文档库 最新最全的文档下载
当前位置:文档库 › 恒温混炼时间对白炭黑胎面胶性能的影响

恒温混炼时间对白炭黑胎面胶性能的影响

恒温混炼时间对白炭黑胎面胶性能的影响
恒温混炼时间对白炭黑胎面胶性能的影响

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

轮胎胎面胶

目录 摘要 一?汽车轮胎胎面胶国内外生产情况 二?胎面胶的制造(加工原理, 加工方法) 1、胎面挤出联动装置 2、挤出口型板的制备 胎面挤出工艺 1、胎面胶挤出用胶的热炼和供胶 2、胎面胶挤出 三?配方组成,及配方的计算。 四?胎面胶的加工工艺,及工艺简述和工艺流图。五?产品的应用,发展趋势。

摘要 随着汽车工业和交通运输业的高速发展公路建设特别是高速公路的迅猛发展, 迫切需要各种高性能轮胎。先后出现了所谓的安全轮胎、节能轮胎、高性能轮胎、冬季轮胎、全天候轮胎或者全季节轮胎以及环境轮胎等各种新型轮胎。进入90年代后,绿色运动的广泛开展使人们对节油效益有了更多的了解,出现了所谓“绿色轮胎”。近几十年来国内外对轮胎性能研究的重点集中在滚动损失,抗湿滑性和耐磨性等3个方面,特别是抗湿滑。这3种性能也被称为汽车轮胎 的三大行驶性能。由于子午线轮胎结构的采用,使胎面耐磨性能比斜交轮胎提了 30%~%,因此耐磨性已不再成为子午线轮胎的性能指标。考虑到汽车行驶的安全性,尤其是雨天和冰面上的安全性,对轮胎的高性能研究主要集中在滚动损失和湿抓着力上。然而,抗湿滑性与低滚动阻力往往是相互矛盾的,一般而言,提高胎面胶料的滞后损失可改善湿抓着力但增大了滚动阻力;而降低滚动阻力的同时湿抓着力又降低了。如何平衡这一对矛盾是胎面胶的研究热点。研究表明,控制滚动损失的温度和频率与控制湿抓着力的温度和频率不同,后者是在较低温度和较高频率时发生的,所以在某种程度上是可以得到平衡的。传统胎面胶主要有顺丁橡胶(BR)、天然橡胶(NR)和丁苯橡胶(SBR),其中BR的滚动损小,但湿抓着性很差;SBR的湿抓着性较好,但滚动阻力大;而NR的性能介于两者间。要减小胎面的滚动损失而又不牺牲湿抓着力,传统单一的聚合物材料显得无能力[1]。所以要开发新型 聚合物,或者采用并用胶,或者通过对现有的胎面材料进行化学改性来平衡这对矛盾。使胎面胶在0℃左右的tanδ尽量高,而在60℃左右的tan δ尽量低。从而得到理想的效果

改善白炭黑配方胶料的加工:优化混炼设备-国外资料

改善白炭黑配方胶料的加工:优化混炼设备 在过去几年中,进行了许多改进白炭黑技术的项目。大多数工作集中在新型偶联剂(尤其是硅烷)和新型二氧化硅类型(例如高分散性二氧化硅)上。很少关注调整或开发加工设备,例如用于更加经济和加工安全地混合此类化合物的特殊混炼设备。 在传统的炭黑配方密炼机中中混合白炭黑胶料是一种常见的做法。由于良好的温度控制(参考文献1),它们优选配备啮合型转子的密炼机,而非剪切密炼机。剪切密炼机设计用于分散和混合,但不适用于二氧化硅化合物所要求的化学反应。因此。二氧化硅化合物需要额外的步骤以完成二氧化硅的硅烷醇基和偶联剂的乙氧基之间的反应。该化学反应需要高于130℃的温度来引发反应,但是为了获得高反应速率,优选在更高的温度下进行。另一方面,硅烷化温度应远低于焦烧温度。硅烷化步骤通常使用约145℃的温度水平。为了停留在相对较窄的温度范围内,二氧化硅化合物需要几个混合阶段,最高温度约为150℃。 二氧化硅和硅烷之间的偶联反应期间的乙醇形成是另一个问题。当所有乙氧基已反应时,化合物中使用的每克硅烷形成约0.5克(0.64毫升)乙醇。在处理大批量产品的生产工厂中,该产品会积聚成大量的醇,这些醇要么在混合室中重新冷凝,要么蒸发掉。当乙醇没有从混炼室中排出时,会引起胶料打滑,导致混炼效果降低。另外,如果批料中的乙醇浓度高,则会延迟硅烷化反应。

这些与白炭黑胶料的加工有关的问题主要是从原材料方面解决的。新开发的二氧化硅类型具有高度分散性,减少了良好分散所需的混合时间,而良好分散是填料颗粒良好硅烷化的前提。这些二氧化硅类型可以分散到初级颗粒的水平(参考文献2)。 为了降低混炼和硅烷化过程中的焦烧风险,已经开发了新的硅烷。这些偶联剂含有较少的硫,一价(参考文献3和4)或二硫化物,而不是四硫化物,例如,二硫化三(三乙氧基甲硅烷基丙基)二硫化物(TESPD),甚至二硫化物(三氟乙氧基硅烷基丙基)二硫化物(TESFF),甚至是无硫分散体替代(参考资料5)。最常用的硅烷的其他变体。TESPT已经过测试,部分结果非常好。单乙氧基甲硅烷基丙基硅烷(仅通过一个乙氧基与二氧化硅偶联的硅烷)具有以下优点:与TESPT反应生成的醇相比,硅烷化反应生成的醇仅占三分之一,但固化制品的性质相似(参考文献2)。 已经进行了一些工作来改善二氧化硅化合物的加工,例如,通过调节配合或通过选择最合适的现有二氧化硅化合物密炼机。例如,可以通过在终炼步骤中添加氧化锌,而不是在母炼骤中添加来降低焦烧风险(参考文献6)。就混合设备而言,首选串联密炼机,因为它表现出严格的温度控制,使其能够在接近焦烧温度的条件下工作(参考文献1)。通过在串联密炼机中工作可以实现进一步的改进。上位机是在标准混合条件下运行的常规密炼机,用于混合和分散。下位机专门设计用于硅烷化反应(参考文献7)。

不同橡胶的不同混炼工艺

不同橡胶的不同混炼工艺 天然橡胶--天然橡胶具有良好有混炼性能,包辊性良好,生胶强力和初粘性较高,塑性、并用性及对配合剂的浸润性都较好,吃粉较快。但天然胶对混炼时间较敏敢,混炼时间过短,混炼胶表面会呈现颗粒状,造成压延挤出困难,混炼时间过长,又会导致过炼。开炼机混炼,辊温在45-55°C之间,前辊比后辊高5°C。密炼机混炼多采用一段混炼法,排胶温度在120°C以下。 丁苯橡胶--丁苯橡胶混炼时生热大,升温快,因此混炼温度比天然橡胶低,配合剂在丁苯橡胶中较难混合分散,故混炼时间要比天然橡胶长。用开炼机混炼时,前辊温度应比后辊温度低5-10°C,需增加薄通次数和进行补充加工,以利配合剂的均匀分散,用密炼机混炼应采用两段混炼,容量应小些,防止产生凝胶,排胶温度要低于130°C。 顺丁橡胶--顺丁橡胶内聚强度低,粘附性自粘性较弱,在混炼过程中,生胶呈破碎状,配合剂分散不良,易发生脱辊。顺丁胶在开炼机上混炼不易压合成片,且容易脱辊,故宜采用小辊矩、低辊温(40—50℃)混炼。为使配合剂均匀分散,需进行补充加工,用密炼机混炼时,容量可增加10%,混炼温度也可稍高,以利于配合剂分散,排胶温度一般在130—140℃,采用两段混炼有利于分散均匀,也可采用逆混法混炼,这样能节省40%的炼胶时间。 氯丁橡胶--氯丁橡胶的加工性能随其弹性态温度的不同而各异。通用型氯丁橡胶(相当于美国的GNA型,苏联的KP型)在常温至70℃之间为弹性态,容易包辊,混炼时配合剂易于分散;高于70℃便会发粘甚至失去弹性,配便剂就很难均匀分散。54-1型(相当于国外W型或M-40型)氯丁橡胶的弹性态温度在79℃以下,其工艺性能较通用型为好。 氯丁橡胶在开炼机上混炼,辊温为40-50°C混炼时氧化镁应先加,以防焦烧,最后加氧化锌。若掺入10﹪天然橡胶或顺丁橡胶会改善氯丁橡胶的加工性能。采用密炼机混炼时,可用两段混炼法,尽量降低排胶温度,不得超过110°C,以防焦烧。氧化锌在第二段混炼时的压片机上加入。 丁腈橡胶--丁腈橡胶在混炼时发热量大,配合剂难于分散。丁腈橡胶在开炼机上混炼时,应采用低温、小容量、小辊矩慢加料的操作方法,以促进配合剂

橡胶生产工艺简介分析

橡胶生产工艺简介 1 综述 橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。 橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 2 橡胶加工工艺 2.1塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。 生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。 掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。 在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。 开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。 生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。 几种胶的塑炼特性: 天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为15-20min;采用密炼机塑炼当

温度达到120℃以上时,时间约为3-5min。 丁苯橡胶的门尼粘度多在35-60之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性 顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。 氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40℃。 乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。 丁腈橡胶可塑度小,韧性大,塑炼时生热大。开炼时要采用低温40℃以下、小辊距、低容量以及分段塑炼,这样可以收到较好的效果。 2.2混炼工艺 混炼是指在炼胶机上将各种配合剂均匀的混到生胶种的过程。混炼的质量是对胶料的进一步加工和成品的质量有着决定性的影响,即使配方很好的胶料,如果混炼不好,也就会出现配合剂分散不均,胶料可塑度过高或过低,易焦烧、喷霜等,使压延、压出、涂胶和硫化等工艺不能正常进行,而且还会导致制品性能下降。 混炼方法通常分为开炼机混炼和密炼机混炼两种。这两种方法都是间歇式混炼,这是目前最广泛的方法。 开炼机的混合过程分为三个阶段,即包辊(加入生胶的软化阶段)、吃粉(加入粉剂的混合阶段)和翻炼(吃粉后使生胶和配合剂均达到均匀分散的阶段)。 开炼机混胶依胶料种类、用途、性能要求不同,工艺条件也不同。混炼中要注意加胶量、加料顺序、辊距、辊温、混炼时间、辊筒的转速和速比等各种因素。既不能混炼不足,又不能过炼。 密炼机混炼分为三个阶段,即湿润、分散和涅炼、密炼机混炼石在高温加压下进行的。操作方法一般分为一段混炼法和两段混炼法。 一段混炼法是指经密炼机一次完成混炼,然后压片得混炼胶的方法。他适用于全天然橡胶或掺有合成橡胶不超过50%的胶料,在一段混炼操作中,常采用分批逐步加料法,为使胶料不至于剧烈升高,一般采用慢速密炼机,也可以采用双速密炼机,加入硫磺时的温度必须低

几种常用橡胶性能比较

几种常用橡胶性能比较 天然橡胶(NR) 天然橡胶由三叶树采集制成的弹性体,机械强度高、耐磨、耐压、伸长率高、弹性高、滞后损失小,能耐多次屈挠弯曲变形,适合纸厂、木业、家具、涂布、输送等胶辊应用。本厂天然橡胶分别使用印度尼西亚、泰国和海南三种产地,硬度可以在邵氏3 0~10 0 ° A调制。 丁腈橡胶(NBR) 首先由德国在30年代研制而成,因含丙烯腈,所以对矿物油、动植物油、液体燃料和脂肪族溶剂有较高的稳定性,耐油性是丁腈橡胶最大的特长。耐热性能好,能耐一般化学品优于通用橡胶。配合法国特种油膏,着墨性能优。广泛用于印刷类胶辊,配合耐酸碱物质、耐热剂,用于浆染、印染、砂辊。因耐磨性能比天然橡胶大30%左右,也是做其它滚轮比较理想的弹性体。采用的丁腈胶台湾南帝(NANCAR)系列、日本合成橡胶公司(JSR)系列,日本瑞翁公司丁腈橡胶,硬度可以在邵氏20~100 ° A调制。 三元乙丙橡胶(EPDM) 三元乙丙橡胶作为半通用合成橡胶,其使用温度范围-55~150℃之间。三元乙丙橡胶具有突出的耐臭氧性、耐侯性、耐水性、耐热性、耐蒸汽、耐化学药品(如氨水、酒精、双氧水、盐、硫酸、烧碱、石灰等)性能。适用于高要求的高速水墨印刷辊及化工、电镀、电子、纺织、染整、丝光和人造革类所用胶辊等使用。 氯丁橡胶(CR) 30年代美国公司生产的氯丁橡胶,改变了人们对橡胶易燃特点的看法,氯丁橡胶作为一种通用型特种橡胶,耐油性次于丁腈橡胶,优于通用橡胶,具有耐燃性、耐臭氧性、耐热老化性优异,耐化学品性能好,透气率小,其弹性与通用橡胶相当。适用于印刷类胶辊、耐碱类浆纱辊、浆染胶辊等使用。 氯磺化聚乙烯/海泊隆(CSM)

用于农业轮胎胎面胶的补强树脂

用于农业轮胎胎面胶的补强树脂 Bonnie L.Stuck 等著 周伊云摘译 涂学忠校 摘要 最近的研究表明,添加酚醛补强树脂和亚甲基给予体的交联剂,能提高必须耐石块或粗糙路面刺扎的拖拉机和其它农用车辆轮胎胎面胶的刚度和硬度,并能避免对胶料加工性能产生不良影响。本研究的目标是提高胎面胶的硬度/刚度和抗撕裂性能,同时对胶料加工性能不产生不良影响。 形酚醛树脂是苯酚和甲醛在酸性条件下生成的(见图1)。这里的苯酚可以是烷基苯酚或苯酚和烷基苯酚的混合物。线形酚醛树脂的甲醛与苯酚的摩尔比小于1。 R OH +CH 2O 酸 R OH R OH h e e n R OH 图1 线形酚醛树脂的生成 线形酚醛树脂是热塑性树脂,在温度升 高时能够软化。增粘树脂和补强树脂均是线形酚醛树脂在不同条件下生成的产物。通常,增粘树脂具有线形结构,而补强树脂具有支化结构。补强树脂必须与亚甲基给予体如六亚甲基四胺(HM T )或六甲氧基甲基蜜胺(HMMM )交联,以使它们具有热固性和补强性。 热固性酚醛树脂是苯酚和甲醛在碱性条件下生成的(见图2)。这里的苯酚是烷基苯酚。热固性酚醛树脂的甲醛与苯酚的摩尔比大于1。热固性树脂是热反应型的。粘合和硫化树脂均是热固性酚醛树脂在不同条件下 R OH +CH 2O 碱 HO R OH O e c t h e n R OH OH 图2 热固性酚醛树脂的生成 生成的产物。轮胎用的IIR 硫化胶囊通常用 这种树脂硫化,因为它赋予IIR 硫化胶囊优异的耐热性和耐蒸汽老化性能。1 线形酚醛补强树脂 要求高强度/刚度的胶料通常加工困难,因为胶料中补强填料(如炭黑或白炭黑)的填充量高。用线形酚醛树脂和亚甲基给予体(如HM T )部分替代补强填料,胶料比较容易加工,且能保持甚至提高胶料的硬度/刚度。 酚醛补强树脂/亚甲基给予体与高填充量的补强填料相比,前者在加工温度下可流动,后者因粘度高导致加工困难;而与高苯乙烯树脂相比,前者在高温下形成保持硬度的永久性交联键,后者在温度升高时不能保持原有硬度。 加工性能得到改善是由于酚醛补强树脂是热塑性的,在加工温度下胶料具有塑性,在胶料硫化时酚醛补强树脂与亚甲基给予体HM T 或HMMM 交联。因为酚醛补强树脂/ 亚甲基给予体体系是永久性交联,所以在高温下它仍保持了补强性能,而其它树脂,例如高苯乙烯树脂不能交联,在高温下会变软。 在橡胶配方中添加与亚甲基给予体交联 61 轮 胎 工 业 1998年第18卷 在橡胶工业中,酚醛树脂长期以来被用 作增粘剂、补强剂或硫化剂。酚醛增粘剂能够用于大多数有良好粘合性能的胶料中,酚醛补强树脂用于高刚度和高硬度配方中,而酚醛硫化树脂通常用于硫化耐高温的IIR 中。 酚醛树脂可分成两大类:线形酚醛树脂(Novolaks )和热固性酚醛树脂(Resols )。线

橡胶配方大全

橡胶配方设计的原则 橡胶配方设计的原则可以概况如下: 1、保证硫化胶具有指定的技术性能,使产品优质; 2、在胶料和产品制造过程中加工工艺性能良好,使产品达到高产; 3、成本低、价格便宜; 4、所用的生胶、聚合物和各种原材料容易得到; 5、劳动生产率高,在加工制造过程中能耗少; 6、符合环境保护及卫生要求; 任何一个橡胶配方都不可能在所有性能指标上达到全优。在许多情况下,配方设计应遵循如下设计原则: ① 在不降低质量的情况下,降低胶料的成本; ②在不提高胶料成本的情况下,提高产品质量。要使橡胶制品的性能、成本和加工工艺可行性三方面取得最佳的综合平衡。用最少物质消耗、最短时间、最小工作量,通过科学的配方设计方法,掌握原材料配合的内在规律,设计出实用配方。橡胶配方的表示形式 天然橡胶(NR)基础配方

注:硫化时间为140℃×10min,20min,40min,80min。NBS为美国国家标准局编写 丁苯橡胶(SBR)基础配方 Phr指每百质量份橡胶的分量数 注:硫化时间为145℃×25min,35min,50min 氯丁橡胶(CR)基础配方 注:硫化时间为150℃×15min,30min,60min 丁基橡胶(IIR)基础配方

注:硫化时间为150℃×20min,40min,80min;150℃×25min,50min,100min 丁腈橡胶(NBR)基础配方 注:硫化时间为150℃×10min,20min,80min 顺丁橡胶(BR)基础配方 注:硫化时间为145℃×25min,35min,50min 异戊橡胶(IR)基础配方 注:硫化时间为15℃×20min,30min,40min,60min。纯胶配方采用天然橡胶基础配方。 三元乙丙橡胶(EPDM)基础配方

混炼硅橡胶常见问题及解决方法

混炼硅橡胶常见问题及解决方法 1、生胶吃粉慢 原因:1、生胶分子量偏高,2、DMC中含有三官能基团轻微交联的硅橡胶生胶处理:1、选择合适的生胶分子量或降低生胶分子量使用 2、在混炼时适当添加500cs~1000cs二甲基硅油或低分子或水 2、混炼胶透明度差 原因:1、白炭黑颗粒粗难分散。 2、低分子未除尽,硫化胶内有雾状 3、包辊遍数不够 4、原材料存脏物 5、环境卫生差 6、设备密封差,抽真空时脏物进入胶中 7、热炼时高温时间短 8、充氮气操作不当 3、胶外观不一致 原因:1、白炭黑批次间出现色差 2、冷炼时间不一致 3、辅料外观有差异 处理: 1、热炼时间,温度要统一 2、留意白炭黑批次之间的色差,出现后及时更换 3、发货时应将同一时间的胶料发出,以防胶料存储时间长与空气发生反应,胶变色。 4、原材料统一 4、胶料不包辊 原因:1、胶料塑性值高2、辊温过低 处理:1、提高辊温,关闭冷却水

2、控制适当炼胶时间 3、加入适当助剂 5、回弹性差 原因:1、生胶乙烯基配方不合理2、助剂过多 3、开炼时间不够,白炭黑与生胶浸润差 4、冷炼温度高 处理: 1、适量加入多乙烯基硅油,提高乙烯基 2、分散剂量适当 3、白炭黑吃完后,冷炼延长至45min 4、保证冷炼温度 6、撕裂强度差 原因: 1、生胶乙烯基不合理 2、白炭黑粗,比表面积小 3、硫化不熟 4、胶发脆 处理: 1、用多乙烯基硅油或选用乙烯基生胶调整乙烯基含量 2、更换白炭黑填料,选用比表面积大,性能好的白炭黑,更换质量档次高的产品 3、调整硫化剂量和硫化时间 4、降低乙烯基,用甲基硅油或低乙烯基生胶调整 7、胶粘 原因:1、生胶聚合不好,低分子物过多,或生胶分子量过低 2、抽真空不好 3、助剂量过大

橡胶国家标准大全

橡胶国家标准大全 No. 标准编号标准名称 1 GB/T 10541-2003 近海停泊排吸油橡胶软管 2 GB/T 19090-200 3 矿用输送空气和水的织物增强橡胶软管及软管组合件 3 GB 7542-2003 铁路机车车辆制动用橡胶软管 4 GB/T 10546-2003 液化石油气(LPG)用橡胶软管和软管组合件散装输送用 5 GB/T 15329.1-2003 橡胶软管及软管组合件织物增强液压型第1部分: 油基 流体用 6 GB/T 18950-2003 橡胶和塑料软管静态下耐紫外线性能测定 7 GB/T 5566-2003 橡胶或塑料软管耐压扁试验方法 8 GB/T 19228.3-2003 不锈钢卡压式管件用橡胶O型密封圈 9 GB 4491-2003 橡胶输血胶管 10 GB/T 19089-2003 橡胶或塑料涂覆织物耐磨性的测定马丁达尔法 11 GB/T 19208-2003 硫化橡胶粉 12 GB/T 13460-2003 再生橡胶 13 GB/T 11409.9-2003 橡胶防老剂、硫化促进剂盐酸不溶物含量的测定 14 GB/T 11409.6-2003 橡胶防老剂、硫化促进剂表观密度的测定 15 GB/T 11409.3-2003 橡胶防老剂、硫化促进剂软化点的测定 16 GB 4655-2003 橡胶工业静电安全规程 17 GB/T 5009.64-2003 食品用橡胶垫片(圈)卫生标准的分析方法 18 GB/T 5009.66-2003 橡胶奶嘴卫生标准的分析方法 19 GB/T 5009.79-2003 食品用橡胶管卫生检验方法 20 GB/T 5009.152-2003 食品包装用苯乙烯—丙烯腈共聚物和橡胶改性的丙烯腈 —丁二烯—苯乙烯树脂 及其成型品中残留丙烯腈单体的测定 21 GB/T 1698-2003 硬质橡胶硬度的测定 22 GB/T 1699-2003 硬质橡胶马丁耐热温度的测定 23 GB/T 18943-2003 多孔橡胶与塑料动态缓冲性能测定 24 GB/T 18944.1-2003 高聚物多孔弹性材料海绵与多孔橡胶制品第1部分: 片 材 25 GB/T 18946-2003 橡胶涂覆织物橡胶与织物粘合强度的测定直接拉力法 26 GB/T 18951-2003 橡胶配合剂氧化锌试验方法 27 GB/T 18952-2003 橡胶配合剂硫磺试验方法 28 GB/T 18953-2003 橡胶配合剂硬脂酸定义及试验方法 29 GB/T 7760-2003 硫化橡胶或热塑性橡胶与硬质板材粘合强度的测定90° 剥离法 30 GB/T 7762-2003 硫化橡胶或热塑性橡胶耐臭氧龟裂静态拉伸试验 31 GB/T 4500-2003 橡胶中锌含量的测定原子吸收光谱法 32 GB/T 11202-2003 橡胶中铁含量的测定1,10-菲罗啉光度法 33 GB/T 9881-2003 橡胶术语 34 GB/T 12587-2003 橡胶或塑料涂覆织物抗压裂性的测定 35 GB/T 7755-2003 硫化橡胶或热塑性橡胶透气性的测定

炭黑_白炭黑双相填料的研究

炭黑-白炭黑双相填料的研究 王梦蛟等著 吴秀兰摘译 涂学忠校 摘要 炭黑-白炭黑双相填料是一种独特的橡胶补强填料,特别适用于轮胎。基于对这种新材料特性的了解,特别是其填料-填料相互作用较低、聚合物-填料相互作用及胶料中不同配合剂间的相互作用较高,对其在胎面胶,尤其是轿车轮胎胎面胶中的应用进行了研究。结果表明,与炭黑和白炭黑胶料相比,新填料对胶料滞后损失和耐磨性能的平衡改进很大,胶料tan 值在低温下较高,在高温下较低,同时耐磨性能有所提高。至于轮胎使用性能,用这种填料可大大降低滚动阻力,同时提高耐磨性能并保持牵引性能。此外,其优良的加工性能和相对白炭黑胶料偶联剂用量减小,可产生很大的经济效益。 在本炭黑-白炭黑双相(CSDP)填料系列研究的第1部分中定性分析了这种新材料,发现它由微粒白炭黑相分散于炭黑相中的两部分组成。 与普通炭黑相比,CSDP填料有白炭黑质量分数高、表面粗糙和着色强度低的特点。从配合的观点看,双相填料的特点是,填料聚合物的相互作用比同样白炭黑质量分数的炭黑和白炭黑物理混合物强,填料-填料的相互作用比普通炭黑和比表面积相差不大的白炭黑弱。 采用这种新填料的硫化胶,特别是加入偶联剂以后,其滞后损失可得到大大改善,tan 值在高温下较低,在低温下较高,这使其耐磨性能可与相应的炭黑胶料相比。 从上述讨论可以看出,尽管这种填料可以用于多种轮胎部件以改进总体使用性能,但它特别适用于胎面胶。下面将讨论商品化CSDP 填料Ecoblack牌CRX2000在轿车轮胎胎面胶中的应用。 1 实验 1 1 原材料 本研究所用填料为CSDP填料A,以2种普通填料,即炭黑N234(卡博特的Vulcan牌7H)及白炭黑B(罗纳-普朗克公司的Zeosil牌1165M P)为对比填料,其性能分析结果见表1。 本研究所用橡胶S-SBR(Duradene715)和BR(T aktene1203)的微观结构见表2。 1 2 配合 轿车轮胎胎面胶配方见表3,为了进行比较,其中还包括一个典型的白炭黑配方和一个 表1 填料的性能分析结果 项 目CSDP填料A炭黑N234白炭黑B 硅质量分数(灰烬分析) 4.770.03 比表面积(N 2 )/(m2 g-1)154.3123.3165 比表面积(ST SA)/ (m2 g-1)121.4120.5 CDBP/[mL (100g)-1]100.3100.7 表2 试验用橡胶微观结构 项 目S-SBR BR 商品名Duradene715Taktene1203聚合类型溶聚溶聚 结合苯乙烯质量分数0.235 乙烯基质量分数0.46 门尼粘度[M L(1+4)100 ]6040 玻璃化温度T g / -35-100 注:T g 由5%DSA和10Hz条件下G 的转折点测定。炭黑N234对比配方。胶料采用三段混炼工艺混炼(见表4)。白炭黑胶料采用工艺A,炭黑N234和CSDP填料胶料采用工艺B。物理性能测试用胶料硫化至按XDR硫化仪测得的t90调节的最佳硫化程度。 1 3 性能测试 根据前述方法测定诸如结合胶含量、胶料的硫化特性、应力-应变性能、耐磨性和粘弹性等填充胶料和硫化胶的性能。 2 结果与讨论 除聚合物外,所用的加工助剂(油)、防老化体系和硫化体系与普通炭黑胶料类似。 为确保良好的耐磨性和较好的动态性能,还需采用一定量的偶联剂(如T ESPT等),以进一步加强聚合物-填料的相互作用,减小填料

硅橡胶混炼工艺

硅橡胶混炼工艺 硅橡胶混炼工艺: 1.开炼机混炼 双辊开炼机辊筒速比为1.2~1.4:为宜,快辊在后,较高的速比导致较快的混炼,低速比则可使胶片光滑。辊筒必须通有冷却水,混炼温度宜在40℃以下,以防止焦烧或硫化剂的挥发损失。混炼时开始辊距较小(1~5mm),然后逐步放大。加料和操作顺序:生胶(包辊)—→补强填充剂—→结构控制剂—→耐热助剂—→着色剂等—→薄通5次—→下料,烘箱热处理—→返炼—→硫化剂—→薄通—→停放过夜—→返炼—→出片。胶料也可不经烘箱热处理,在加入耐热助剂后,加入硫化剂再薄通,停放过夜返炼,然后再停放数天返炼出片使用。混炼时间为20~40分钟(开炼机规格为φ250mm×620mm)。如单用沉淀白炭黑或弱补强性填充剂(二氧化钛、氧化锌等)时,胶料中可不必加入结构控制剂。应缓慢加入填料,以防止填料和生胶所形成的球状体浮在堆积胶的顶上导致分散不均。如果要加入大量的填料,最好是分两次或三次加入,并在其间划刀,保证良好的分散。发现橡胶有颗粒化的趋势,可收紧辊距以改进混炼。落到接料盘上的胶粒应当用刷子清扫并收集起来,立即返回炼胶机的辊筒上,否则所炼胶料中含有胶疙瘩而导致产品外观不良。增量性填料应当在补强性填料加完之后加入,可采用较宽的辊距。装胶容量(混炼胶):φ160mm×320mm 炼胶机为1~2 kg;φ250mm×620mm炼胶机为3~5kg。硅橡胶在加入炼胶机时包慢辊(前辊),混炼时则很快包快辊(后辊),炼胶时必须能两面操作。由于硅橡胶胶料比较软,混炼时可用普通赋子刀操作,薄通时不能象普通橡胶那样拉下薄片,而采用钢、尼龙或耐磨塑料刮刀刮下。为便于清理和防止润滑油漏入胶内,应采用活动挡板。气相白炭黑易飞扬,对人体有害,应采取相应的劳动保护措施。如在混炼时直接使用粉状过氧化物,必须采取防爆措施,最好使用膏状过氧化物。如在胶料中混有杂质、硬块等,可将混炼胶再通过滤胶机过滤,过滤时,一般采用80~140目筛网采用开炼机混炼,它包括:1)包辊:生胶包于前辊;2)吃粉过程:把需要加入的助剂按照一定的顺序加入,加入时要注意堆积胶的体积,少了难于混合,多了会打滚不容易混炼。吃粉后会包后辊。其中加料顺序一般为:生胶→补强剂→结构控制剂→耐热助剂;3)翻炼过程:能更好、更快、更均匀的混炼。刀法:a、斜刀法(八把刀法)b、三角包法; c、打扭操作法;d、捣胶法(走刀法)还要考虑的问题有,开炼机的装胶容量;辊筒的温度:小于50度;混炼时间:没有具体的规定,看操

几种常用橡胶性能比较

天然橡胶(NR ) 天然橡胶由三叶树采集制成的弹性体,机械强度高、耐磨、耐压、伸长率高、弹性高、滞后损失小,能耐多次屈挠弯曲变形,适合纸厂、木业、家具、涂布、输送等胶辊应用。本厂天然橡胶分别使用印度尼西亚、泰国和海南三种产地,硬度可以在邵氏3 0 ~10 0 ° A 调制。 丁腈橡胶(NBR ) 首先由德国在30年代研制而成,因含丙烯腈,所以对矿物油、动植物油、液体燃料和脂肪族溶剂有较高的稳定性,耐油性是丁腈橡胶最大的特长。耐热性能好,能耐一般化学品优于通用橡胶。配合法国特种油膏,着墨性能优。广泛用于印刷类胶辊,配合耐酸碱物质、耐热剂,用于浆染、印染、砂辊。因耐磨性能比天然橡胶大30% 左右,也是做其它滚轮比较理想的弹性体。采用的丁腈胶台湾南帝(NANCAR )系列、日本合成橡胶公司(JSR)系列,日本瑞翁公司丁腈橡胶,硬度可以在邵氏20 ~100 ° A 调制。 三元乙丙橡胶(EPDM ) 三元乙丙橡胶作为半通用合成橡胶,其使用温度范围-55 ~150 ℃之间。三元乙丙橡胶具有突出的耐臭氧性、耐侯性、耐水性、耐热性、耐蒸汽、耐化学药品(如氨水、酒精、双氧水、盐、硫酸、烧碱、石灰等)性能。适用于高要求的高速水墨印刷辊及化工、电镀、电子、纺织、染整、丝光和人造革类所用胶辊等使用。 氯丁橡胶(CR ) 30年代美国公司生产的氯丁橡胶,改变了人们对橡胶易燃特点的看法,氯丁橡胶作为一种通用型特种橡胶,耐油性次于丁腈橡胶,优于通用橡胶,具有耐燃性、耐臭氧性、耐热老化性优异,耐化学品性能好,透气率小,其弹性与通用橡胶相当。适用于印刷类胶辊、耐碱类浆纱辊、浆染胶辊等使用。 氯磺化聚乙烯/ 海泊隆(CSM ) 氯磺化聚乙烯作为专用合成橡胶,不变色,耐磨耗、耐侯性、耐臭氧优异,耐热性能好,连续使用温度120 ~140℃,间接温度140 ~160℃,耐燃烧,离开火焰自行熄火,耐油性次于丁腈抗撕裂胶辊,耐油耐生热胶辊。 硅橡胶(Q ) 作为有机硅系列,本企业长期以来使用比较有质量保证的美国“道康宁”、日本“信越”、韩国“海龙”等硅橡胶,其耐寒耐热性能优异,能在-50~300 ℃温度范围内长期使用,具有最佳的热溶胶防粘性、优越的生物相溶性和防静电性能,完全符合国家卫生标准。适用于制作高低温设备输送辊;医疗、卫生、食品、办公机械设备胶辊;压延防粘(热熔胶涂布、制革等)、防静电(薄膜、植绒等)胶辊上使用,通用硬度在40 ~80 ° A 之间为优。 各常用橡胶性能比较Different characters of various kind rubbers

溶聚丁苯橡胶在轮胎胎面胶中的应用研究

溶聚丁苯橡胶在轮胎胎面胶中的应用研究 邹明清 蔡大扬 李永炽 (广州珠江轮胎有限公司 510828) 摘要 对溶聚丁苯橡胶(引进西班牙技术制造的SBR1204)和乳聚丁苯橡胶(国产SBR1500)进行了对比试验。结果表明,与使用SBR1500的胶料相比,使用SBR1204的胶料,硫化起步快,硫化速度快;压缩疲劳温升低,压缩永久变形小,老化前后磨耗量稍小;工艺性能正常。在此基础上又用含这两种橡胶的胶料作胎面胶制造了一批试验胎进行实际里程试验,结果证明用含SBR1204的胎面胶制造的轮胎的行驶里程及累计磨耗均比用含SBR1500的胎面胶制造的轮胎高。 关键词 溶聚丁苯橡胶,乳聚丁苯橡胶,轮胎,胎面胶 溶聚丁苯橡胶(S2SBR)具有非橡胶成分少、支链少、不含凝胶、相对分子质量分布窄等特点。同时,由于其分子结构中含有一定质量分数的1,22结构,因此它是一种综合性能较好的通用SR。S2SBR具有滚动阻力低、抗湿滑性好的特点,故在国外使用较为普遍。受茂名永业公司之托,我们对其以引进的西班牙技术制造的S2SBR在轮胎胎面胶中进行了应用试验。 1 实验 111 主要原材料 乳聚丁苯橡胶,牌号SBR1500,吉林化学工业公司产品;S2SBR,牌号SBR1204,茂名永业公司产品。 SBR1500和SBR1204化学分析结果见表1。胶料物理性能试验结果见表2。 112 基本配方 小配合试验和大料试验用胎面胶基本配方为:NR/BR/SBR 40/40/20;硫化剂 216;炭黑N220 55;活性剂 7;防老剂 310;软化剂 8;其它 1314,合计189。生胶中SBR分别为SBR1500和SBR1204。 113 主要设备与仪器 XK160开炼机;F270密炼机;XM140L/30密炼机;140t平板硫化机;孟山都R2100S硫化仪;ZND21自动门尼粘度计;XQ2250橡胶拉力 作者简介 邹明清,男,1966年出生。工程师。1989年毕业于华南工学院(现华南理工大学)高分子系橡胶工程与塑料工程专业。从事轮胎配方设计、原材料应用开发、胶料质量管理等工作。已发表论文十余篇。 表1 化学分析结果 项 目SBR1500SBR1204 门尼粘度[ML(1+4)100℃]5056 外观棕红色块状白色块状 挥发分质量分数×103211219 灰分质量分数×1031190 注:按G B8655—88进行测定。 表2 胶料物理性能试验结果 项 目SBR1500SBR1204 硫化时间(145℃)/min35503550 拉伸强度/MPa2716301318162218 300%定伸应力/MPa711915813915 扯断伸长率/%684620500548 邵尔A型硬度/度71727475 注:试验配方:生胶 100;硫黄 1175;促进剂NS 110;氧化锌 310;硬脂酸 110;炭黑 50。 试验机;MH274磨耗机;YS2252Ⅱ压缩疲劳试验机;T/B&P/C轮胎试验机。 114 试样制备 小配合试验胶料混炼在XK160开炼机上进行。大料试验胶料一段混炼在F270密炼机,二段加硫黄在XM140L/30密炼机上进行。115 测试 胶料性能按G B/T528—92和G B/T 1232—92测定;对成品胎进行解剖和耐久性能试验,成品胎耐久性能试验在机床上按常规方法跑坏为止。 2 结果与讨论 211 小配合试验 小配合试验结果见表3。 325 第9期 邹明清等1溶聚丁苯橡胶在轮胎胎面胶中的应用研究

橡胶的工艺流程解析

橡胶的工艺流程(精品) 2014-10-22橡胶技术网 橡胶工艺流程开始 1 综述 橡胶制品的主要原料是生胶、各种配合剂、以及作为骨架材料的纤维和金属材料,橡胶制品的基本生产工艺过程包括塑炼、混炼、压延、压出、成型、硫化6个基本工序。 橡胶的加工工艺过程主要是解决塑性和弹性矛盾的过程,通过各种加工手段,使得弹性的橡胶变成具有塑性的塑炼胶,在加入各种配合剂制成半成品,然后通过硫化是具有塑性的半成品又变成弹性高、物理机械性能好的橡胶制品。 2 橡胶加工工艺 2.1塑炼工艺 生胶塑炼是通过机械应力、热、氧或加入某些化学试剂等方法,使生胶由强韧的弹性状态转变为柔软、便于加工的塑性状态的过程。 生胶塑炼的目的是降低它的弹性,增加可塑性,并获得适当的流动性,以满足混炼、亚衍、压出、成型、硫化以及胶浆制造、海绵胶制造等各种加工工艺过程的要求。

掌握好适当的塑炼可塑度,对橡胶制品的加工和成品质量是至关重要的。在满足加工工艺要求的前提下应尽可能降低可塑度。随着恒粘度橡胶、低粘度橡胶的出现,有的橡胶已经不需要塑炼而直接进行混炼。 在橡胶工业中,最常用的塑炼方法有机械塑炼法和化学塑炼法。机械塑炼法所用的主要设备是开放式炼胶机、密闭式炼胶机和螺杆塑炼机。化学塑炼法是在机械塑炼过程中加入化学药品来提高塑炼效果的方法。 开炼机塑炼时温度一般在80℃以下,属于低温机械混炼方法。密炼机和螺杆混炼机的排胶温度在120℃以上,甚至高达160-180℃,属于高温机械混炼。 生胶在混炼之前需要预先经过烘胶、切胶、选胶和破胶等处理才能塑炼。 几种胶的塑炼特性: 天然橡胶用开炼机塑炼时,辊筒温度为30-40℃,时间约为 15-20min;采用密炼机塑炼当温度达到120℃以上时,时间约为3-5min。 丁苯橡胶的门尼粘度多在35-60之间,因此,丁苯橡胶也可不用塑炼,但是经过塑炼后可以提高配合机的分散性顺丁橡胶具有冷流性,缺乏塑炼效果。顺丁胶的门尼粘度较低,可不用塑炼。 氯丁橡胶得塑性大,塑炼前可薄通3-5次,薄通温度在30-40℃。 乙丙橡胶的分子主链是饱和结构,塑炼难以引起分子的裂解,因此要选择门尼粘度低的品种而不用塑炼。

橡胶混炼的相关知识

橡胶混炼的相关知识 1.橡胶为什么要塑炼 橡胶塑炼目的在于使橡胶在机械、热、化学等作用下切短大分子链,使橡胶暂时失去其弹性而使可塑性增大,以满足制造过程中的工艺要求。如:使配合剂易于混入,便于压延压出,模压花纹清楚,形状稳定,增加压型、注压胶料的流动性,使胶料易于渗入纤维,并能提高胶料溶介性及粘着性。当然一些低粘度、恒粘度橡胶有时也不一定塑炼,国产标准颗粒胶,标准马来西亚橡胶(SMR)。 2.哪些因素影响橡胶在密炼机中塑炼 密炼机塑炼生胶是属于高温塑炼,温度最低在120℃以上,一般是在155℃—165℃间。生胶在密炼机腔内受高温和强机械作用,产生剧烈氧化,能在较短的时间里获得理想可塑度。因此影响密炼机进行生胶塑炼因素主要有: (1)设备技术性能,如转速等, (2)工艺条件,如时间、温度、风压及容量等. 3. 为什么各种橡胶的塑炼特性都不一样 橡胶的塑炼与其化学组成,分子结构,分子量及分子量分布有着密切联系。天然橡胶和合成橡胶由于结构和性能上的不同特点,一般说来天然胶塑炼比较容易,合成胶塑炼比较困难。就合成胶而言异戊胶,氯丁胶近于天然胶,丁苯胶,丁基胶次之,丁腈胶最困难。4.为什么用生胶可塑性作为塑炼胶的主要质量标准 生胶的可塑性是关系到制品整个制造过程进行的难易,直接影响到硫化胶的物理机械性能及制品使用性能的重要性质。若生胶可塑性过高,会使硫化胶的物理机械性能降低。而生胶可塑度过低,则会造成下工艺加工的困难,使胶料不易混炼均匀,压延,压出时半成品表面不光滑,收缩率大,不易掌握半成品尺寸,在压延时胶料也难于擦进织物中,造成挂胶帘布掉皮等现象,大大降低布层间附着力。可塑性不均则会造成胶料的工艺性能和物理机械性能不一致,甚至影响制品使用性能不一致。因此正确掌握生胶可塑性是一个不可忽视的问题。5.混炼的目的是什么 混炼就是按照胶料配方规定的配合剂的比例,将生胶和各种配合剂通过橡胶设备混合在一起,并使各种配合剂均匀地分散在生胶之中。胶料进行混炼的目的就是要获得物理机械性能指标均匀一致,符合配方规定的胶料性能指标,以利于下工艺操作和保证成品质量要求。6.配合剂为什么会结团 造成配合剂结团原因有:生胶塑炼不充分,辊距过大,辊温过高,装胶容量过大,粉类配合剂中含有粗粒子或结团物,凝胶等造成。改进的办法就是针对具体情况采取:充分塑炼,适当调小辊距,降低辊温,注意加料方法;粉剂进行烘干和筛选;混炼时切割要适当。7.胶料中炭黑用量过多为什么会产生“稀释效应” 所谓“稀释效应”就是由于在胶料配方中,炭黑的用量过多,橡胶在数量上相对地减少,导致炭黑粒子间的紧密接触,而不能在胶料中很好的分散,这即是“稀释效应”。这样因为有许多大颗粒炭黑粒团的存在,橡胶分子无法穿透到炭黑粒团里面去,橡胶与炭黑相互作用减少,强力下降而达不到预期的补强效果。 8.炭黑的结构性对胶料的性能有什么影响 炭黑是由烃类化合物经热分解而生成的。当原料为天然气(其组分以脂肪烃为主)时,则形成碳的六元环;当原料为重油(芳香烃含量较高)时,因已含有碳的六元环,则进一步脱氢缩合形成多环式芳香族化合物,从而生成碳原子的六角形网状结构层面,这种层面3—5个重叠则成为晶子。炭黑的球形粒子就是由几组没有一定标准定向的这种晶子所组成的无定形结晶体。晶子周围含有不饱和的自由键,这种键使炭黑粒子彼此凝聚,形成多少不等的分支

相关文档
相关文档 最新文档