文档库 最新最全的文档下载
当前位置:文档库 › 密码子

密码子

密码子科技名词定义
中文名称:密码子 英文名称:codon 其他名称:编码三联体(coding triplet,三联体密码(triplet code);三联体密码(triplet code) 定义1:由3个相邻的核苷酸组成的信使核糖核酸(mRNA)基本编码单位。有64种密码子,其中有61种氨基酸密码子(包括起始密码子)及3个终止密码子,由它们决定多肽链的氨基酸种类和排列顺序的特异性以及翻译的起始和终止。 所属学科:生物化学与分子生物学(一级学科);基因表达与调控(二级学科) 定义2:对应于某种氨基酸的核苷酸三联体。在转译过程中决定该种氨基酸插入生长中多肽链的位置。 所属学科:水产学(一级学科);水产生物育种学(二级学科) 定义3:由三个相邻的核苷酸组成的mRNA基本编码单位。有64种密码子,其中有61种氨基酸密码子(包括起始密码子)及3个终止密码子,由它们决定多肽链的氨基酸种类和排列顺序的特异性以及翻译的起始和终止。 所属学科:细胞生物学(一级学科);细胞遗传(二级学科) 定义4:mRNA分子中以三个核苷酸为一组,决定一种氨基酸以及多肽链合成起始与终止的信号。 所属学科:遗传学(一级学科);分子遗传学(二级学科) 本内容由全国科学技术名词审定委员会审定公布
百科名片
密码子密码子codonm,RNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表某一种氨基酸。科学家已经发现,信使RNA在细胞中能决定蛋白质分子中的氨基酸种类和排列次序。也就是说,信使RNA分子中的四种核苷酸(碱基)的序列能决定蛋白质分子中的20种氨基酸的序列。碱基数目与氨基酸种类、数目的对应关系是怎样的呢?为了确定这种关系,研究人员在试管中加入一个有120个碱基的信使RNA分子和合成蛋白质所需的一切物质,结果产生出一个含40个氨基酸的多肽分子。可见,信使RNA分子上的三个碱基能决定一个氨基酸。

目录

定义
特点
遗传密码的起源
编辑本段定义
科学家把信使RNA链上决定一个氨基酸的相邻的三个碱基叫做一个“密码子” 密码子
,亦称三联体密码。 构成RNA的碱基有四种,每三个碱基决定一个氨基酸。从理论上分析碱基的组合有4的3次方=64种,64种碱基的组合即64种密码子。怎样决定20种氨基酸呢?仔细分析20种氨基酸的密码子表,就可以发现,同一种氨基酸可以由几个不同的密码子来决定,启始密码子为AUG(甲硫氨酸) GUG(缬氨酸), 另外还有UAA、UAG、UGA三个密码子不能决定任何氨基酸,是蛋白质合成的终止密码子。 遗传信息、密码子、反密码子的区别与联系 遗传信息是指DNA分子中基因上的脱氧核苷(碱基)排列

顺序,密码子是指信使RNA上决定一个氨基酸的三个相邻碱基的排列顺序,反密码子是指转运RNA上的一端的三个碱基排列顺序。其联系是:DNA(基因)的遗传信息通过转录传递到信使RNA上,转运RNA一端携带氨基酸,另一端反密码子与信使RNA上的密码子(碱基)配对。
编辑本段特点
①. 遗传密码子是三联体密码:一个密码子由信使核糖核酸上相邻的三个碱基组成。 ② 密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。 ③ 遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。 ④ 遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。 ⑤ 密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。 ⑥ 密码子阅读与翻译具有一定的方向性:从5'端到3'端。 ⑦有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸(AUG),一种是缬氨酸(GUG),而终止密码子(有3个,分别是UAA、UAG、UGA)没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来事先翻译的终止。 在信使RNA中,碱基代码A代表腺嘌呤,G代表鸟嘌呤,C代表胞嘧啶,U代表尿嘧啶(注意:RNA与DNA不同,RNA没有胸腺嘧啶T,取而代之的是尿嘧啶U,按照碱基互补配对原则,U与A形成配对)。
编辑本段遗传密码的起源
除了少数的不同之外,地球上已知生物的遗传密码均非常接近;因此根据演化论,遗传密码应在生命历史中很早期就出现。现有的证据表明遗传密码的设定并非是随机的结果,对此有以下的可能解释: 最近一项研究显示,一些氨基酸与它们相对应的密码子有选择性的化学结合力,这显示现在复杂的蛋白质制造过程可能并非一早存在,最初的蛋白质可能是直接在核酸上形成。 原始的遗传密码可能比今天简单得多,随着生命演化制造出新的氨基酸再被利用而令遗传密码变得复杂。虽然不少证据证明这观点,但详细的演化过程仍在探索之中,。 经过自然选择,现时的遗传密码减低了突变造成的不良影响。 尼伦伯格(M.W.Nirenberg,1927—)和马太(H.Matthaei)破译出了第一个遗传密码。 尼伦伯格和马太采用了蛋白质的体外合成技术。他们在每个试管中分别加入一种氨基酸,再加入除去了DNA和mRNA的细胞提取液,以及人工合成的RNA多聚尿嘧啶核苷酸,

结果加入了苯丙氨酸的试管中出现了多聚苯丙氨酸的肽链。实验结果说明,多聚尿嘧啶核苷酸导致了多聚苯丙氨酸的合成,而多聚尿嘧啶核苷酸的碱基序列是由许多个尿嘧啶组成的(UUUUUUUU......),可见尿嘧啶的碱基序列编码由苯丙氨酸组成的肽链。结合克里克得出的3个碱基决定1个氨基酸的实验结论,与苯丙氨酸对应的密码子应该是UUU。在此后的六七年里,科学家沿着蛋白质体外合成的思路,不断地改进实验方法,破译出了全部的密码子,并编辑出了密码子表。

相关文档