文档库 最新最全的文档下载
当前位置:文档库 › 拉格朗日定理证明中辅助函数的构造

拉格朗日定理证明中辅助函数的构造

拉格朗日定理证明中辅助函数的构造
拉格朗日定理证明中辅助函数的构造

拉格朗日定理证明中辅助函数的构造

作者:徐娟

作者单位:扬州工业职业技术学院基础部

刊名:

内江科技

英文刊名:NEIJIANG KEJI

年,卷(期):2008,29(8)

被引用次数:0次

参考文献(3条)

1.华东师范大学教学系数学分析

2.贯平杰从拉格朗日订立证明方法谈引入辅助函数 2000(06)

3.刘铮航关于拉格朗日中值定理的证明[期刊论文]-天津商学院学报 2005(03)

相似文献(10条)

1.期刊论文赵珍拉格朗日定理在证明不等式中的妙用-数学教学研究2005,""(2)

高中数学新教材中增加了近、现代数学思想,这为中学传统的数学内容注入了活力,也为解决一些初等数学问题的方法提供了广度.在初等数学中,有些不等式在结构上与微积分中的拉格朗日定理的结论相似,但用初等数学的方法证明却难度大而繁琐.如果运用构造法巧妙地构造一个函数,再利用拉格朗日定理及不等式的变形,就可以使要证明的不等式得到简单、快捷的证明.

2.期刊论文韦彦源再论微分学基本定理-和田师范专科学校学报(汉文综合版)2006,26(2)

微分学基本定理-拉格朗日定理是微分学的理论基础,从它出发可以导出一系列的重要命题和定理,从而使微分学在更广的范围内起着极其重要的作用,本文利用拉格朗日定理证明了积分学上的几个结论,说明拉格朗日定理在积分学中也有广泛的应用.

3.期刊论文刘大瑾微分学基本定理与定积分-泰州职业技术学院学报2004,4(6)

微分学基本定理-拉格朗日定理是微分学的理论基础,从它出发可以导出一系列的重要命题和定理,从而使微分学在更广的范围内起着极其重要的作用,本文利用拉格朗日定理证明了积分学上的几个结论,说明拉格朗日定理在积分学中也有广泛的应用.

4.期刊论文黄济友.王宜洁.HUANG Ji-you.WAN Yi-jie拉格朗日中值定理的新证明-闽江学院学报2005,25(2)

本文给出拉格朗日定理的一种新的证明方法以及与拉格朗日定理相关的问题:对于y=f(x),x∈(a,b),是否对任意的ζ∈(a,b)都存在x1,x2∈(a,b),使f'(ζ)=f(x2)-f(x1)/x2-x1?本文讨论并证明了ζ为凸性点时,上述x1,x2存在.

5.期刊论文林忠.LIN Zhong拉格朗日定理证明与辅助函数的应用-天津职业院校联合学报2006,8(5)

微分中值定理的证明和应用,大量采用了辅助函数.通过分析各种教科书对拉格朗日定理证明中引用辅助函数的和典型题目的研究,试图找出构造辅助函数的内在规律.

6.期刊论文叶道义应用导数证明不等式-安徽技术师范学院学报2003,17(4)

在进行导数的应用的教学中,适当介绍应用有关知识证明不等式,加深学生对导数知识的理解,培养学生分析问题和解决问题的能力.本文从三个方面进行了介绍,供参考.

7.期刊论文张家秀关于构造辅助函数的几种方法--谈微分中值定理的证明-高等理科教育2003,""(3)

本文总结了证明微分中值命题时常用的五种构造辅助函数的方法,并给出了具体应用.

8.期刊论文毕永青拉格朗日中值定理的简单证明与应用-河南教育学院学报(自然科学版)2002,11(3)

本文通过构造函数给出了拉格朗日中值定理的简单证明,以及此定理在微分学中的应用.

9.期刊论文文香丹.Wen Xiangdan证明微分中值定理时构造辅助函数的问题-林业科技情报2005,37(4)

本文力图通过微分中值定理证明过程中引入辅助函数的几何构思的辨析,帮助读者理解和认识微分中值定理.

10.期刊论文王振林.Wang Zhenlin浅谈微分中值定理的应用-太原科技2001,""(4)

介绍了常用的微分中值定理罗尔定理、拉格朗日定理、柯西定理,论述微分中值定理在证明方程根的存在性、证明等式、证明不等式、研究函数的性态、求近似值或估计误差、求极限等6个方面的应用,从而加深对微分中值定理的理解.

本文链接:https://www.wendangku.net/doc/9a7579829.html,/Periodical_neijkj200808032.aspx

授权使用:中共汕尾市委党校(zgsw),授权号:943af0f5-b0a7-4ddb-8f90-9dca015cf985

下载时间:2010年8月6日

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求 辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 2.1“逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=2 1 21dx x xf f ,证明在][1,0内至少有一点θ,

使()() θθθf f -='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将()() θθθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+='=,可考虑 辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θθθf f -='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;

高中数学课本中的定理公式结论的证明

数学课本中的定理、公式、结论的证明 数学必修一 第一章 集合(无) 第二章 函数(无) 第三章 指数函数和对数函数 1.对数的运算性质: 如果 a > 0 , a 1, M > 0 ,N > 0, 那么 (1)log ()log log a a a MN M N =+; (2)log log -log a a a M M N N =; (3)log log ()n a a M n M n R =∈. 根据指数幂的运算性质证明对数的运算性质 证明:(性质1)设log a M p =,log a N q =,由对数的定义可得 p M a =,q N a =, ∴p q p q MN a a a +=?=, ∴log ()a MN =p q +, 即证得log log log a a a MN M N =+. 证明:(性质2)设log a M p =,log a N q =, 由对数的定义可得 p M a =,q N a =, ∴ q p q p a a a N M -==, ∴q p N M a -=log , 即证得log log -log a a a M M N N =. 证明(性质3)设log a M p =,由对数的定义可得 p M a =, ∴n np M a =, ∴log n a M np =, 即证得log log n a a M n M =.

第四章函数应用(无) 数学必修二 第一章立体几何初步 直线与平面、平面与平面平行、垂直的判定定理与性质定理的证明. 1、直线与平面平行的判定定理 若平面外一条直线与此平面内一条直线平行,则该直线与此平面平行. 2、平面与平面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.

构造辅助函数证明微分中值定理及应用

构造辅助函数证明微分中值定理及应用 摘要:构造辅助函数是证明中值命题的一种重要途径。本文给出了几种辅助函数的构造方法:微分方程法,常数K值法,几何直观法,原函数法,行列式法;并且举出具体例子加以说明。 关键字:辅助函数,微分方程,微分中值定理 Constructing auxiliary function to prove differential median theorem and its copplications

Abstract: Constructing auxiliary function is the important method to prove median theorem. This paper gives several ways of constructing auxiliary function:Differential equation, Constant K, Geometry law, Primary function law, Determinant law;and Gives some specific examples to illustrate how to constructing. Key words: Auxiliary function; Differential equation; Differential median theorem 目录 一:引言 (4) 二:数学分析中三个中值定理 (4) 三:五种方法构造辅助函数 (6) 1:几何直观法 (6)

2:行列式法…………………………………………………………………… .第7页 3:原函数法 (8) 4:微分方程法 (10) 5:常数k值法 (13) 四:结论 (15) 参考文献 (15) 致谢 (16) 一:引言 微分中值定理是应用导数的局部性质研究函数在区间上的整体性质的基本工具,在高等数学课程中占有十分重要的地位,是微分学的理论基础,这部分内容理论性强,抽象程度高,所谓中值命题是指涉及函数(包括函数的一阶导数,二阶导数等)定义区间中值一些命

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论 ()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得 ()()()()()() f b f a g x f x C g b g a -=+-,令0C =,有() ()()()0()()f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

中值定理有关的证明题辅助函数法

与微分中值定理有关的证明题,辅助函数方法介绍 一.积分法 例 设()f x 在[,]a b 上连续,在(,)a b 内可导,试证明:在(,)a b 内至少存在一点ξ, 满足:22[()()]2[]()f b f a b a f ξξ'-?=-? 分析 将求证等式改写为22[()()]2[]()0f b f a b a f ξξ'-?--?= 左端看成一个函数()F x (辅助函数)在ξ处的导数,即令 22()[()()]2[]()F x f b f a x b a f x ''=-?--? 积分得222()[()()][]()F x f b f a x b a f x =-?--? 证明:作辅助函数222()[()()][]()F x f b f a x b a f x =-?--? 22()[()()]2[]()F x f b f a x b a f x ''=-?--? 则()F x 在[,]a b 上连续,在(,)a b 内可导,且 22 ()()()()F a a f b b f a F b =-= 由罗尔定理知:存在(,)a b ξ∈,使()0F ξ'=,即得 22[()()]2[]()f b f a b a f ξξ'-?=-? 说明:(1)由于积分的不唯一性,也可以取 2222 ()[()()]()[](()())F x f b f a x a b a f x f a =----- 由此可得()()0F a F b ==,不但计算更方便,而且对证明更有信心 (2)本题若取2()g x x =,所以()2g x x '= 由柯西中值定理得:存在(,)a b ξ∈, 使得 22()()()2f b f a f b a ξξ '-=- 移项得22[()()]2[]()f b f a b a f ξξ'-?=-? 但是为了应用柯西中值定理,必须假定00a b a b ≤<<≤或,以确保()0g x '≠ 而对0a b <<情况,不能应用柯西中值定理 二.微分方程法(含有求知函数以及未知函数的等式,称为微分方程,课本第6章) 例 设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,求证:在(0,1)内至少存在 一点ξ,满足:2()()0f f ξξξ'+= 分析 本题求证式中不仅含有()f ξ',而且含有()f ξ,对()f ξ是难以直接积分法,像上例的求出一个()F x ,使得它的导数满足()2()()F x f x x f x ''=+常常不可能 由于[()()]()()()()u x f x u x f x u x f x '''=+中既含有含有()f x 又含有()f x ' 与求证式构造已是相同的了,但要使()2()u x u x x '==和同时成立也是不可能的, 解决矛盾的关键,结论中可能约去了一个不等于的的公因子 因为任给一个()0x ?≠,有 2()()0()[2()()]0f f f f ξξξ?ξξξξ''+=?+= 从而求证式等价于2()()()()0f f ?ξξ?ξξξ'+= 上式左端看成一个函数()()()F x u x f x =(辅助函数)在ξ处的导数,即令 ()()()()() 2()()()()F x u x f x u x f x x f x x x f x ??'''=+'=+ 令 () () ()2()()()()2u x u x u x x u x x x x x ???''==?== (说明()f x 与()f x '的系数对应成比例) 所以 () ()222 u x u x du u du dx x dx x u x '=?==分离变量得 22ln ln du dx u x c u x =?=+? ? 得 2u cx = 取1c = 得2u x = 作辅助函数2()()F x x f x =

拉格朗日中值定理

一拉格朗日中值定理 拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。在现实应用当中,拉格朗日中值定有着很重要的作用。拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。 拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻旧,出现创新的一个进程。发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。 用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即 这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则。著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。 在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]任取两点,并且函数在此闭区间是连续的,的 最大值为A,最小值为B,则的值必须是A和B之间的一个值。这是拉格朗日定理最初的证明。 下述就是拉格朗日中值定理所要求满足的条件。 如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)可导;那么这个函数在此开区间至少存在着一点,使得. 拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。 例1:函数

中值定理构造辅助函数

中值定理构造辅助函数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f a g x f x C g b g a -=+-,令0C =,有()()()()0()() f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231 n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+…

高中数学相关定理及证明

高中数学相关定理、公式及结论证明 汉阴中学正弦定理证明 内容:在ABC ?中,c b a ,,分别为角C B A ,,的对边,则.sin sin sin C c B b A a == 证明: 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD , 根据锐角三角函数的定义,有sin CD b A ==sin CD a B 。 由此,得 sin sin a b A B = , 同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = . 从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高, 交AB 的延长线于点D ,根据锐角三角函数的定义, 有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。 由此,得 =∠sin sin a b A ABC ,同理可得 =∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . (3)在ABC Rt ?中,,sin ,sin c b B c a A == ∴ c B b A a ==sin sin , .1sin ,90=?=C C Θ.sin sin sin C c B b A a ==∴ 由(1)(2)(3)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 2.外接圆证明正弦定理 在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心, 连结BO 并延长交圆于B ′,设BB ′=2R.则根据直径所对的圆周 角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′, ∴sin C =sin B ′=R c B C 2sin sin ='=. ∴R C c 2sin =. 同理,可得R B b R A a 2sin ,2sin ==.∴R C c B b A a 2sin sin sin ===. 3.向量法证明正弦定理 a b D A B C A B C D b a

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

高中数学证明公式

高中数学证明公式数学公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式

拉格朗日插值定理证明

拉格朗日插值定理证明 作者:田茂(tianmao999@https://www.wendangku.net/doc/9a7579829.html, ) 已知: 110111212 211()1...()1...*......................()1...N N N N N N N f x a x x f x a x x f x a x x ----??????????????????=???????????????? ??(1) 则有: 01111100()1*....()()() N N N N i i j i i j j i a a f x x x a x a f x a a ----==≠????????=???????? -=-∑∏ (2) 证明过程如下: 由: ()()0i i f x a f a =-=(3) 可知: ()()()()i i f x f a x a g x -=-(4) 即有: ()()mod()i i f x f a x a ≡-(5) 由中国余数定理(CRT )可知: 1()()*()*()n i i i i f x N x M x f a ==∑(6) 式(6)中,()i M x 满足: 1()()n i j j j i M x x a =≠=-∏(7) ()i N x 满足: ()()()()1i i i i N x M x n x x a +-=(8) 即有:

()()1mod ()i i i N x M x x a ≡-(9) 由(7)得: ()()()111()() ()mod()n i j j j i n i i j j j i n i j i j j i M x x a x a a a a a x a =≠=≠=≠=-=-+-≡--∏∏∏(10) 如果要满足式(9),由(10)可知,()i N x 为: ()11 ()i n i j j j i N x a a =≠=-∏(11) 将(7)和(11)代入(6)可得: ()1 1111100()()*()*() 1*()*()()()() n i i i i n n j i n i j i j j i j j i N N i i j i i j j i f x N x M x f a x a f a a a x a f x a a ===≠=≠--==≠==---=-∑∑∏∏∑∏(12) 命题得证。

中值定理构造辅助函数

【第 1 页 共 8页】 微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-g 再两边同时积分得()()()()()() f b f a g x f x C g b g a -=+-g ,令0C =,有()()()()0()()f b f a f x g x g b g a --=-g 故()()()()()()() f b f a F x f x g x g b g a -=--g 为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

微分中值定理怎样构造辅助函数

微分中值定理怎样构造 辅助函数 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

怎样在微分中值定理中构造辅助函数成了解这类题的主要关键,下面介绍怎样构造的方法,还有附带几个经典例题,希望对广大高数考生有所帮助。 先看这一题,已知f(x)连续,且f(a)=f(b)=0,求证在(a ,b )中存在ε使f ’(ε)=f(ε) 证明过程: f ’(ε)=f(ε), 所以f ’(x)=f(x), 让f(x)=y, 所以 y dx dy =,即dx dy y =1,所以对两边简单积分,即??=dx dy y 11,所以解出来(真的是不定积分的话后面还要加个常数C ,但这只是我的经验方法,所以不加)就是x y =ln ,也就是x e y =,这里就到了最关键的一步,要使等式一边为1!,所以把x e 除下来,就是1=x e y ,所以左边就是构造函数,也就是x e y -?,而y 就是f(x),所以构造函数就是x e x f -)(,你用罗尔定理带进去看是不是。再给大家举几个例子。 二、已知f(x)连续,且f(a)=f(b)=0,求证: 在(a ,b )中存在ε使f ’(ε)+2εf(ε)=0 证:一样的, xy dx dy 2-=,把x,y 移到两边,就是xdx dy y 21-=,所以积分出来就是2ln x y -=,注意y 一定要单独出来,不能带ln ,所以就是=y 2x e -,移出1就是,12=x ye 所以构造函数就是2)(x e x f ,再用罗尔定理就出来了。 三、已知f(x)连续,且f(a)=f(-a),求证在(-a ,a )中存在ε使f ’(ε) ε+2f(ε)=0.

罗尔定理与拉格朗日定理的证明与应用

罗尔定理与拉格朗日定理的证明与应用

单位:旅游系 专业:酒店管理 姓名:王姐 学号:1414061039 【摘要】罗尔定理与拉格朗日定理是是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断导数的整体性质的工具。拉格朗日定理存在于多个科学领域之中,其中微积分中的拉格朗日定理即拉格朗日中值定理,又称拉式定理,是罗尔中值定理的推广,同时也是柯西中值定理的特殊情形,是泰勒公式的形式。它在初等数学中有着重要作用,也是一个基础性定理。在许多方面它都有重要的作用 ,在进行一些公式推导与定理证明中都有很多应用。 【关键词】罗尔定理、拉格朗日定理、重要应用。 引言 拉格朗日定理是高等数学的基础,同时也是一个基础性的定理,在高等数学中有着重要作用,要学习和掌握它的证明方法。 罗尔定理:如果函数()f x 满足条件:○ 1在闭区间[,]a b 上连续;○2在开区间(,)a b 内可导;○ 3在区间两个端点的函数值相等,即()()f a f b =,(,)a b ξ∈,使得'()0f ξ=。 罗尔定理的证明:因为函数()f x 在闭区间[,]a b 上连续,所以它在[,]a b 上必能取得最大值M 和最小值m 。 (1)如果M m =,则()f x 在[,]a b 上恒等于常数M ,因此,在整个区间(,)a b 内恒有 '()0f x =,所以,(,)a b 内每一点都可取作ξ,此时定理显然成立。 (2)如果m M <,因()()f a f b =,则数M 与m 中至少有一个不等于端点的函数值()f a ,设()m f a ≠,这就是说,在(,)a b 内至少有一点ξ,使得()f M ξ=。 下面证明'()0f ξ=。 由于()f M ξ=是最大值,所以不论x ?为正或负,恒有()()0f x f x ξ+?-ξ≤?, (,)x a b ξ+?∈。 当0x ?>时,()()0f x f x ξ+?-ξ≤?,有已知条件'()f ξ存在可知,

相关文档
相关文档 最新文档