时候。我们无法改变过去,但能把握现在。2. 放声大笑手里拿点能发笑的材料,例如:笑话书,也可以回忆看过的喜剧电影......当你发自内心地大笑时,体内引起压力的激素可的松和肾上腺素开始下降,免疫力增强。这种效果能持续24个小时。有趣的是,当你预感即将大笑时,这种效果就已经开始有了。 3. 倾听音乐当你接受一项重大任务时,听听你喜欢的任何旋律的音乐。如果工作场所不能播放音乐,离家时带上小收音机或带耳机的录音机。澳大利亚进行过一项试验:两组大学生被要求准备一份报告,一组工作时十分安静,另一组有音乐,这两组的大学生工作都很紧张,静悄悄准备报告的大学生们血压上升、脉搏加快,而边听音乐边工作的人血压和脉搏都很稳定。4. 多想点美好的事情抽一点时间,哪怕只是5分钟,集中精神想想对你来说可亲的人或可喜的事,也可以构思一幅"安静休假"的画面。即使一些高度自我评价的单词或句子都是有效的。多想好事可以阻止体内形成压力的种种变化。我们经常感到有精神负担是因为无法摆脱不良情绪:不满、委屈、担心、生气等。如果多想想让你喜欢的人和让你高兴的事,效果就完全不同了。5. 走路散步从桌子旁或沙发里站起来,就算走几分钟也好。专家证实,散步有助于平静内心。据观察,一批志愿者负责照顾弱智老人。这是一项非常紧张的工作,志愿者中的人每周坚持散步4次的,很少烦恼不安,睡眠也好得多,血压保持正常。如果每天抽不出半小时散步也没关系,当你感到紧张时,走上5至10分钟,同样会有明显效果。一开始感到紧张就走上几分钟,镇静作用最大。6. 放慢呼吸放慢呼吸5分钟,每分钟用腹部做深呼吸约6次,也就是说,用5秒吸气和用5秒呼气,通常压力大时呼吸既快又浅。几次深呼吸就能挺起肩膀和放松肌肉。"5秒吸-5秒呼"的呼吸节奏跟血压波动的10秒自然循环相一致。这种同步不仅使人迅速平静下来,还有利于心血管系统的健康。如果连这点时间也挤不出来,专家还建议,在手表或座钟上画个白点。当你目光落到白点上时做2至3次深呼吸。你会惊奇地发现,你立刻会平静下来了。7. 轻松起床晚上躺下入睡前或早晨醒来起床前,在床上用5分钟放松全身:先绷紧脚趾,后渐渐放松。接下来脚掌、小腿、大腿、臀部,直到上身和脸部肌肉。早晨起床就紧张,那么接下来的一整天都别想轻松了,你躺下睡觉时总想着问题不放会影响你的睡眠质量,而这一点又会加重你的精神负担。因此,每天的开始和结束时花上5分钟放松全身很有必要"其实人活的就是一种心态。心态调整好了,蹬着三轮车也可以哼小调;心态调整不好,开着宝马一样发牢骚。”这是手机上的一条短信,它生动形象地说明了人的心态的重要。所以应该调节自己:1.欲望少点,2.攀比少点,3.心态平衡点,4.知足常乐多点, 5.改变能改变的,接受不能改变的,不要迷失了自己.6.根据自己的能力去生活吧,不要让别人的生活状况左右了你的心情.人的一生,到底在追求甚么?人生是一个过程,不是一个点。人生在于过程!生命在于每一天,而这每一天都是唯一的,不可能再重复,所以我们应该让自己的每一天,每一分钟都成为美丽和快乐。

缓解压力的十个小方法

缓解压力的十个小方法 压力并不是指坐立不安,而是指一种紧张的感觉。人在受到身体或精神压力的情况下,会本能地保护机体,产生身心紧张。人不可能没有压力,但是压力太大、持续时间过长,就会对身体产生危害。要解除压力困扰、保持健康的心理状态,就应该养成良好正确的生活习惯,掌握适合自己的缓解压力的方法。我上网查找了一些缓解压力的小方法,希望能对大家有所帮助。 1、说出压力:感觉千头万绪,不知所措时,找一位知心好友,或专业辅导员,或有经验的长辈,说出内心的恐惧和问题。有时候,所面临的问题并不严重,只是在心慌意乱时无法冷静思考,如果能够经过倾吐、发泄,或听听别人的意见,而看清问题的症结所在,找出解决方法。即可豁然开朗。 2、写出压力:当面对复杂却又无法逃避的问题时,不妨写出来,然后再写出可能

的解决方法,无论是否能达成日标,但此种渲泄方式也可减轻内心的压力。 3、呼出压力:感觉压力很重时,最简单、快速的方法就是深呼吸,也就是深深的吸一口气,闭气二、三秒,再微微张开嘴巴,缓缓吐气,如此反覆做几次,可使血液循环恢复正常,心跳减速,心情自然较为平静。 4、跑出压力:可在户外找个清静地方,慢跑或步行二、三十分锺,使全身肌肉松弛,紧张压力随之而解。 5、打出压力:如果压力是来自权威的力量而又无法当面发泄时,可找一个沙袋或布偶等痛打一阵,可适当舒解内心压力。 6、泡出压力:热水澡可以促进血液循环,使肌肉松弛,减轻压力。 7、甩出压力:。开始先轻轻甩动手腕、手臂,再逐渐加大摆动姿势,甩掉手臂肌肉的紧张,再用同样的方法甩动双腿、躯干和颈部,使全身肌肉放松下来。 8、唱出压力,喜欢唱歌的人,可在感觉压力时,唱唱自己喜欢的歌,借由歌曲抒

减轻抑郁,缓解压力的七个方法----献给心中受苦的朋友们

减轻抑郁,缓解压力的七个方法----献给心中受苦的朋友们 缓解压力的方法一 尽管身边有许多人背负沉重的压力,但也有人总能轻松释压,以最佳心态投入工作和生活。专家调查发现,这些“无压”人士几乎无一例外地具备以下特征: 一、善于整体规划 “一切尽在掌握”,这种感觉本身就能很好地缓解压力。有选择地而不是被动地接受所面临的各种事情,或许使人感到轻松很多。最好的办法就是根据事情的轻重缓急列出清单,既能有一个整体规划,又能帮助将看似无绪的一堆问题分解成若干具体的小事,一件件应付起来就容易多了。完成一件,就在清单上划去一件,这样做带来的成就感足以鼓舞你将这一做法继续下去。 二、困惑时及早倾诉 “无压”人士在感到困惑、棘手或难过的时候,总会毫不掩饰地寻求朋友的帮助。当事情变得非常困难或身陷焦虑的时候,向朋友吐露诉说,仅仅是倾诉本身,也能使人获得释放,或许还会得到好的建议。 三、尽量保持乐观 “无压”人士深信,事情总能朝着所期望的方向发展。所以,总是以最乐观的心情想象最好的结果。需要做的所有事都已经在进展当中,即使遇到麻烦,也一定会以最快的速度重新调整状态。 四、从不耽搁迟延 能在今天办完的事不会拖到明天,能在当时办完的事不要拖到数个小时之后。因为很多事情搁着未做,本身就能造成巨大的心理压力。 五、善于分配任务 “无压”人士从来不会认为任何事都非得亲力亲为不可。分配任务,很多人都会认为是上司对下属的事。其实,除了对下级分配任务以外,还可以分配给自己的同事或合伙人、分配给其他服务性机构。 六、每天都做深呼吸 日常的深呼吸能将感觉到的压力水平减半:挺直后背,两肩放松,由鼻将空气深深地吸入肺部,集中精力感受空气渗透到每个细胞,然后全力将空气呼出,想象体内的压力也随着气流一起排到体外。 七、经常幻想美好前景 用渡过这次难关以后的美好前景来鼓励自己。“一个月以后,我还会为这事而懊悔吗?”“一周以后,我还会为错过了这次会议而自责吗?”“5分钟以后,我还会为同事刚才给我难堪而恼火吗?”这种将情景推向将来的假设,一定能让眼前的压力逐渐释放。 八、知道适时说“不” “无压”人士感到力所不能及时,会坚定地说“不”。“我很想帮你,但我手头还有另外的事要办。”在分身无术或无能为力时,“无压”人士不会一味逞能。在拒绝别人的时候,不一定要把原因解释得一清二楚。 九、拥有自己的娱乐方式 “无压”人士总能安排出一定的时间尽情去做和工作无关而又一直想做的事。娱乐方式各种各样,但效果却非常相似:让自己释放压力,领略到生活中美好的、值得享受的内容,从而恢

缓解压力小方法

缓解压力小方法 短期压力的应对 1.心理技巧 (1)预期与回避 (2)降低任务?事件的重要性 (3)消除不确定性 (4)运用想像 (5)理性思考?积极思考 (6)自我暗示?自我对话 (7)冥想(气功?瑜珈) 2.身体放松技巧 (1)运动锻炼 (2)渐进肌肉放松训练 (3)调息 (4)运用生物反馈装置 长期压力的应对 长期压力有一个崩溃点,这非常值得注意。但我们更多地要看到前期的一些征兆,如头疼、失眠、胃炎,长期压力一定与一些疾病的抬头密切挂勾。这时你应该考虑一下你是否到了长期压力的崩溃点。 1.长期压力对表现的影响 图12-2长期压力对表现的影响 2.长期压力缓解技巧 (1)时间管理———善用你最大的资源。 (2)你对压力的态度———消极态度制造问题。 (3)风物长宜放眼量———“有什么大不了的!” (4)保持控制———个人目标设定。 (5)对待变革的态度———积极适应。 (6)对待他人的态度———悦纳他人。 (7)营养、锻炼和健康的生活方式。 (8)管理环境缓解压力: ·提高空气质量;·采用柔和照明;·制造轻松气氛的装饰物与让人身心舒爽的环境;·减少噪音;·采用按人体工程学设计的家具;·充足的个人空间。 (9)脱离训练,通过脱离现在的环境达到缓解压力的目的。 【自检】 长期压力到了一定的时候,往往会使人崩溃。因此,你应该密切关注长期压力对自己的影响,以便对症下药,缓解压力。 通过你的表现判断你所处的压力点: 疲乏是□ 不是□ 耗尽是□ 不是□ 疾病是□ 不是□ 崩溃是□ 不是□ 根据你所处的压力点制订适合你的压力缓解方案: 现在,无论是在生活上,还是在工作上,人们都非常关注质量。然而,在压力日益增大的现代社会,

最小混相压力确定方法研究

油气相态测试理论与技术 文献综述 题目最小混相压力确定方法研究 学生姓名陈晨学号201120056 专业年级2011级油气田开发 课程教师孙雷 完成日期2012 年 4 月

最小混相压力确定方法研究 摘要 驱油机理不同达到的驱油效果不一样。理论和实践都已证明:混相驱的驱油效率比非混相的高。这两种机理应用的界限就是最小混相压力(MMP),也就是能形成混相的最低压力。因此,准确确定MMP是判断能否实现混相驱的关键。 详细介绍了各种确定最小混相压力的研究现状,并对这些方法进行了简单的介绍和讲解,对各种确定MMP的理论方法用实例比较,得到了每种方法计算MMP的优缺点、使用范围及优劣性。 关键字:最小混相压力、方法比较、MMP 1.引言 我国的大部分油田属陆相沉积,非均质严重,原油粘度比较高。对这类油田,水驱采收率很低,只能达33%左右,而且综合含水己达到8l%,有的甚至达90%以上。因此,发展提高采收率技术迫在眉睫。 对于注气开采技术,从根本机理上可以分为混相驱与非混相驱两种[1]。混相驱替的机理是驱剂(注入的混相气体)和被驱剂(地层原油)在油藏条件下形成混相,消除界面,使多孔介质中的毛细管力降至零,从而降低因毛细管效应产生毛细管滞留所圈闭的石油,原则上可以使微观驱油效率达到百分之百。而气体混相驱油按其混相机理又可以分为一次接触混相驱和多级接触混相驱。一次接触混相驱是排驱气体与地层原油以任何比例混合时便可立刻达到完全互溶混相的排驱过程。多级接触混相驱是排驱气在地层中推进时,多次与地层中的原油接触后才能达到混相的排驱过程。 驱油机理不同达到的驱油效果不一样。理论和实践都己证明:混相驱的驱油效率比非混相的高。这两种机理应用的界限就是最小混相压力(MMP),也就是能形成混相的最低压力。最小混相压力是油藏注入方案筛选的一个重要参数。为了获得最高的采收率,所选油藏的平均地层压力必须高于注入气与地层原油之间的最小混相压力。在选择预测或模拟注入某气体油藏动态模型时,对最小混相压力的了解也是重要的。一般来说,初级接触混相的MMP要大于多级接触的混相压力。因此,我们现在研究确定的MMP是指多级接触的最小混相压力值[1]。

有效缓解压力方法大综合

如何缓解心理压力 ◆健康的开怀大笑是消除压力的最好方法,也是一种愉快的发泄方法。 ◆轻松的音乐有助于缓解压力。如果你懂得弹钢琴、吉他或其他乐器,不妨以此来对付心绪不宁。 ◆腹式呼吸法,深呼吸,吸气时腹部慢慢隆起,屏住5秒钟,吐气时要均匀缓慢的呼出,如此反复几次,身新都会缓慢的放松下来。 ◆一吐为快假如你正为某事所困扰,千万不要闷在心里,把苦恼讲给你可信的、头脑冷静的人听,以取得解脱、支持和指正。 ◆重新评价,如果真做错了事,要想到谁都有可能犯错误,若事与愿违,就应进行重新自我评价,才能不钻牛角尖,继续正常地工作。 ◆在僻静处大声喊叫或放声大哭,也是减轻体内压力的一种方法。 ◆与人为善,遇事千万别怀恨在心(包括自己是对的)。怀恨于心付出的代价是使自己的情绪紧张,用别人的错误惩罚自己。 ◆不要挑剔不要对他人期望过高,应看到别人的优点,不应过于挑剔他人行为,不要用自己的标准去要求他人;世上没有完美,可能缺少公正,因而要告诉自己:我努力了,能好最好,好不了也不是自己的错。留有余地不要企图处处争先,强求自己时刻都以一个完美形象出现,生活不需如此,你给别人留有余地,自己也往往更加从容。 ◆不要害怕承认自己的能力有限,学会在适当的时候对某些人说:?不?。 ◆放慢生活节奏,把无所事事的时间也安排在日程表中。 ◆用积极的心态面对人生。想得开没有精神负担,放得下没有精神压力,淡泊为怀,知足常乐。

◆在非原则问题上不去计较,在细小问题上不去纠缠,对不便回答的问题佯作不懂,对危害自身的问题假装不知,以聪明的?糊涂?舒缓压力。 ◆遇事是否沉着,是一个人是否成熟的标志之一。沉着冷静的处理各种复杂问题,有助于舒缓紧张压力。 ◆无论做了什么事情,都要学会从中找到自己的收获。 ◆当你无力改变现状时,你应学会换一个角度看待问题。你改变不了天气,但你可以改变心情;你改变不了事实,但你可以改变心态;你改变不了过去,但你可以改变现在;你改变不了他人,但你可以掌握自己;你不能预知明天,但你可以把握今天。 ◆一旦烦躁不安时,请睁大眼睛眺望远方,看看天边会有什么奇特的影象。 面对心理压力:学会3件事、学说3句话学会三件事: 1、学会关门 即学会关紧昨天和明天这两扇门,过好每一个今天,每一个今天过得好,就是一辈子过得好。 2、学会计算 即学会计算自己的幸福和计算自己做对的事情。计算幸福会使自己越计算越幸福,计算做对的事情会使自己越计算对自己越有信心。 3、学会放弃 特别推荐汉语中一个非常好的词,这就是?舍得?。记住,是?舍?在先,?得?在后。世界上的事情总是有?舍?才有?得?,或者说是?舍?了一定会?得?,

CO2驱最小混相压力预测新方法

CO2驱最小混相压力预测新方法 汪 芳,周体尧,杨思玉 (1.国家能源二氧化碳驱油与埋存研发(实验)中心;2.提高石油采收率国家重点实验室,北京 100083) 摘 要:油藏CO2驱开发中,最小混相压力(MMP)是驱油效果评价的一个重要基础参数。本文从溶解度参数计算出发,结合多组油样的MMP实验测定结果,提出了一种简单的CO 2 驱油MMP预测 方法。运用本方法,仅需要油藏温度、原油粘度两个参数,即可较好的预测CO 2 驱最小混相压力。本文运用该方法举例计算了油藏温度、原油分子量对MMP的影响规律。该方法的提出实现了MMP的快 速预测,适用于CO 2 驱油潜力区块筛选阶段的混相能力评价,适合现场推广应用。 关键词:二氧化碳驱;溶解度参数;最小混相压力;潜力评价;预测公式 中图分类号:TE357.45 文献标识码:A 文章编号:1006—7981(2018)04—0095—03 CO2驱是低渗透油藏有效补充地层能量、提高原油采收率的主要技术之一,混相驱的驱油效率好于非混相驱,而最小混相压力(MMP)是判断能否实现混相驱、预测CO2驱效果的重要基础参数。实验室多采用细管实验法[1~2]测定最小混相压力,另外还有界面张力法[3]、升泡仪法等,实验方法获得的最小混相压力比较准确,但流程复杂、耗时长。在实际应用过程中,往往需要根据油藏的基本条件,采用一些简单的公式快速预测MMP。本文在调研文献基础上,结合传统预测公式,修正得到了一种简易的MMP预测方法,计算过程仅需要油藏温度、原油粘度两个参数,实现了较高精度MMP结果的快速获取,适合现场推广应用。 1 常见CO2驱MMP预测方法 实验室测定是获取高精度CO2驱MMP参数的主要手段,但在油田筛选或潜力评价阶段,利用实验手段评价每个油藏区块的混相能力并不可行。采用经验公式预测MMP的方法具有简单、直接的优点,可以一定程度上减少实验工作量。文献[4~5]中统计了国内外几种最小混相压力预测方法,研究人员[1、4~5]结合实验测量结果开展了对比研究工作。表1统计了部分经验公式计算MMP时考虑到的参数,由表可以看出,油藏温度、原油分子量是主要因素,其次是原油组分信息。 表1 CO 2 驱最小混相压力预测考虑因素对比表经验公式考虑因素 Glaso关联式油藏温度,C2~C6的摩尔百分数,C7以上组分的摩尔分子量Yuan公式油藏温度,C2~C6的摩尔百分数,C7以上组分的摩尔分子量Mungan公式油藏温度,C5~C30的含量 Lange判断式油藏温度,原油平均分子量 表2CO2驱最小混相压力预测结果与实测结果对比表 关联式 最小混相压力(MPa) 样品1样品2样品3样品4样品5样品6样品7样品8样品9样品10 Glaso关联式32.5 34.3 19.6 17.7 19.1 14.6 38.5 25.1 20.5 15.9Yuan等人30.1 41.1 25.5 25.7 16.4 8.9 26.7 32.7 19.2 18.6Mungan等人28.3 37.2 28.1 31.7 21.0 24.1 44.1 37.9 17.6 20.0Lange判断式23.7 29.0 22.3 22.9 18.3 16.5 16.4 23.7 18.4 17.1实测结果41.3 32.6 22.3 22.1 20 19.1 42.5 24.8 19.9 18.3 采用文献中的MMP预测方法,计算了多个原油样品的最小混相压力预测结果,见表2。与实测结果对比表明,Glaso关联式、Lange判断式的计算结果与实测值最接近,相对误差较小。虽然Glaso 5 9  2018年第4期 内蒙古石油化工 收稿日期:2018-02-20 基金项目:北京市优秀博士学位论文指导教师科技项目《北京市周边CO 2 排放源调研及其利用方式研究》(20118340101)、中国石油勘探开发研究院科研项目《注气重力稳定驱开发机理研究》。 作者简介:汪芳(1982-),女,汉族,安徽宁国人,硕士,主要从事二氧化碳驱油与埋存潜力评价与开发规划方面的研究工作。

缓解教师压力的几种方法

缓解教师压力的几种方法 缓解教师压力的几种方法 当前,教师这一职业是社会职业中承受压力较大的职业之一,教师群体是社会中承受压力较大的群体之一。一直以来,在所有的社会行业之中,社会对教师的要求都是最高的。教师挣的钱可以不多,但承受的压力不能少。在日常工作、生活。学习中,每个人都会面临各种各样的压力与挫折,当压力与挫折无法避免的时候,就应采取一些积极的方式来派遣它或减轻它。因而笔者认为,我们老师必须学会减轻压力的正确方法,学会应激的对策。总的来说可以从外部与内部两方面来解决。 (一)外部环境: 1、领导关心。作为学校领导,必须深入教师队伍中去,关心老师的疾苦,了解老师的一点一滴,根据不同年龄,不同层次,他们所面临的不同的压力进行耐心细致的剖析,帮助他们学会应激,甚至学校领导出面直接解决问题,力所能及地解决教师应对的种种压力。 2、和谐氛围。作为学校必须创设一个文明、和谐的校园氛围,让笔者们的老师有一个美好的、清新的工作环境,始终保持着一种良好的心态,教书育人,真正实现身心健康,万事如意,同时培养一种良好和谐的人际关系。 3、心理咨询。每一所学校设立“心理咨询室”,每一个教师应当是心理医生,对涉及到“潜能开发”和“人的发展”有关的学生、家长、老师均给予辅导,帮助人查明成长过程中的障碍,在适应、发展等发面给予辅导与帮助,了解自己的压力所在,指导学习应激的方法与解决的能力。 4、业余生活。学校工会的“教工之家”是给教师减轻压力的最佳场所,让有压力的教师在此地合理地宣泄,听听音乐,打打乒乓球,运动调节等等,或者伴有丰富多彩的文化娱乐活动调节放松,发挥自己的兴趣与爱好,真正保持轻松愉快的心境。 (二)内在因素: 1、正视现实。许多因为生活或工作上的不如意而感到烦恼的人,常会有一种共同的心态,即不能接受某些既成的事实,甚至越想越不服气,越想越恼火,越想越窝囊,但任何委屈、愤怒、抱怨、不服气对改变既成的现实都是无济于事的,要想改变现状,唯一正确的方

10个缓解心理压力的办法

10个缓解心理压力的办法 我们在日常生活中会有很多各种各样的压力,面对这些压力,需要我们学会如何去释放,这里简单列出了10个缓解心理压力的办法,一起来看看吧。 1、暗示法选准最佳时机,有意识地利用语言、动作、回忆、想象以及周围环境中的各种物体等对自己实施积极暗示,可以消除负性情绪,减缓心理紧张,使心理保持平静和愉快。如背诵名人名言、回味成功经历、精心打扮自己等。 2、换境法固定的环境会使人逐渐失去兴趣,进而引发一些心理问题。适当地变换一下环境,可以刺激人的自信心与进取心。如到远方旅游,能够转移精力,寄托情感,排解不良情绪带来的种种困扰。 3、随境法这是心理防卫机制中一种心理的合理反应。古人云:“随遇而安。”面对生老病死、天灾人祸等各种各样的负性生活事件,以一颗随遇而安的心去对待它们,可以使你减少许多不必要的痛苦,拥有一片宁静愉快的心灵天地。 4、放松法选择幽雅的环境,舒适的姿势,排除杂念,闭目养神,尽量放松全身肌肉,采用稳定的、缓慢的深呼吸方法,确有解除精神紧张、压抑、焦虑、急躁和疲劳的功效。吸气时双手慢慢握拳,微屈手腕,过敏性鼻炎症状吸气后稍稍屏息一段时间,再缓慢呼气,全身肌肉呈松弛状态。确定适合自己的频率来重复呼吸。 5、幽默法幽默是心理环境的“空调器”。当你受到挫折或处于尴尬紧张的境况时,可用幽默化解困境,维持心态平衡。幽默是人际关系的润滑剂,它能使沉重的心境变得豁达、开朗。 6、音乐法当你出现焦虑、抑郁、紧张等不良心理情绪时不妨听一听音乐,做一次心理“按摩”,优美动听的旋律,可以起到调适心理和转换情绪的效果,如《梁祝》的和谐,《步步高》的欢快,《秋日私语》的宁静等,会让你紧张焦虑的情绪放松,心情愉悦。 7、观赏法阅读精彩的图书,观赏优美的影视剧,容易唤起愉快的生活体验,释放紧张,排解忧郁,驱赶无聊。 8、自嘲法这是一种有益身心健康的心理防御机制。在你的事业、爱情、婚姻不尽如人意时,在你无端遭到人身攻击或不公正的评价而气恼时,在你因生理缺陷

缓解压力的八种方法-缓解压力60种方法

缓解压力的八种方法|缓解压力60种方法 如今的我们每天不停的工作,很容易身心疲惫,精神紧绷,在面临压力过大时就要及时的缓解,这样才可以更好的生活与工作,你了解压力过大的症状吗?究竟我们应该怎么减压呢?本文就向大家介绍八种缓解压力的方法。 生活中白领时一个压力较大的人群,很多的白领们常因为压力过大而导致失眠,精神崩溃。那么缓解压力的方法都有哪些呢? 白领缓解压力的八种方法 1.体育锻炼 在上班的时候,工作一小时左右,在走廊里或门口处伸伸懒腰,或在自己的座位上做几下简单的下蹲运动,也可以在自己的座位上闭上眼睛做几次深呼吸。 2.保持良好心态 学会理智看待得失,学会鼓励自己,每个人都会有自己比别人强的地方,不要跟别人作简单的对比,那样会产生强烈的自卑心理。 3.走路 上下班的时间最好选择绿化好的路走,这样道路绿化的景观优美,也是有益行人们平静情绪,来达到减轻压力的效果哦。 4.假想 面对高声尖叫的孩子或其他令人极度紧张的情形,不妨设想一下“假如有人给你10万块钱,你能忍受多久?”突然间,你会惊奇地发现,感觉好多了。 5.出门旅游 如果感觉遭到老板训斥压力过大,不妨来一次长途旅行,一路上的景色有助于你解除烦恼。 6.打个盹儿 午后1点钟,人的精神状态处于低潮,如果能安静地休息一会儿,对于养心、养神都大有好处。 可以找一个安静的地方,躺下来,伸展开自己的身体,小睡一会儿,也更是一件非常惬意的事。若不具备这种条件,至少可以打个盹儿。醒来后,伸个懒腰,喝杯水,也是可以精神百倍地迎接工作。 7.玩玩游戏缓解压力 办公室的我们像上满了发条的钟表,总有做不完的工作。午休时间是属于你的健康停歇,换换脑子吧! 一边往嘴里送食物一边思考销售策略根本算不上是午休。想提升脑动力,可以利用午休时间做一些小小的脑力游戏。 例如和同事打桥牌、下围棋或是做些有趣的小手工,动手又动脑。总之,所有够FUN、能让自己快乐沉浸的游戏都是你午休时光的健康之选。 怎么做才能减压 1、巧克力减压法 巧克力因为其风味独特,入口甘醇为大众喜爱,而且巧克力的好处也很多,譬如它可以缓解腹泻,平稳血糖、降低血压,预防中风,还有益心脏,而最新研究证明,巧克力的香甜

10个缓解压力的艺术治疗方法.

10个缓解压力的艺术治疗方法 艺术疗法是基于相信艺术表现有能力帮助我们疗伤,保护自尊心或者只是让我们冷静下来的治疗方法。它的独特之处在于,大多数其他形式的治疗把语言作为最重要的沟通方式,而艺术则要求与众不同,它是一些难以定义的东西。 我们不是艺术治疗师,下面建议的方法只是基于熟悉艺术治疗团体的实践。但是对于那些渴望一个创造性的方式来缓解那些倾向于在每年这个时候就增强压力的人,下面的方法是会有所帮助的。他们只需要一些艺术材料,不需要艺术背景——事实上,艺术含量越低越好。下面的建议会更少涉及最终的结果,而更多涉及过程中所发生的转变。 10个艺术治疗方法来帮助你放松 1、制作一个颜色拼贴 颜色能影响我们的情绪。但有时候,我们还是不会用颜色来改变我们的心情。花点时间深入研究你正处在的环境的颜色对你会有帮助。觉得躁动不安和不受约束吗?剪切和粘贴橙色图片会符合你的情绪。在你当前的情绪状态工作可以帮助你理解你为什么会有这种感觉并且意识到这也许是个好地方。 2、制作一个权力面具 通常我们认为戴面具可以隐藏自己,但有时这一层的保护和隐藏实际上会使我们感到无拘束并且可以帮助我们表达一些事实或者一些难以说出口的,真实的东西。制作一个充满符号的权利面具可以让你觉得自己很强大(想想一个演员的服装或运动员的头盔)。当你为一个的处境做准备时你可以穿上它们,无论是与大家庭共进晚餐或是在工作场合做演讲,这样证明自己能够在没有戴面具情况下完成手头任务。 3、创立一个假日“抵制日程表” 日程表上经常被各种杂事,义务和责任挤得满满的,使得未来几天假期的压力超过了慰藉。试着自己设计一个称之为抵制日程表的降临节日历。不是每天给自己一块巧克力,而是夸奖一下自己,随意涂个鸦,给自己一个令人鼓舞的报价或一个令人鼓舞的授权,如“今天在床上吃早餐。“如果一切按计划进行,你会发现自己每天早上就像一个孩子在圣诞节早上一蹦就起床了。 4、启动一个涂鸦链活动 事实是信手涂鸦看起来并不那么糟糕。一旦你觉得扭动的线遇到不明身份的形状会有无限的可能,你就会发现很难停止画画了。与朋友或爱人一起开始一个围绕精致的尸体的涂鸦活动

缓解压力的四大方法

调整压力的四个方法 心理压力即精神压力,现代生活中每个人都有所体验,心理压力总的来说有社会、生活和竞争三个压力源。压力过大、过多会损害身体健康。那么,当我们出现心理压力时,应该如何去调整呢?下面就来为大家介绍几种调整压力的方法。方法/步骤 一、运动解压 运动可以让身体产生的腓肽效应,能愉悦神经。腓肽是身体的一种激素,被称作“快乐因子”。腓肽效应让人感觉到高兴和满足,甚至可以把压力和不愉快都带走。所以运动是一个很好的缓解压力,让人保持良性的、平和的心态的方法。 1、学会如何运动 运动解压也需要一定的方法,如果方法不对,不但对解压没有帮助,反而可能会导致压力更大,想通过运动缓解压力,可以先参加一些缓和的、运动量小的运动,使心情先平静下来,再逐渐过渡到大运动量的运动。这需要循循渐进,一步一步来。 如果压力来源于工作与学习,那么可以参加一些集体运动,如篮球、排球等,在这些运动过程中,可以体会到合作的愉快。 2、运动环境的选择 运动环境对于解压有关键性的影响,一个好的环境,可以让效果更加的明显。 如经常在室内运动的人,到户外去爬山,到小树林里去跑步,会感觉更加的轻松与愉快。在安静的地方,闭目养神几分钟,做几次深呼吸,可以达到最好的放松、减压的效果。 二、冥想解压 通过冥想,想像你所喜爱的地方,如大海、高山等,放松大脑;把思绪集中在想像物的“看、闻、听”上,让自己进入到想象之中,就如同自己大海、高山之中,享受着那一份心灵上的放松。

三、饮食解压 饮食解压也是一个不错的选择,很多人心理压力大时,会通过饮食来调整。如果你心理压力大,不妨多吃些以下食物: 1、吃菠萝 在菠萝中含有丰富的维他命b、c,它们都具有消除疲劳、释放压力的功效,除此之外在菠萝中还含有着酵素成分,它能帮助蛋白质进行充分的消化以及分解,从而减轻肠胃的负担。 2、嗑瓜子 瓜子同样具有很好的消除疲劳的作用,这是由于在瓜子中含有丰富的不饱和脂肪酸、维生素等营养物质。特别是其中的锌,还能安抚情绪、消除疲劳。同进嗑瓜子还能放松你的大脑,从不良情绪与心理压力中摆脱出来。 四、按摩解压 当你的压力过大时,可以试着做一做按摩。我们知道,身体上的紧张与压抑,也会导致心理上的紧张与压抑。当你的身体通过按摩放松后,你的心理压力也会跟着一起放松。

缓解压力的十个小方法

Most pressure, may be the highest efficiency. 压力最大的时候,效率可能最高 日渐紧张的生活节奏让我们的心脏承受着巨大的压力:心脏病几率的上升,呼吸困难(heavy breathing)、血管收缩(constricted blood vessels)。我们不再像祖先那样紧追猛禽并取其性命,与之相反的却是生气的配偶、糟糕的交通甚至令人生厌的的工作。慢性的压力(Chronic stress)可以让我们产生诸如慢性头疼(chronic headache)、高血压(hypertension)、抑郁症(depression)或者( anxiety disorders),更有甚者,让问题更严重。 话说回来,人类是世界上最聪明的动物,我们总能找到应对各种问题的方法,给大家分享是个缓解心理压力的10个方法: ? 1、感恩( Gratitude)自己所学到的任何东西 正如中国有句古话说的:“塞翁失马,焉知非福。”因此,任何从失败中汲取的经验都应该心怀感激。就像你经历的事情一样,总会在生命的某一个让你感受到它所带给你的帮助一样。 基于此,就应该对你所经历的事情保有感怀的心,让自己知道并对这种情况予以适应和理解,待日后遇到此类问题的时候,我们便有了应对的策略和方法,不至于手足无措,无所适从。 ? 2、养花种草(Get a Plant) 不知道您是否去过充满绿植的办公环境,充满绿色的房间让让人感觉更加舒适,不会太紧张,有氧的空间也会给人心旷神怡的舒适感。 那么,可以在自己的房间或者办公室里简单地布置一些绿色植物,以便降低自己的血压(lower your blood pressure),也会让你自己的舒缓下情绪,同样的,空气也会得到净化(purify the air),如:芦荟植物(Aloe plants)、常春藤(English ivy)、橡胶树(rubber trees)、白掌(peace lilies)、虎尾兰(snake plants)、棕竹(bamboo palms)、蔓绿绒(philodendron)、吊兰(spider plants)、红边龙血树(red edged dracaena),以及绿萝(red edged dracaena)和其他绿植都可以帮助我们清理室内的毒素,促进身体健康。 ? 3、真诚地赞扬别人(Pay Someone a Compliment, Genuinely) 真诚地赞赏别人可以让我们心情愉悦,同时也会给别人来带很亲和的作用和效果,日常生活中我们的不妨从多方面发现别人的优势和特长,并帮助他们释放出来。

相关文档