文档库 最新最全的文档下载
当前位置:文档库 › 深基坑钢板桩支护计算

深基坑钢板桩支护计算

深基坑钢板桩支护计算
深基坑钢板桩支护计算

1、工程简介

越南沿海火力发电厂3期连接井位于电厂厂区内,距东边的煤灰堆场约100m,连接井最南侧距海边约30m~40m。现根据施工需要,将连接井及部分陆域段钢管段设置成干施工区域,即将全部连接井及部分陆域钢管段区域逐层开挖成深基坑,然后在基坑进行施工工作。基层四周采用CDM桩或者钢板桩进行支护。干施工区域平面图如下所示

图1.1干施工区域平面图

+1.30-0.70

图1.2 基坑支护典型断面图(供参考)

2、设计资料

1、钢板桩桩顶高程为+3.3m ;

2、地面标高为+2.5m ,开挖面标高-5.9m ,开挖深度8.4m ,钢板桩底标高-14.7m 。

3、坑内外土体的天然容重γ为16.5KN/m 2,内摩擦角为Φ=8.5度,粘聚力c=10KPa ;

4、地面超载q :按20 KN/m 2考虑;

5、钢板桩暂设拉森Ⅳ400×170 U 型钢板桩,W=2270cm 3,[δ]=200MPa ,桩长18m 。

3内力计算

3.1支撑层数及间距

按等弯矩布置确定各层支撑的间距,则钢板桩顶部悬臂端的最大允许跨度为:

m

603.2mm 2603742

.05.162270102006r ][653a =≈????==K W h δ

h 1=1.11h=1.11×2.603m=2.89m h 2=0.88h=0.88×2.603m=2.29m

根据现场施工需要和工程经济性,确定采用两层支撑,第一层h=1.2m ,支撑标高+1.3m ;第二层支撑h 1=2m ,支撑标高-0.7m 。

3.2作用在钢板桩上的土压力强度及压力分布

主动土压力系数 Ka=tan 2(45°-φ/2)= tan 2(45°-8.5°/2)= 0.742 被动土压力系数 Kp=tan 2(45°+φ/2)=tan 2(45°+8.5°/2)=1.347

工况一:安装第一层支撑后,基坑内土体开挖至-0.7m (第二层支撑标高)。 1、主动土压力:a a a P =qK γzK +

①z=0m P a =20×0.742+16.5×0×0.742=14.84KN/m 2

②z=3.2m (地面到基坑底距离))

P a =20×0.742+16.5×3.2×0.742=54.02KN/m 2 2、被动土压力:p p P =γzK ①z=3.2m(地面到基坑底距离)

P p =16.5×(3.2-3.2)×1.347=0KN/m 2

②z=17.2m(地面到钢板桩底距离)

P p =16.5×(17.2-3.2)×1.347=311.157KN/m 2

3、计算反弯点位置:

假定钢板桩上土压力为零的点为反弯点,则有:P a =P p

P a =20×0.742+16.5×z ×0.742=P p =16.5×(z-3.2)×1.347

z=8. 61m

4、等值梁法计算内力:

钢板桩AD 段简化为连续简支梁,用力矩分配法计算各支点和跨中的弯矩,

从中求出最大弯矩M max ,以验算钢板桩截面;并求出各支点反力R b 、R d ,R b 即为作用在第一层支撑上的荷载。

图1.3等值梁计算图式

求得:R b =173.81KN/m ;(即第一层围檁每米受力173.81KN/m)

R d =82.48KN/m ;

工况二:安装第二层支撑后,基坑开挖至-5.9m 。 1、主动土压力:a a a P =qK γzK

①z=0m P a =20×0.742+16.5×0×0.742=14.84KN/m 2

②z=8.4m P a =20×0.742+16.5×8.4×0.742=117.7KN/m 2

③z=17.2m P a =20×0.742+16.5×17.2×0.742=225.4KN/m 2

2、被动土压力:

p p

P =γzK

①z=8.4m P p =γzK p =16.5×(8.4-8.4)×1.347=0KN/m 2 ②z=17.2m P p =γzK p =16.5×(17.2-8.4)×1.347=195.6KN/m 2 3、计算反弯点:Pa=P p

假定钢板桩上土压力为零的点为反弯点,则有:P a =P p

P a =20×0.742+16.5×z ×0.742=P p =16.5×(z-8.4)×1.347

求得:z=20.19 m

4、等值梁法计算内力

钢板桩AE段简化为连续简支梁,用力矩分配法计算各支点和跨中的弯矩,从中求出最大弯矩M max,以验算钢板桩截面;并求出各支点反力R b、R c、R e,R b、R c即为作用在第一层、第二层支撑上的荷载。

图1.3等值梁计算图式

求得:R b=-3286KN/m;

R c=4474.94KN/m;

图1.4 钢板桩受力图

3.3计算钢板桩最小入土深度

钢板桩入土深度主要受两个因素的影响,一是竖向不产生管涌,二是基底土体横向不产生侧移。

按工况二考虑,以土体侧向稳定性来分析:

m

K K R x a p c 86.51742.0-347.15.1694

.44746)(6=??=-=

(γ

最小入土深度t=1.1(y+x )=1.1×(0+51.86)=57.046m

实际入土深度8.8m <57.046m ,不满足规范要求。基坑底部土体会发生横向侧移。

4、稳定性验算

4.1抗倾覆稳定性验算

1、从第二层支撑以下外侧主动土压力对支撑点的力矩: M QC =(54.02+225.4)×14÷2×14×2/3=18255.44

2、内侧被动土压力对第二层支撑点的力矩: M RC =195.6×8.8÷2×(5.2+8.8×2/3)=9524.416

3、抗倾覆稳定性安全系数

K Q =M RC /M QC =19048.332÷18255.44≈0.52<1.05 不符合规范要求。

4.2基底抗隆起稳定性分析:

地基承载力系数:

N q =e πtg φtg 2(45+φ/2)= e πtg8.5tg 2(45+8.5/2)=2.153

N c =(N q -1)÷(tg φ)=(2.153-1)÷(tg8.5)=7.715

抗隆起安全系数

.2775.0208.84..85.16715

.710153.28.85.16q h c o 1c q 2<)()

(γγ=++??+??=

+++=

D N DN K WZ

不满足要求,基坑底部土体会发生隆起。

附录

上述的计算都是遵循下述的公式 1、土压力

支护结构承受的土压力,与土层地质条件、地下水状况、支护结构构件的刚度亦即施工工况、方法、质量等因素密切相关。由于这些因素千变万化,十分复杂,因此难于计算土压力的准确值。目前国内、外常用的计算土压力方法仍以库仑公式或郎肯公式为基本计算公式。库仑公式和郎肯公式均为假设土体为极限平衡状态下的计算公式。

1、主动土压力强度 ①无粘性土

a a

P =γzK

②粘性土

a a P =γzK 式中:γ——土的容重

c 、Φ——分别为土的粘聚力、内摩擦角

z ——计算点处土体深度 K a ——郎肯主动土压力系数

2a Φ

K tg (45-)2=?

2、被动土压力强度 ①无粘性土

p p

P =γzK

②粘性土

p p

P=γzK

式中:γ——土的容重

c、Φ——分别为土的粘聚力、内摩擦角

z——计算点处土体深度

K p——郎肯被动土压力系数

2 p Φ

K tg(45)

2

=?+

2、多撑(多锚)式钢板桩计算

2.1支撑(锚杆)的布置和计算

支撑(锚杆)层数和间距的布置,影响着钢板桩、支撑、围檩的截面尺寸和支护结构的材料量,其布置方式有以下两种:

1、等弯矩布置

这种布置是将支撑布置成使钢板桩各跨度的最大弯矩相等,充分发挥钢板桩的抗弯强度,可使钢板桩材料用量最省,计算步骤为:

①根据工程的实际情况,估算一种型号的钢板桩,并查得或计算其截面模量W。

②根据其允许抵抗弯矩,计算板桩悬臂部分的最大允许跨度h。

式中,[δ] ——钢板桩抗弯强度设计值;

W——截面抗弯模量;

γ——钢板桩后土的重度

K a——主动土压力系数;

③计算板桩下部各层支撑的跨度,把板桩视作一个承受三角形荷载的连续梁,各支点近似的假定为不转动,即把每跨看作两端固定,可按一般力学计算各支点最大弯矩都等于M max、M min时各跨的跨度,其值如图3.1.3-1所示。

④如果算出的支撑层数过多或过少,可重新选择钢板桩的型号,按以上步骤进行计算。

图3.2.3-1 支撑的等间距布置

2、等反力布置

这种布置是使各层围檩和支撑所受的力都相等,使支撑系统简化。 计算支撑的间距时,把板桩视作承受三角形荷载的连续梁,解之即得到各跨的跨度如图3.1.3-2所示:

图3.2.3-2 支撑的等反力布置

这样除顶部支撑压力为0.15P 外,其他支撑承受的压力均为P ,其值按下式计算:

2a 1

(n 1)P 0.15P γK H 2

-+=

2

a γK H 2(n 10.15)

P =

-+ 通常按第一跨的最大弯矩进行板桩截面的选择。 2..2多撑(多锚)式钢板桩入土深度计算

多撑(多锚)式钢板桩入土深度,可用盾恩近似法或等值梁法进行计算。 1、盾恩近似法计算 其计算步骤如下:

①绘出板桩上土压力的分布图,经简化后的土压力分布如图3.2.3-3所示。

图3.2.3-3 多层支撑板桩计算简图

②假定作用在板桩FB ′段上的荷载FGN ′B ′。一半传至F 点上,另一半由坑底土压力MB ′R ′承受。

由图3.2.3-3几何关系可得:

2a 5p a 11

γK H L x)γ(K -K )x 22

+=( 即: 2p a a a 5(K -K )x K Hx K HL 0--= 式中:K a 、K p 、H 、L 5均为已知,解得x 值即为入土深度。

③坑底被动土压力的合力P 的作用点,在离基坑底2x/3处的W 点,假定此W 点即为板桩入土部分的固定点,所以板桩最下面一跨的跨度为:

52

FW L x 3=+

④假定F 、W 两点皆为固定端,则可近似地按两端固定计算F 点的弯矩。 2、等值梁法计算

其计算步骤同单撑(单锚)板桩: ①绘出土压力分布图,如图3.2.3-4;

图3.2.3-4 等值梁法计算多层支撑板桩计算简图 (a )土压力分布图;(b )等值梁;(c )入土深度计算简图

②计算板桩上土压力强度等于零点离开挖面的距离y 值;

③按多跨连续梁AF ,用力矩分配法计算各支点和跨中的弯矩,从中求出最大弯矩M max ,以验算板桩截面,并可求出各支点反力R B 、R C 、R D 、R F ,即作用在支撑上的荷载。

④根据R F 和墙前被动土压力对板桩底端O 的力矩相等的原理可求得x 值,而 t 0=y+x

所以板桩入土深度为:t=(1.1~1.2) t 0 3稳定性验算

3.1基坑底部土体的抗隆起稳定性验算 包括以下内容:

3.2.1.1板桩底地基承载力,按照下式计算:

结构底平面作为求极限承载力的基准面,可由以下公式求抗隆起安全系数

2q c wz 10γDN +cN K =

γ(h +D)+q

式中:γ1——坑外地表至板桩底,各土层天然重度的加权平均值;

γ2——坑内开挖面以下至板桩底,各土层天然重度的加权平均值; c ——桩底处地基土粘聚力; q ——基坑外地面荷载;

h 0——基坑开挖深度;

D ——板桩在基坑开挖面以下的桩入土深度; N q 、N c ——地基承载力系数;

πtg Φ2q N =e tg (45)2

Φ+

q c N -1N =

tg Φ

Φ——桩底处地基土内摩擦角;

K wz ——围护墙底地基承载力安全系数,根据基坑重要性取值。一级基坑工程取2.5;二级基坑工程取2.0;三级基坑工程取1.7。 备注:基坑工程根据其重要性分为以下三级: 1、符合下列情况之一时,属一级基坑工程: ①支护结构作为主体结构的一部分时; ②基坑开挖深度大于、等于10米时;

③距基坑边两倍开挖深度范围内有历史文物、近代优秀建筑、重要管线等需严加保护时。

2、除一级、三级以外的均属二级基坑工程;

3、开挖深度小于7米,且周围环境无特别要求时,属三级基坑工程。

图3.3.1-1 围护墙底地基承载力验算图式

3.1基坑底部土体的抗隆起稳定性 按照下式计算:

RL

L SL

M K =

M 式中:M RL ——抗隆起力矩;

RL 1s 23M =R K tg Φ+R tg Φ+R c

2333010f 21221121γh 11

R =D(

+qh )+D q (α-α+sin αcos α-sin αcos α)-γD (cos α-cos α)223

23222f 2121221121111

R =

D q +[α-α-(sin2α-sin2α)]-γD [sin αcos α-sin αcos α+2(cos α-cos α)]223

23021R =h D+(α-α)D

f 00q =γh +q

γ——围护墙底以上地基土各土层天然重度的加权平均值; D ——围护墙在基坑开挖面以下的入土深度; K a ——主动土压力系数,取2a ΦK tg (45-)

2=?;

c 、Φ——滑裂面上地基土的粘聚力和内摩擦角的加权平均值; h 0——基坑开挖深度;

α1——最下一道支撑面与基坑开挖面间的水平夹角; α2——以最下一道支撑点为圆心的滑裂面圆心角; q ——坑外地面荷载;

M SL ——隆起弯矩,2SL 001M =(γh +q )D 2

;

K L ——抗隆起稳定性安全系数;一级基坑工程取2.5;二级基坑工程取2.0;三级基坑工程取1.7。

图3.2.1-2 基坑底抗隆起计算简图

3.2抗管涌验算

地下水位较高的地区,开挖后会形成水头差,产生渗流,当渗流较大时,有可能造成底部管涌稳定性破坏。因此,验算管涌稳定性也是十分必要的,可通过下式对其进行验算:

c

g i K =

i

式中:i c ——临界水力坡度,c ρ1i e 1

-=+

ρ——坑底土体相对密度 e ——坑底土体天然空隙比 i ——渗流水力坡度,w h i=L

h w ——坑内外水头差; L ——最短渗流流线长度;

K g ——抗渗流安全系数,取1.5~2.0。基坑底土为砂性土、砂质粉土或粘性土与粉性土中有明显薄层粉砂夹层时取最大值。

图3.3.2 基坑底土体渗流计算简图3.3抗倾覆稳定性验算

钢板桩结构的抗倾覆稳定性,可按下式验算:

RC

Q

QC

M

K=

M

式中:M RC——抗倾覆力矩。取基坑开挖面以下钢板桩入土部分坑内侧压力,对最下一道支撑或锚定点的力矩。

M QC——倾覆力矩。取最下一道支撑或锚定点以下钢板桩坑外侧压力,对最下一道支撑或锚定点的力矩。

K Q——抗倾覆稳定性安全系数,一级基坑工程取1.20;二级基坑工程取1.10;三级基坑工程取1.05。

图3.3.3 抗倾覆稳定计算图式

3.4变形估算

当基坑附近有建筑物和地下管线时,必须对支护进行变形估算,以确保建筑

物及管线的安全,变形包括支护周围土体变形和地基回弹变形两部分,对于中小基坑地基回弹变形可不进行估算。

基坑周围土体的变形应根据土质、支护情况及当地经验采用合适的估算方法,本文采用以下公式计算:

δ=kαh

v1

式中:k1——修正系数,对于钢板桩k1=1.0;

h——基坑开挖深度;

α——地表沉降量与基坑开挖深度之比(%),可参照图3.4查得;

图3.4 α系数表

深基坑钢板桩支护计算

. 1、工程简介 越南沿海火力发电厂3期连接井位于电厂厂区,距东边的煤灰堆场约100m,连接井最南侧距海边约30m~40m。现根据施工需要,将连接井及部分陆域段钢管段设置成干施工区域,即将全部连接井及部分陆域钢管段区域逐层开挖成深基坑,然后在基坑进行施工工作。基层四采用CDM桩或者钢板桩进行支护。干施工区域平面图如下所示 图1.1干施工区域平面图

+1.30-0.70 图1.2 基坑支护典型断面图(供参考) 2、设计资料 1、钢板桩桩顶高程为+3.3m ; 2、地面标高为+2.5m ,开挖面标高-5.9m ,开挖深度8.4m ,钢板桩底标高-14.7m 。 3、坑外土体的天然容重γ为16.5KN/m 2,摩擦角为Φ=8.5度,粘聚力c=10KPa ; 4、地面超载q :按20 KN/m 2考虑; 5、钢板桩暂设拉森Ⅳ400× U 型钢板桩,W=2270cm 3,[δ]=200MPa,桩长18m 。

3力计算 3.1支撑层数及间距 按等弯矩布置确定各层支撑的间距,则钢板桩顶部悬臂端的最大允跨度为: m 603.2mm 2603742 .05.162270102006r ][653a =≈????==K W h δ h 1=1.11h=1.11×2.603m=2.89m h 2=0.88h=0.88×2.603m=2.29m 根据现场施工需要和工程经济性,确定采用两层支撑,第一层h=1.2m ,支撑标高+1.3m ;第二层支撑h 1=2m ,支撑标高-0.7m 。 3.2作用在钢板桩上的土压力强度及压力分布 主动土压力系数 Ka=tan 2(45°-φ/2)= tan 2(45°-8.5°/2)= 0.742 被动土压力系数 Kp=tan 2(45°+φ/2)=tan 2(45°+8.5°/2)=1.347 工况一:安装第一层支撑后,基坑土体开挖至-0.7m (第二层支撑标高)。 1、主动土压力:a a a P =qK γzK + ①z=0m P a =20×0.742+16.5×0×0.742=14.84KN/m 2 ②z=3.2m (地面到基坑底距离)) P a =20×0.742+16.5×3.2×0.742=54.02KN/m 2 2、被动土压力:p p P =γzK ①z=3.2m(地面到基坑底距离)

钢板桩基坑支护计算书

钢板桩基坑支护计算书

一、结构计算依据 1、国家现行的建筑结构设计规范、规程行业标准以及广东省建筑行 业强制性标准规范、规程。

2、提供的地质勘察报告。 3、工程性质为管线构筑物,管道埋深4.8~4.7米。 4、本工程设计,抗震设防烈度为六度。 5、管顶地面荷载取值为:城-A级。 6、本工程地下水位最小埋深为2.0m。 7、本工程基坑计算采用理正深基坑支护结构计算软件。

二、基槽支护内支撑计算 (1)内支撑计算 内支撑采用25H 型钢 A=92.18cm 2 i x =10.8cm i y =6.29cm Ix=10800cm 4 Iy=3650cm 4 Wx=864cm 3 ] [126.11529 .6725][13.678 .10725λλλλ===<=== y y x i l i l x 查得 464 .0768 .0==y x ?? 内支撑N=468.80kN ,考虑自重作用,M x =8.04N ·m MPa f A N fy y 215][6.1091018.92464.01080.4682 3 =<=???=?=? MPa f Wx Mx A N fx x 215][05.5810 7.1361004.810117768.01080.4684 6 23=<=??+???=+?=?

(2)围檩计算 取第二道围檩计算,按2跨连续梁计算,采用30H 型钢 A=94.5cm 2 i x =13.1cm i y =7.49cm Ix=20500cm 4 Iy=6750cm 4 Wx=1370cm 3 [ 计算结果 ] 挡土侧支座负弯距为:M max =0.85×243.3kN·m=206.8kN·m,跨中弯矩为M max =183.4kN·m 支座处: MPa cm m kN Wx M 9.15013708.206max 13 =?==σ,考虑钢板桩结构自身的抗弯作用,可满足安全要求。 跨中:][87.13313704.183max 23 σσ<=?== MPa cm m kN Wx M 三、基槽支护工程计算书 支护结构受力计算 5.3米深支护计算

拉森钢板桩支护方案计算书

桂林市西二环路道路建设工程排水管道 深基坑开挖施工方案计算书 一、工程概况 桂林市西二环路二合同段污水管道工程的起点K12+655,终点K17+748,埋设管道为聚氯乙烯双壁波纹管(Ф500)和钢筋砼管(Ф800),基础采用粗砂垫层,基础至管顶上50cm范围为粗砂回填,其上为级配碎石回填至路床;起点管道底部标高为150.277m,管道平均埋深为5.2米左右,最深为7.8米,地下水位较高,其中有局部里程段3.5m厚土层以下是流沙层,开挖时垮塌较严重,为防止开挖时坍塌事故发生,特制定该方案,施工范围为K12+655~K14+724段左侧污水管。 本段施工段地质为松散耕土、粉质粘土,地下水位高,遇水容易形成流砂。 二、方案计算依据 1、《桂林市西二环路道路建设工程(二期)施工图设计第三册(修改版-B)》(桂林市市政综合设计院)。 2、《市政排水管道工程及附属设施》(06MS201)。 3、《埋地聚乙烯排水管管道工程技术规程》(CECS164:2004)。 4、《钢结构施工计算手册》(中国建筑工业出版社)。 5、《简明施工计算手册》(中国建筑工业出版社)。 三、施工方案简述 1、钢板桩支护布置 钢板桩采用拉森ISP-Ⅳ型钢板桩,其长度为12米/根,每个施工段50m需260根钢板桩。根据施工段一般稳定水位154.0m和目前水位情况,取施工水位为154.00m。根据管沟开挖深度(4.7m),钢板桩支护设置1道型钢圈梁和支撑。以K14+100左侧排污管道钢板桩支护为例,桩顶标高为157.83m,桩底标高为148.83m,依次穿越松散耕土→粉质粘土层。 2、钢板桩结构尺寸及截面参数 拉森ISP-Ⅳ型钢板桩计算参数如下表所示:

深基坑钢板桩支护计算

1、工程简介 越南沿海火力发电厂3期连接井位于电厂厂区内,距东边的煤灰堆场约 100m,连接井最南侧距海边约30m~40m。现根据施工需要,将连接井及部分陆域段钢管段设置成干施工区域,即将全部连接井及部分陆域钢管段区域逐层开挖成深基坑,然后在基坑进行施工工作。基层四周采用CDM桩或者钢板桩进行支护。干施工区域平面图如下所示 图1.1干施工区域平面图 1

+4.50 连接井 40#工字钢 拉森Ⅳ钢板桩顶+2.30 围柃 +1.30 -0.70 40#工字钢 Φ500mm钢管Φ500mm钢管 围柃 撑杆 撑杆 -4.70 -5.90 基坑底标高-5.90 Φ500mm钢管Φ500mm钢管 立柱立柱 -10.90 拉森Ⅳ钢板桩底 -15.70 图1.2 基坑支护典型断面图(供参考) 2、设计资料 1、钢板桩桩顶高程为+3.3m; 2、地面标高为+2.5m,开挖面标高-5.9m,开挖深度8.4m,钢板桩底标高 -14.7m。 2,内摩擦角为Φ=8.5 度,粘聚力 3、坑内外土体的天然容重γ为16.5KN/m c=10KPa; 2 4、地面超载q:按20 KN/m 考虑; 3,[δ]=200MPa,桩 5、钢板桩暂设拉森Ⅳ400×170 U 型钢板桩,W=2270cm 长18m。 3内力计算 3.1支撑层数及间距 按等弯矩布置确定各层支撑的间距,则钢板桩顶部悬臂端的最大允许跨度 为:

h 3 6[ ]W δ rK a 6 200 16.5 5 10 2270 0.742 2603mm 2. 603m h1=1.11h=1.11 2×.603m=2.89m h2=0.88h=0.88 2×.603m=2.29m 根据现场施工需要和工程经济性,确定采用两层支撑,第一层h=1.2m,支 撑标高+1.3m;第二层支撑h1=2m,支撑标高-0.7m。 3.2作用在钢板桩上的土压力强度及压力分布 主动土压力系数Ka=tan2(45°-φ/2)= tan2(45°-8.5°/2)= 0.742 2(45°+8.5°/2)=1.347 被动土压力系数Kp=tan 2(45°+φ/2)=tan 工况一:安装第一层支撑后,基坑内土体开挖至-0.7m(第二层支撑标高)。 1、主动土压力:P a =qK a γzK a ①z=0m 2 P a=20×0.742+16.5×0×0.742=14.84KN/m ②z=3.2m(地面到基坑底距离)) 2 P a=20×0.742+16.5× 3.2×0.742=54.02KN/m 2、被动土压力:P p =γzK p ①z=3.2m(地面到基坑底距离) 2 P p=16.5×(3.2-3.2)× 1.347=0KN/m ②z=17.2m(地面到钢板桩底距离) 2 P p=16.5×(17.2-3.2)× 1.347=311.157KN/m 3、计算反弯点位置: 假定钢板桩上土压力为零的点为反弯点,则有:P a=P p P a=20×0.742+16.5×z×0.742=P p=16.5×(z-3.2)× 1.347 z=8. 61m 4、等值梁法计算内力: 钢板桩AD 段简化为连续简支梁,用力矩分配法计算各支点和跨中的弯矩,

基坑支护(钢板桩)设计及计算书

目录 1 计算依据 (1) 2 工程概况 (1) 3 地质情况 (1) 4 设计施工方案概述 (1) 5 围堰结构计算 (2) 5.1 设计计算参数 (2) 5.1.1材料设计指标 (2) 5.1.2单元内支撑支撑刚度计算 (3) 5.1.3单元内支撑材料抗力计算 (3) 5.1.4 设计安全等级 (4) 5.2 拉森钢板桩封闭支护结构设计分析 (4) 5.2.1 开挖过程结构分析 (4) 5.2.2 拉森钢板桩单元计算分析结果 (4) 5.2.3 内支撑应力和变形计算 (18) 5.2.4支护结构强度验算 (19) 5.2.4 支撑型钢强度、稳定性验算 (23)

基坑拉森钢板桩围堰设计及计算书 1 计算依据 1.2 《特大桥承台基坑拉森钢板桩围堰设计图》; 1.3 《建筑施工计算手册》; 1.4 《钢结构设计规范》(GB500017-2003); 1.5 《理正深基坑软件7.0版》; 1.6 《基坑工程设计规程》(DBJ08-61-97) 1.7 《建筑基坑支护技术规程》(JGJ120-2012) 1.8 《建筑基坑工程技术规范》(YB9258-97) 2 工程概况 桥址处为荒地、民房,地势平坦,交通便利。根据现场调查,特大桥1#承台施工为最不利基坑,承台尺寸为4.85×5.7×2m,开挖后深度4.209m。 3 地质情况 根据工程地质勘测报告,承台处的地质情况如表1。 表3-1 承台地质情况 取样 编号厚度(m)名称 重度 (kN/m3) 粘聚力 (Kpa) 摩擦角(。) 侧摩阻力 (Kpa) 1 1.25 杂填土17.7 11.00 7.20 30.0 2 4.25 淤泥质土17. 3 13.00 6.00 22.0 3 6.20 粉砂18.0 45.00 --- 40.0 4 4.60 粘性土19.8 49.00 --- 65.0 5 21.60 粉砂19. 6 47.00 --- 70.0 4 设计施工方案概述 使用9m拉森Ⅳ钢板桩对基坑进行封闭支护,钢围檩设于承台顶标高以上1.509m,钢板桩顶往下1m处,围檩采用H400×400×13×21mm型钢,围檩长边下方设置不少于3个牛腿,上方采用直径8mm钢丝绳兜吊在拉伸钢板桩上,斜角撑采用H400×400×13×21mm型钢,斜撑两端与围檩型钢焊接牢固。基坑尺寸控制原则为自承台外轮廓外扩1.2m,为保证承台模板与钢筋的顺利施工,围檩斜角撑的位置应避免阻碍模板与钢筋的吊装施工。

9m钢板桩6m深基坑计算

工程名称 钢 板 编制:__________________ 审核:__________________ 项目部

1.1计算依据 1、《钢结构设计规范》GB 50017-2003 2、《软土地区工程地质勘察规范》JGJ 83-91 3、《公路桥涵地基与基础设计规范》JTG D63-2007 4、《铁路桥涵设计基本规范》TB 10002. 1-99 5、施工图 6、浙江省工程勘察院提供的《岩上工程勘察报告》 7、参考文献: 刘建航侯学渊《基坑工程设计手册》中国建筑工业出版社李克钏,罗书学.基础工程?北京:中国铁道出版社 第二章工程地质及相关参数 2.1工程地质及相关参数 沟槽开挖所处土层0?lm为黄土,相关参数如下:71 = 17.6KN/m3, c x = 15.0KPa,(p x = 25% 沟槽开挖所处土层l?9m 为中砂,相关参数如下:丫? = 18KN/m?, (p2 = 33°o 根据现场地形沟槽开挖施工图,最不利状态下计算,开挖土层全部按照中砂层考虑,沟槽基坑开挖计算深度6m,宽度为4111,钢板桩长度 9m,支撑横梁距钢板桩顶面距离为lm,内支撑沿沟槽向每4111设置一道,基坑上方处两层砖混结构民房及施工荷载按均布荷载考虑q=20 KN/m2o 沟槽开挖示意图: 支处系

支护挡墙采用拉森钢板桩,钢板桩有效幅宽WMOOnun,有效高 度170mm, t=15.5mm o相关参数为:A=242.5cm2, Wx=2270cm3, Ix=38600cm4, [o]=180MPa 支撑横梁采用H400 X 400 X 13 X 21型钢,相关参数为: A=214.54cin2 , W x=3268.07cm3 , I x=65361.58m4 , i x=l7.45cm , [o]=200MPa; 内支掠采用0300 X 10钢管,相关参数为:A=90.79cnr , W=634.79cm3, 1=9490.15cm4, i=l0.22cm, [o]=200MPa; 第三章钢板桩及支撑系统验算 3.1钢板桩验算 支护系统受力示意图如卞: 地面局部荷载q

理正7.0钢板桩支护计算书讲课稿

---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 排桩支护 ---------------------------------------------------------------------- [ 基本信息 ]

---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- [ 附加水平力信息 ] ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ----------------------------------------------------------------------

[ 土压力模型及系数调整 ] ---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型: ---------------------------------------------------------------------- [ 工况信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 设计结果 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 结构计算 ] ---------------------------------------------------------------------- 各工况:

深基坑支护设计计算书(钢板桩)

深基坑支护设计计算书 ---------------------------------------------------------------------- [ 支护方案 ] ---------------------------------------------------------------------- 排桩支护 ---------------------------------------------------------------------- [ 基本信息 ]

---------------------------------------------------------------------- [ 超载信息 ] ---------------------------------------------------------------------- [ 附加水平力信息 ] ---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ]

---------------------------------------------------------------------- [ 支锚信息 ] ---------------------------------------------------------------------- [ 土压力模型及系数调整 ] ---------------------------------------------------------------------- 弹性法土压力模型: 经典法土压力模型: ---------------------------------------------------------------------- [ 工况信息 ] ----------------------------------------------------------------------

m钢板桩m深基坑计算

m钢板桩m深基坑计 算 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

工程名称 钢 板 桩 围 堰 计 算 书 编制: 审核: 项目部 1.1计算依据 1、《钢结构设计规范》GB50017-2003 2、《软土地区工程地质勘察规范》JGJ83-91 3、《公路桥涵地基与基础设计规范》JTGD63-2007 4、《铁路桥涵设计基本规范》TB10002.1-99 5、施工图 6、浙江省工程勘察院提供的《岩土工程勘察报告》 7、参考文献: 《基坑工程设计手册》

李克钏,罗书学.基础工程.北京:中国铁道出版社 第二章工程地质及相关参数 2.1工程地质及相关参数 =沟槽开挖所处土层0-1m为黄土,相关参数如下:γ 1 17.6KN/m3,c1=15.0KPa,φ1=25ο。沟槽开挖所处土层1-9m为中 =18KN/m3,φ2=33ο。 砂,相关参数如下:γ 2 根据现场地形沟槽开挖施工图,最不利状态下计算,开挖土层全部按照中砂层考虑,沟槽基坑开挖计算深度6m,宽度为4m,钢板桩长度9m,支撑横梁距钢板桩顶面距离为1m,内支撑沿沟槽向每4m设置一道,基坑上方处两层砖混结构民房及施工荷载按均布荷载考虑q=20KN/m2。 沟槽开挖示意图: 支撑系 土层土层 挡墙 土层 支护挡墙采用拉森钢板桩,钢板桩有效幅宽W=400mm,有效高度170mm,t=15.5mm。相关参数为:A=242.5cm2,Wx=2270cm3,Ix=38600cm4,[σ]=180MPa 支撑横梁采用H400×400×13×21型钢,相关参数为:

钢板桩计算

钢板桩计算 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

深基坑拉森钢板桩计算 计算依据为《建筑施工计算手册》。挡土钢板桩根据基坑挖土深度、土质情况、地质条件和邻近建筑管线情况,选用多锚(支撑)板桩形式,对坑壁支护, 以便基坑开挖。根据现场实际情况,基坑深度~米,现按开挖深度米计算,宽米, 钢板桩施工深度按9m计算,单层支撑,撑杆每隔3m一道。从剖面可知,沟槽施工 关系到素填层、粉质粘土及淤泥质中砂层。求得其加权平均值为:坑内、外土 的天然容重加全平均值1γ,2γ均为:20KN/m3;内摩擦角加全平均值Φ:20°; 粘聚力加全平均值c=10。 多支撑式板桩计算,钢板桩选用拉森Ⅲ型钢板桩,每延长米截面矩 W=1600cm3/m,[f]=200Mpa。支撑图附在后页。 一、内力计算 (1)作用于板桩上的土压力强度及压力分布见下图 板桩外侧均布荷载换算填土高度h0, h0=q/r=20=1.0m。 (2)计算反弯点位置。 假定钢板桩上土压力为零的点为反弯点,设其位于开挖面以下y处,则有:整理得: 式中,1γ,2γ——坑内外土层的容重加权平均值; H——基坑开挖深度; Ka——主动土压力系数; Kpi——放大后的被动土压力系数。

(3)按简支梁计算等值梁的最大弯矩和支点反力,其受力简图如下图所示。 由0Q M =∑得: 解得: R=m Q=+×5/2+× =m (4)计算钢板桩的最小入土深度。 根据公式得: 由公式得:最小入土深度 t=×(+)= H 桩总长=+= <9m(拉森钢板桩),符合要求。 (4)板桩稳定性验算 板桩入土深度除保证本身的稳定外,还应保证基坑底部在施工期间不会出现隆起和管涌现象。 A 、基坑底后隆起验算 当墙背后的土柱重量超过基坑底面以下的地基承载力时,地基上的塑性平衡状态便受到破坏,墙背后的土就会发生从墙脚下向基坑内流动,基坑底面向上隆起,坑顶下陷的现象。为防止这种现象发生,应验算挡墙入土深度能否满足抵抗基坑底隆起的要求。 Ks=(γtNq+cNc)/[ γ(h+t)+q] 式中 t ——墙体入土深度(m ); 取t= h ——基坑开挖深度(m ); 取h= γ——坑底及墙后土体的密度(KN/m 3); M max 29.8KN/m 2钢板桩受力简图44.8KN/m

m钢板桩m深基坑计算

m钢板桩m深基坑计算文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

工程名称 钢 板 桩 围 堰 计 算 书 编制: 审核: 项目部 计算依据 1、《钢结构设计规范》GB50017-2003 2、《软土地区工程地质勘察规范》JGJ83-91 3、《公路桥涵地基与基础设计规范》JTGD63-2007 4、《铁路桥涵设计基本规范》 5、施工图 6、浙江省工程勘察院提供的《岩土工程勘察报告》 7、参考文献: 《基坑工程设计手册》 李克钏,罗书学.基础工程.北京:中国铁道出版社

第二章工程地质及相关参数 工程地质及相关参数 沟槽开挖所处土层0-1m 为黄土,相关参数如下:γ1=17.6KN /m 3,c 1=15.0KPa,φ1=25ο。沟槽开挖所处土层1-9m 为中砂,相关参数如下:γ2=18KN /m 3,φ2=33ο。 根据现场地形沟槽开挖施工图,最不利状态下计算,开挖土层全部按照中砂层考虑,沟槽基坑开挖计算深度6m ,宽度为4m ,钢板桩长度9m ,支撑横梁距钢板桩顶面距离为1m ,内支撑沿沟槽向每4m 设置一道,基坑上方处两层砖混结构民房及施工荷载按均布荷载考虑q=20 KN /m 2。 沟槽开挖示意图: 挡墙支撑系 土层 土层 土层 支护挡墙采用拉森钢板桩,钢板桩有效幅宽W=400mm ,有效高度170mm ,t=。相关参数为:A=,Wx=2270cm3,Ix=38600cm4,[σ]=180MPa 支撑横梁采用H400×400×13×21型钢,相关参数为:A=,W x =,I x =,i x =, [σ]=200MPa; 内支撑采用?300×10钢管,相关参数为:A=,W=,I=,i=,[σ]=200MPa; 第三章钢板桩及支撑系统验算

钢板桩基坑支护设计计算书

跨沪宁铁路既有线112#墩承台基坑 支护设计计算书 京沪高速铁路土建六标项目经理部 2008年10月26日 京沪高速铁路蕴藻浜特大桥黄渡桥段跨既有沪宁铁路 112#墩承台开挖钢板桩支护设计-、设计依据 1.铁路桥涵设计基本规范(TB1000 2.1-2005); 2.客运专线铁路桥涵工程施工技术指南(TZ213-2005);

3.《铁路路基支挡结构设计规范》TB 10025-2001 4.《新建时速300-350公里客运专线铁路设计暂行规定》铁建设[2007] 47 5.《北京至上海高速铁路徐州至上海段施工图蕴藻浜特大桥曹安黄渡桥段》; 6.铁道部及上海铁路局相关文件; 7. 钢结构设计规范(GB 50017-2003); 8.桥涵(上、下册)交通部第一公路工程局; 9.简明施工计算手册(第三版); 10.基坑工程手册; 二、工程概况 京沪高铁土建六标段在京沪高铁DK1290+441.860~DK1290+541.860处跨越既有线沪宁铁路,在该处桥型布置为60m+100m+60m连续梁。沪宁铁路长度仅为全国铁路营运线的2%,但它承担着全国10.2%的铁路客运量和7.2%的货物周转量,运输密度是全国铁路平均水平的4倍,经我作业工区值班人员统计24小时内有228趟火车通过,车辆集中时车流密集时段沪宁铁路平均5分钟有一辆,其中包括250km/h动车组。 表1 京沪高铁与既有线相关数据统计表 1. 工程地质特征 墩台处位于长江三角洲平原区,均为第四系地层覆盖,系江河、湖泊、海相沉积形成,为黏土、粉质黏土夹粉细砂层。 2. 水文特征

长江以南地区的水文主要特征:地表水丰富,各主要河流均常年有水。河流受季节影响明显,雨季水量较丰沛,河流靠大气降水补给,部分河流接受生活用水和工业废水的排放,排泄方式以泾流、蒸发为主。 沿线地下水类型有孔隙潜水、基岩裂隙水。地下水位埋深一般在0.4~5.0m,局部埋深大于10m,大气降水为地下水的主要补给来源。 三、钢板桩设计 1.承台结构 112#、墩承台高7m,采用两层结构,底层与上层均为八角形结构。底层平面尺寸为18.2m×18.2m,层高4m,四角均为4.6m的45°倒角。上层为平面尺寸为11.5m×11.5m,层高3m,四角为长2.64m的45°倒角。承台结构如下图1所示。

钢板桩支护计算书(00002)

钢板桩支护计算书

1#~10#雨水检查井钢板桩支护 设计计算书

\ 1#~10#雨水检查井钢板桩支护 设计计算书 计算: 复核: 审核:

审定: 目录 1.计算说明 (1) 1.1 概况 (1) 1.2 计算内容 (1) 2.计算依据 (1) 3.参数选取及荷载计算 (1)

3.1 支护平面布置 (1) 3.2 板桩、圈梁截面 (1) 3.3 计算荷载参数 (2) 3.4 材料容许用力值 (3) 4.主要结构计算及结果 (4) 4.1 计算模型 (4) 4.2 计算工况说明 (4) 4.3 钢板桩的计算及结果 (4) 4.4 圈梁的计算及结果 (7) 5.结论及建议 (9)

1.计算说明 1.1 概况 陇海快速路―中州大道互通式立交上跨陇海铁路立交桥工程位于河南省郑州市中州大道与陇海铁路交汇处,桥位处既有5+2×16+5m四孔分离式箱桥,与陇海铁路下行线交叉点里程:K561+246,在既有箱桥两侧新建中州大道互通式立交上跨陇海铁路立交桥,本桥为双幅桥,主线桥桥面宽26.75m。根据总体布置,原下穿立交雨水泵房和检查井受新设桥墩影响,需要拆除迁建。 1#-4#为矩形混凝土雨水检查井,最大平面尺寸为2.1×1.9m,5#-10#为圆形混凝土雨水检查井,平面尺寸为φ2.2m,所有检查井最大深度h=4.2m,井内壁均需做防水处理。检查井开挖范围内,土层以细砂、粉土为主,拟采用钢板桩支护辅助施工。钢板桩使用SKSP-Ⅳ型板桩,长度为9m,支护设置一层圈梁。 1.2 计算内容 采用容许应力法和有限元法对支护施工过程中的各工况进行计算,计算内容包括钢板桩、圈梁等的强度、刚度。 2.计算依据 《钢结构设计规范》(GB 50017-2003) 《公路桥涵地基与基础设计规范》(JTG D63-2007) 《建筑基坑工程监测技术规范》(GB 50497-2009) 《基坑工程手册》中国建筑出版社刘国斌王卫东主编 《陇海快速路-中州大道互通式立交上跨陇海铁路立交桥工程第四册给排水工程》(中铁工程设计咨询集团有限公司) 《陇海快速路-中州大道互通式立交上跨陇海铁路立交桥工程岩土工程勘察报告》 项目部提供的地质等相关资料 3.参数选取及荷载计算

深基坑支护钢板桩计算

结构计算系列之三 钢板桩支护结构计算 公司范围内承台开挖使用钢板桩支护的越来越多。随着钢板桩支护在公司范围内的大规模广泛的应用,而如何合理的设计和运用钢板桩支护成为我们迫切要掌握的技术。 下面以一陆上深基坑钢板桩支护设计为例,详细叙述钢板桩支护结构设计检算的计算过程: 1、钢板桩围堰的结构验算 1.1基本数据 (1)钢板桩截面特性 钢板桩性能参数表 (2)土层性质 淤泥质黏土内摩擦角取9°,粘聚力c=14KPa,根据地质资料和实际施工现场土体的含水率,统一按水、土合力考虑,土层的平均容

重取为γ=16.1KN/ m3,地下水位取+3.0m。 (3)基本参数计算 主动土压力系数:K a=tan2(45°-φ/2)=0.73 被动土压力系数:K p =tan2(45°+φ/2)=1.37 1.2钢板桩入土深度计算 1.2.1 钢板桩土压力计算 主动土压力最大压强e a=γK a(H+t-h1)=16.1×0.73×11=129.283 KPa 被动土压力最大压强e p=γK p t=16.1×1.37×7=154.399 KPa 主动土压力E a=(H+t-h1)e a /2=γK a(H+t-h1)2/2=16.1×0.73×112/2=719.89 KN/m 被动土压力E p=te p /2=γK p t2/2=16.1×1.37×72/2=540.4 KN/m

1.2.2 入土深度计算 为使板桩保持稳定,则在A点的力矩应等于零,即∑M A=0,亦即:M a=E a H a - E p H p=E a·[2(H+t-1)/3+1]-E p·(2t/3+H)=0 求得所需的最小入土深度t=(3E p H-2HE a-E a)/2(E a-E p)=0.52 m,满足要求。 根据∑F x=0,即可求得作用在A点的支撑力Ra: Ra – Ea + Ep = 0 得:Ra = Ea – Ep = 179.49 KN/m 1.3 钢板桩截面计算 1.3.1求出入土深度t2处剪力为零的点g 由,主动土压力E a'=γK a(H+t2-1)2/2 被动土压力E p'=t1e p /2=γK p t22/2 可由该点主动土压力等于被动土压力与支撑力之和,得E a'=E p'+ Ra 则K a(H+t2-1)2=K p t22 + Ra 得:t2=[5.84-(5.842-4×10.62×0.64)1/2]/2×0.64 =2.5m 1.3.2 求出最大弯距 由于g点位置剪力为零,则每米宽钢板桩最大弯距等于g点以下主动土压力、被动土压力绕g点的力矩差值。 由,M a'=Ep[t-t2-(t+H-h1)/3)]+γK a(H+t2-1)3/6 =(719.89×0.83)+(16.1×0.73×6.53/6)

拉森钢板桩围堰支护计算说明修订稿

拉森钢板桩围堰支护计 算说明 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

拉森钢板桩支护计算单 一、 检算依据: 1、《建筑施工手册》 2、广雅大桥12#、16#墩地质图及广雅大桥钢板桩围堰施工方案 二、已知条件: 承台尺寸为(横桥向)×(纵桥向)× m ,开挖尺寸×,筑岛顶标高:495m ;常水位标高:+;承台顶标高:+;承台底标高:489m ;拟定开挖到基坑底后浇注一层的垫层,基坑底标高:。填土层厚米,下为卵石层。根据地质情况:取填土重度γ=m3,内摩擦角φ=15o ,卵石重度γ= KN/m3,内摩擦角φ=36o ,结合地质情况,采用拉森Ⅲ型钢板桩进行围堰施工。 三、计算: 按单层支撑和二层支撑两种情况进行检算 1、单层支护 1)、钢板桩围堰旁边的机械荷载取20KN/m2, 且距离围堰距离为米。 钢板桩最小嵌入深度t ,由建筑施工手册 在米范围内取γ、φ的加权平均值: γ平均=(*+*)/= KN/m3 φ平均=(15*+36*)/= 主动土压力系数:K a =-45Tan 2 ( φ/2)=; 被动土压力系数:K p =+45Tan 2 ( φ/2)=。 基坑底面以下,支护结构设定弯矩零点位置距基坑底面的距离h :γ(H+h )K a =γKhK p

h= K——为被动土压力的修正系数,取。2)、计算支点力米处:P。= 基坑底钢板桩受力米处: 如图: 剪力图 弯矩图最小嵌入深度t: t=。

t 。= h K -KK P 6a P 0 +?(γ= t=。= 已知外界荷载:q =Ka*30=m2 求得最大弯矩M max =*m ,拉森Ⅲ型钢板桩截面模量W=1340cm 3,应力σ=1000*1340=<175 Mpa 满足要求。 2、多层支护 多层支护最小嵌入深度h :h=*h o =*n o *H=**= 第一层支撑设在+79m 处,第二层支撑设在+处, 已知外界荷载:q =Ka*30=m2。 1)、工况一:当基坑开挖到第一层支撑+79m 处时,相当于悬臂式支护结构,钢板桩最大弯矩M max =*m ,满足拉森钢板桩的承载要求,设立第一层支撑结构。 2)、工况二:当基坑开挖到第二层支撑+77m 处时,相当于单支点支护结构。支点力T1=,钢板桩最大弯矩M max =*m

钢板桩支护计算手册

钢板桩支护计算手册文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

支护计算书 一.设计资料 该项目的支护结构非主体结构的一部分;开挖深度为9.7m<10m ;在等于开挖深度的水平距离内无临近建筑物。故可以认为该坑的安全等级为二级。重要性系数取γ0=1.0。 地面标高:-0.5m 基础底面标高:-10.2m 开挖深度:9.7m 地下水位:-1.5m 地面均布荷载:20kN/m 2 土层:地表层有1m 厚的杂填土,其下为均质粉质粘土 基坑外侧的粘土都看做饱和粘土;基坑内侧因为排水,看做有1.8m 深含水量16%的粘土,其下为饱和粘土。 二.选择支护形式 由于土质较好,水位较高,开挖深度一般,故选择钢板桩加单层土层锚杆支护。 三.土压力计算 1.竖向土压力的计算 公式:j mj rk z γσ= 基坑外侧:

基坑内侧: 2.主动土压力的计算 取0'2 a e 主动土压力零点: 主动土压力示意图 3.被动土压力的计算 4.土压力总和 开挖面以上只有主动土压力。 开挖面以下: 再往下,每米增加29.45kpa 的负向土压力。 1m 条带中,土压力分块的合力 压力区块 压力合力(kN ) 距上端距离(m ) 距下端距离(m ) 119.73k

四.嵌固深度计算 1.反弯点 解得h=0.569m 2.支点力T c1 设支点位于地面以下4m,即支点处标高为-4,5m 对反弯点处弯矩为0 3.嵌固深度h d 用软件解如下方程 求最小h d, 161.66*(x+5.7)+(29.45*x+41.04)*(x-1.8)*(x-1.8)/6+19.296*(x-1.39)- 1.2*(15.19+275.74+4.125)*x-1.2*845.57=0 =7.500m 解得h d 五.弯矩计算 根据《建筑基坑支护技术规程》(JGJ120-99)的规定按下列规定计算其设计值:截面弯矩设计值M M=1.25γ0M c 式中γ ——重要性系数,取1.0 1.锚固点弯矩设计值 2.剪力为0处弯矩设计值(开挖面上方) 设地面到该点距离为 h 2 3.剪力为0处弯矩设计值(开挖面下方) 设开挖面到该点距离为 h 3

深基坑钢板桩支护计算..

... ... 1、工程简介 越南沿海火力发电厂3期连接井位于电厂厂区,距东边的煤灰堆场约100m,连接井最南侧距海边约30m~40m。现根据施工需要,将连接井及部分陆域段钢管段设置成干施工区域,即将全部连接井及部分陆域钢管段区域逐层开挖成深基坑,然后在基坑进行施工工作。基层四周采用CDM桩或者钢板桩进行支护。干施工区域平面图如下所示 图1.1干施工区域平面图

+1.30-0.70 图1.2 基坑支护典型断面图(供参考) 2、设计资料 1、钢板桩桩顶高程为+3.3m ; 2、地面标高为+2.5m ,开挖面标高-5.9m ,开挖深度8.4m ,钢板桩底标高-14.7m 。 3、坑外土体的天然容重γ为16.5KN/m 2,摩擦角为Φ=8.5度,粘聚力c=10KPa ; 4、地面超载q :按20 KN/m 2考虑; 5、钢板桩暂设拉森Ⅳ400×170 U 型钢板桩,W=2270cm 3,[δ]=200MPa ,桩长18m 。 3力计算 3.1支撑层数及间距 按等弯矩布置确定各层支撑的间距,则钢板桩顶部悬臂端的最大允许跨度为: m 603.2mm 2603742 .05.162270102006r ][653a =≈????==K W h δ

h 1=1.11h=1.11×2.603m=2.89m h 2=0.88h=0.88×2.603m=2.29m 根据现场施工需要和工程经济性,确定采用两层支撑,第一层h=1.2m ,支撑标高+1.3m ;第二层支撑h 1=2m ,支撑标高-0.7m 。 3.2作用在钢板桩上的土压力强度及压力分布 主动土压力系数 Ka=tan 2(45°-φ/2)= tan 2(45°-8.5°/2)= 0.742 被动土压力系数 Kp=tan 2(45°+φ/2)=tan 2(45°+8.5°/2)=1.347 工况一:安装第一层支撑后,基坑土体开挖至-0.7m (第二层支撑标高)。 1、主动土压力:a a a P =qK γzK ①z=0m P a =20×0.742+16.5×0×0.742=14.84KN/m 2 ②z=3.2m (地面到基坑底距离)) P a =20×0.742+16.5×3.2×0.742=54.02KN/m 2 2、被动土压力:p p P =γzK ①z=3.2m(地面到基坑底距离) P p =16.5×(3.2-3.2)×1.347=0KN/m 2 ②z=17.2m(地面到钢板桩底距离) P p =16.5×(17.2-3.2)×1.347=311.157KN/m 2 3、计算反弯点位置: 假定钢板桩上土压力为零的点为反弯点,则有:P a =P p P a =20×0.742+16.5×z ×0.742=P p =16.5×(z-3.2)×1.347 z=8. 61m 4、等值梁法计算力: 钢板桩AD 段简化为连续简支梁,用力矩分配法计算各支点和跨中的弯矩,从中求出最大弯矩M max ,以验算钢板桩截面;并求出各支点反力R b 、R d ,R b 即为作用在第一层支撑上的荷载。

拉森钢板桩基坑支护方案设计和计算

3、拉森钢板桩基坑支护方案设计和计算 、基本情况 城展路环城河桥桥台位于河岸上,基坑开挖深度较小;桥墩长24m,宽1.7m,右偏角90°,系梁底标高为0.0m,河床底标高0.0m,因此基坑底部尺寸考虑1m施工操作面要求,布置为长26m,宽3.7m,不需土方开挖。 环城河常水位2.6m,1/20洪水位3.27m,河床底标高0.0m,河底为淤泥土。考虑选择枯水期施工,堰顶标高为3.5m。 、支护方案设计 支护采用拉森钢板桩围堰支护,围堰平行河岸布置,平面布置详见附图。堰体采用拉森钢板桩Ⅳ型,桩长12米,内部水平围檩由单根(500×300mm)H型钢组成,支撑杆设置在钢板桩顶部,由直径为600mm,壁厚为8mm钢管组成。 整个基坑开挖完成后,沿基坑四周挖出一条200×200mm排水沟,在基坑对角设500×500×500mm集水坑,用泥浆泵将集水坑内渗水及时排出基坑。 布置图:

4、基坑稳定性验算 、桥墩基坑稳定性验算 钢板桩长度为12米,桩顶支撑,标高3.5米,入土长度8.5米。基坑开挖宽度26米,坑底标高0.0米。基坑采用拉森钢板桩支护,

围檩由单根(500×300mm)H型钢组成,设单道桩顶支撑,支撑采用直径为600mm,壁厚为8mm钢管作为支撑导梁,钢管与H型钢进行嵌固相连并焊接。验算钢板桩长度,选择钢板桩和导梁型号,验算基底稳定性。 采用理正深基坑软件对支护结构和围囹支撑体系等变形与内力整体计算分析;支护结构的抗倾覆稳定性、抗隆起、抗管涌、嵌固深度采用理正深基坑支护结构设计软件单元计算进行分析。 4.1.1、设计标准及参数 1、基坑设计等级及设计系数 二级,重要性系数:; 支护结构结构重要性系数:; 构件计算综合性系数:。 2 、材料力学性能指标 1、单元分析工况定义 (1)、工况1:打钢板桩,水面以下3.5m; (2)、工况2:在桩顶以下0.5m处安装第一道内支撑; (3)、工况3:抽水; 2、单元计算

深基坑拉森钢板桩支护专项施工方案

中山公用工程有限公司中山市岐江河水环境综合整治工程(雨污分流) 起湾道污水主干管工程 WA1-WA2段施工方案 编制:

审核: 审批: 编制单位:中山公用工程有限公司编制日期:2014年3月10日

目录 一、工程概况 (1) 二、施工工艺及方法 (2) 三、安全施工措施 (3) 四、拉森扣板桩受力验算 (4) 五、附箱渠结构图 (13)

WA1-WA2段施工方案 一、工程概况 本工程为起湾道污水主干管中的WA1--WA2段,长64米,管径为D1200, 埋深9.1米,采用顶管施工,位于崩山涌泵站水闸前,从河涌箱渠底部穿过,后接入新建泵站.因WA1-WA2段在施工时需要穿过箱渠底部,箱渠底部结构一边为混凝土,一边为片石铺填结构.渠宽20米.正常水位深1.5米,渠盖板为板梁结构.上部有1.3米土层覆盖.靠建筑物一侧有1.2米直径混凝土灌主桩需破除.该段在WA2号井方向顶进约38米后,即箱渠底片石铺填部位岀现严重透水.目前以不能够继续顶管施工.需要改变施工方式,根据现场实际情况与多方了解.将采用支护开挖施工. 二、施工工艺及方法 该段施工时因场地限制需分段局部施工,首先开挖至箱渠盖板面,宽为5米,并拆除部份盖板,然后在渠底进行分边截流,并做好防汛应急预案等工作,基槽开挖采用Ⅳ型12m长拉森钢板桩支护。拉森钢板桩采用履带式液压挖土机KATO-1250的液压振锤的锤机施打,施打前先熟悉地下管线、构筑物的情况,准确放出支护桩中心线,控制打入精度。 1、钢板桩施工的一般要求 (1)钢板桩的设置位置要符合设计要求,便于管道施工,尤其是在箱

渠段边缘外留有支模、拆模的余地。 (2)基槽护壁钢板桩的平面布置形状应尽量平直整齐,避免不规则的转角,以便标准钢板桩的利用和支撑设置。各周边尺寸尽量符合板桩模数。 (3)在整个管道施工期间,挖土、吊运、扎钢筋、支模板、浇筑混凝土、回填等施工作业中,严禁碰撞支撑,禁止任意拆除支撑,禁止在支撑上任意切割、电焊,也不应在支撑上搁置重物。 2、钢板桩施工的顺序 (1)钢板桩位置的定位放线 (2)施打钢板桩 (3)挖土 (4)管道安装施工 (5)拔除钢板桩回填 3、钢板桩的检验、吊装、堆放 (1)钢板桩的检验 对钢板桩,一般有材质检验和外观检验,以便对不合要求的钢板桩进行矫正,以减少打桩过程中的困难。

相关文档