文档库 最新最全的文档下载
当前位置:文档库 › 超声监测技术的新应用

超声监测技术的新应用

超声监测技术的新应用
超声监测技术的新应用

超声监测技术的新应用-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

超声监测技术的新应用

超声检测技术是一门以物理、电子、机械以及材料学为基础,各行各业都在使用的通用技术之一,他是通过超声波的产生、传播及接受的物理过程完成的。目前,超声波技术广泛应用于工业领域的很多方面。

其中超声探伤检测是无损探伤中最为重要一种方法,由于超声波具有穿透能力强、对材料人体无害、使用方便等特点,可对各种锻件、轧制件、铸件、焊缝等进行内部缺陷检测,因而得到广泛应用。

此外利用超声波的各种特性,超声技术还应用于金属与非金属材料厚度测量、流量测量、料位及液位检测与控制、超声波零件清洗等工业领域。

本文主要介绍超声技术在设备故障检测及诊断方面的最新应用。

一.压力及真空系统的泄漏检测

当气体在压力下通过限流孔时,它从一个有压层流变为低压紊流(参见图1)。紊流产生所谓的“白噪声”广谱声音。在这种白噪声中含有超声波分量。因为泄漏部位的超声最大,探测这些信号通常是非常简单的。

目前已有成熟的超声检测专用仪器,可将探测到的超声波信号转换为人耳可听见的音频信号,适用于各种泄漏检测。(参见附录)

泄漏可以在压力系统或真空系统中出现。在这二种系统中,超声的产生方式如上所述。二者之间唯一不同的是真空泄漏产生的超声波振幅通常小于同等流速的压力泄漏。其原因在于真空泄漏产生的紊流是发生在真空室内,而压力泄漏产生的紊流出现在大气中

什么样的气体泄漏采用超声波探测呢?一般来说,不管何种气体,包括空气在内,只要它从限流孔泄出时产生紊流,就可以用超声波探测。与气体专用的传感器不同,超声检测是属于声音专用检测。气体专用传感器仅能用于它所

能辨别的具体气体(如氦)。而超声检测能辨别出任何类型的气体,因为它探测的是泄漏紊流所产生的超声。

由于超声检测的多功能性,它可用于各种各样的泄漏探测。能检测气动系统,检测气密电缆(如电信系统使用的),检测铁路车辆、卡车及公共汽车上的气动刹车系统。给容器、管道、机壳加压可轻易地检测出泄漏。通过监听泄漏的紊流,可方便地探测出真空系统、透平排气、真空室、原料处理系统、冷凝器、氧气系统的各种泄漏。

阀门内泄漏检测

当液体或气体流经管道时,除了弯头或障碍处,只产生少量紊流或不产生紊流。泄漏的阀门,有逃逸的液体或气体从高压区流向低压区,在低压区或(下游)侧形成紊流,并产生白噪声。如果阀门内部泄漏,仪器能检测到孔隙处产生的超声波。泄漏阀座的声音完全取决于液体或气体的密度。有时它听起来像细小的噼啪声,有时像高声呼哧声。音质取决于流速和管道内部压差。例如:低压和中压水流容易辨别出是水。但是,冲过半开阀门的高压水听起来特别像蒸汽。

地下泄漏

探测地下泄漏取决于具体泄漏产生的超声波的量。某些微量的泄漏只发出特别小量的超声波。另外还有土壤能隔断超声波,疏松的土壤比坚实的土壤吸收更多的超声波。如果泄漏发生在靠近表面的地方,而且比较严重,就能很快地探测出来。采用某些其它手段,也同样能探测出更微小的泄漏。有时需要给管道加压,产生更大的流动和更多的超声波。有时却需要让有问题的管道排水,用阀门把该区域隔离开来,再向里面注入气体(空气或氮气),使泄漏部位产生更大的超声波。后一种方法被证明十分有效。另外不排水也能将检验气体注入管道的检测区域。当有压力的气体穿过液体进入泄漏部位时,产生可被探测到的噼啪声。

有时,需要靠近泄漏(源)。这种情况下,打入细的结实金属棒,使其接近(但不碰到)管道。将接触探头挨住金属棒,监听泄漏声音。该检测需每隔1~3英尺重复一次,直到听到泄漏的声音。

超声音频无损泄漏检验:

是一种超声波无损探伤的方法,常用于检验无法加压或无法抽成真空的系统。该超声波检验的用途非常广泛,如检测容器、管子、管道、换热器、焊缝、密封填料、密封、门、窗、舱口等。

进行该项检测是将一种超声波发生器放置在被检测物体的里面(或其一侧)。从发生器发出的超声脉冲信号会“充斥”被测物体,并从泄漏孔隙处穿过。通过在被测物体的外表面(或另一侧)用专用超声探测仪器扫描声音的穿透,就能探测到泄漏。

二。轴承磨损监测

用超声波检测和监测轴承是探测轴承早期故障的可靠方法。超声波在轴承出现升温或增加低频振动水平之前就会提出警告。用超声波检查轴承有助于发现:

a)开始疲劳故障;

b)轴承表面的布氏硬度;

c)润滑剂过多或过少。

在滚动轴承中,当滚柱或滚珠开始变疲劳,开始出现细小的变形。金属的变形会产生不规则的表面,因而导致超声波量的增加。

原始读数振幅的变化说明轴承出现早期故障。超过任何原始读数12dB的读数的现象,均可认为该轴承已进入故障开始状态。

该资料是由美国国家航天局通过在滚珠轴承上进行实验所发现的。

在用24~50kHz频率监测轴承的实验中,他们发现振幅的变化说明轴承出现早期故障(先于其它任何指示,包括温度变化和振动变化)。基于探测和分析轴承共振频率调制的超声波系统具有进行细微探测的能力;而传统的方法是无法探测出非常轻微的故障。当滚珠经过内圈表面的坑或瑕疵时,滚珠产生撞

击,这种重复的撞击会使轴承组件结构共振。振动或振鸣产生的声音作为被测轴承超声波频率振幅增加而被捕获。

轴承表面的布氏硬度,由于滚珠不圆而出现的不规则滑动会产生类似的振幅增加。这些点也会产生重复振鸣,被作为被测频率振幅增加而被探测出来。由于被检测到的超声波可被转换为人耳可听的音频,故建议用户应熟悉正常轴承的声音。正常轴承发出的声音像呼哧声或嘶嘶声。噼啪声或粗糙声音说明轴承已处于故障阶段。某些情况下,损坏的滚珠发出咔哒声,而高强度、不均匀粗糙声音可能表明损坏的座圈或滚珠的不均匀损坏。如出现该情况,应经常地进行检查。

检测轴承故障

检测轴承故障有二种基本方法:比较法和历史法。

比较法包括检测二个或更多的同类轴承,并“比较”潜在的差异。

历史法要对某个具体轴承监测一段时间,来建立其历史。通过分析轴承的历史,以特定的超声波频率出现的磨损变得明显,它能很容易地探测出来,并修正轴承的问题。

进行轴承比较检验步骤:

1)使用接触(导音探测器)插件。

2)选择所需的频率。如果只能监测一种频率,考虑使用30kHz。

3)选择轴承体上的“检测点”,并进行标识。用接触插件接触该点。在超声波检测中,超声波穿越的介质或材料越多,读数越不精确。因此,接触探头一定要真正接触到轴承体。若无法做到这点,接触润滑油嘴或尽量靠近轴承。

4)以同样的角度接近轴承,接触轴承体的相同部位。

5)降低灵敏度,可更清晰地监听音质。

6)通过耳机监听轴承声音,并正确分析信号的“质量”。

7)选择类似荷载条件和相同转速的同型号轴承。

8)比较仪器读数和音质的差异。

进行轴承历史检验的步骤:

在用历史方法开始监测轴承之前,必须用比较方法确定基线。

1)进行上述1)~8)检验步骤。

2)保存读数作为未来参考。

3)将读数与先前(或未来)读数比较。根据所有未来读数,将频率调节到原级别。

如果分贝级超过基线12dB,说明轴承已进入早期故障状态。

润滑不足通常超过基线8dB,听起来象高声的呼哧声。如果怀疑是润滑不足,加注润滑剂后,再检测。如果读数不回到原来的水平,仍然高居不下,考虑轴承快进入故障状态,要经常检验。

润滑不足

要避免润滑不足,应注意如下情况:

1)润滑膜变薄时,声级增高。高出基线8dB并伴有均匀的呼哧声,说明润滑不足。

2)加注润滑剂时,要加注的刚使读数回到基线。

3)注意:某些润滑剂需要一定的时间来均匀地覆盖轴承表面,每次要少量地加注。

不要过量润滑。

过量润滑

引起轴承故障的通常原因之一是过量润滑。润滑剂的超压经常破坏或“爆裂”轴承密封,或引起温升,产生应力和变形。

要避免过量润滑:

1)如果读数仍在基线,并且轴承发出的仍是基线声音,不要加注润滑剂。

2)加注润滑剂时,要加注的刚使读数回到基线。

3)如上所述,某些润滑剂需要时间来均匀地覆盖轴承表面。

超声监测专业技术的新应用

超声监测技术的新应用

————————————————————————————————作者:————————————————————————————————日期:

超声监测技术的新应用 超声检测技术是一门以物理、电子、机械以及材料学为基础,各行各业都在使用的通用技术之一,他是通过超声波的产生、传播及接受的物理过程完成的。目前,超声波技术广泛应用于工业领域的很多方面。 其中超声探伤检测是无损探伤中最为重要一种方法,由于超声波具有穿透能力强、对材料人体无害、使用方便等特点,可对各种锻件、轧制件、铸件、焊缝等进行内部缺陷检测,因而得到广泛应用。 此外利用超声波的各种特性,超声技术还应用于金属与非金属材料厚度测量、流量测量、料位及液位检测与控制、超声波零件清洗等工业领域。 本文主要介绍超声技术在设备故障检测及诊断方面的最新应用。 一.压力及真空系统的泄漏检测 当气体在压力下通过限流孔时,它从一个有压层流变为低压紊流(参见图1)。紊流产生所谓的“白噪声”广谱声音。在这种白噪声中含有超声波分量。因为泄漏部位的超声最大,探测这些信号通常是非常简单的。 目前已有成熟的超声检测专用仪器,可将探测到的超声波信号转换为人耳可听见的音频信号,适用于各种泄漏检测。(参见附录) 泄漏可以在压力系统或真空系统中出现。在这二种系统中,超声的产生方式如上所述。二者之间唯一不同的是真空泄漏产生的超声波振幅通常小于同等流速的压力泄漏。其原因在于真空泄漏产生的紊流是发生在真空室内,而压力泄漏产生的紊流出现在大气中 什么样的气体泄漏采用超声波探测呢?一般来说,不管何种气体,包括空气在内,只要它从限流孔泄出时产生紊流,就可以用超声波探测。与气体专用的传感器不同,超声检测是属于声音专用检测。气体专用传感器仅能用于它所能辨别的具体气体(如氦)。而超声检测能辨别出任何类型的气体,因为它探测的是泄漏紊流所产生的超声。

超声波检测技术及应用

超声波检测技术及应用 刘赣 (青岛滨海学院,山东省青岛市经济开发区266000) 摘要:无损检测(nondestructive test)简称NDT。无损检测就是不破坏和不损伤受检物体,对它的性能、质量、有无内部缺陷进行检测的一种技术。本文主要讲的是超声波检测(UT)的工作原理以及在现在工业中的应用和发展。 关键词:超声波检测;纵波;工业应用;无损检测 1.超声波检测介绍 1.1超声波的发展史 声学作为物理学的一个分支, 是研究声波的发生、传播、接收和效应的一门科学。在1940 年以前只有单晶压电材料, 使得超声波未能得到广泛应用。20 世纪70 年代, 人们又研制出了PLZT 透明压电陶瓷, 压电材料的发展大大地促进了超声波领域的发展。声波的全部频率为10- 4Hz~1014Hz, 通常把频率为2×104Hz~2×109Hz 的声波称为超声波。超声波作为声波的一部分, 遵循声波传播的基本定律, 1.2超声波的性质 1)超声波在液体介质中传播时,达到一定程度的声功率就可在液体中的物体界面上产生强烈的冲击(基于“空化现象”)。从而引出了“功率超声应用技术“例如“超声波清洗”、“超声波钻孔”、“超声波去毛刺”(统称“超声波加工”)等。2)超声波具有良好的指向性 3)超声波只能在弹性介质中传播,不能再真空中传播。一般检测中通常把空气介质作为真空处理,所以认为超声波也不能通过空气进行传播。 4)超声波可以在异质界面透射、反射、折射和波型转化。 5)超声波具有可穿透物质和在物质中衰减的特性。 6)利用强功率超声波的振动作用,还可用于例如塑料等材料的“超声波焊接”。 1.2超声波的产生与接收 超声波的产生和接收是利用超声波探头中压电晶体片的压电效应来说实现的。由超声波探伤仪产生的电振荡,以高频电压形式加载于探头中压电晶体片的两面电极上时,由于逆压电效应的结果,压电晶体片会在厚度方向上产生持续的伸缩变形,形成了机械振动。弱压电晶体片与焊件表面有良好的耦合时,机械振动就以超声波形式传播进入被检工件,这就是超声波的产生。反之,当压电晶体片收到超声波作用而发生伸缩变形时,正压电效应的结果会使压电晶体片两面产生不同极性的电荷,形成超声频率的高频电压,以回波电信号的形势经探伤仪显示,这就是超声波的接收。 1.3超声波无损检测的原理 超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种

肺部超声的临床应用及研究进展

Advances in Clinical Medicine 临床医学进展, 2018, 8(7), 632-637 Published Online September 2018 in Hans. https://www.wendangku.net/doc/9a7975499.html,/journal/acm https://https://www.wendangku.net/doc/9a7975499.html,/10.12677/acm.2018.87106 Advances in the Clinical Application of Lung Ultrasonography Songfei Wu Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian Liaoning Received: Sep. 4th, 2018; accepted: Sep. 18th, 2018; published: Sep. 25th, 2018 Abstract With the development of ultrasonic technique, lung ultrasonography has become an important tool for early diagnosis, dynamic assessment and follow-up of various lung diseases around all kinds of people. This review summarizes the advances in the clinical application of lung ultraso-nography. Keywords Lung Ultrasonography, Lung Diseases, Lung Ultrasound Score, Intensive Care Unit, Children 肺部超声的临床应用及研究进展 吴松霏 大连医科大学附属第二医院麻醉科,辽宁大连 收稿日期:2018年9月4日;录用日期:2018年9月18日;发布日期:2018年9月25日 摘要 近年来随着超声技术的不断发展,肺部超声已成为多种肺部疾病早期诊断、动态评估及病情随访的重要工具,广泛应用于各种人群。本文就肺部超声的临床应用及研究进展作一综述。 关键词 肺部超声,肺疾病,肺部超声评分,重症监护病房,儿童

超声波技术在医疗上的应用

超声波技术及其应用报告超声波技术在医疗上的应用 硕士研究生: 学号: 学科: 报告日期:

超声波技术及其应用报告 摘要 频率高于可听声频范围(20KHZ以上)的机械波,称为超声波(ultrasonic),简称超声。它方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。本文主要介绍超声波技术在医疗上的应用。主要由超声波在医疗检测上的应用和超声波在治疗上的应用两部分组成。主要内容包括B超,彩超,超声全息影像技术,超声波手术刀,超声波碎石技术。文章论述了这些超声波技术的基本原理,相比于传统技术的优缺点,存在的局限和发展前景,以及超声波技术要突破的一些技术瓶颈和将来的发展方向。由于篇幅及理论基础有限,本文避免了难以理解的公式推导和证明,只是定性地,原理性地介绍了超声波在医疗上应用的这些技术。 关键词:超声检测;手术刀;超声全息影像技术;超声碎石;超声理疗 - -I

超声波技术及其应用报告 - - II 目录 摘 要 ....................................................................................................................... I 1.1 技术应用的领域 (3) 1.2 技术应用特点及原理 (3) 1.3 国内外情况分析 (6) 1.3.1 国外情况 (7) 1.3.2 国内情况 (7) 1.4 系统组成 (7) 结论 (10) 参考文献 (11)

激光超声检测技术及其工业应用前景

激光超声检测技术及其工业应用前景 周益军1,张永康2,周建忠2,冯爱新2 (1.扬州职业大学,江苏扬州225009;2.江苏大学,江苏镇江212013) 摘 要:阐述了激光超声的基本理论,综述了激光超声检测技术的发展,重点介绍了激光超声检测技术在工业中的相关应用,如:材料性质的无损评价、对复合材料构件进行评估、在高温有辐射等恶劣环境下对样品进行检测、非接触测量固体材料厚度等。对激光超声应用于纳米材料中的研究概况也作了简要说明。同时指出了激光超声检测技术的工业应用前景。 关键词:激光超声;检测技术;工业应用中图分类号:TN 249 文献标识码:A 文章编号:1008-3693(2005)03-0050-04 The Laser U ltrasonic Detection T echnology and Its Applied Prospect in Industry ZHOU Yi 2jun 1,ZHAN G Y ong 2kang 2,ZHOU Jian 2zhong 3,FEN G Ai 2xin 4 (1.Y angzhou Polytechnic College ,Y angzhou 225009,China ;2.Jiangsu University ,Zhenjiang 212013,China ) Abstract :In this article ,the basic theory of laser ultrasonic is discussed ,and the development of laser ul 2trasonic detection technology is summarized as well ,with focus on its related application to industry.Mean 2while ,a brief explanation of the application of laser ultrasound to mano 2structured materials is given and the applied prospect of the laser ultrasonic detection technology is indicated here.K ey w ords :laser ultrasound ;detection technology ;application in industry 激光超声技术的研究始于1962年,White 和Aakaryan 各自论证了用脉冲激光束在固体和液 体中激发出声波的方法。接着,White 和Aakaryan 观察了强激光在固体中产生的爆炸波(L SD 波)和在大气中产生的燃烧波(L SC 波),都会随时间和距离的增加而衰变成声波[1,2]。激光超声是超声学新近发展起来的一个分支,是涉及光学、声学、电学、材料学等学科的交叉学科[3]。1 激光超声检测技术简介 对于激光产生超声机理的研究,目前学术界认同热弹膨胀理论。所谓激光超声检测技术,即 用强度调制的激光束射入闭合的介质空间时可产生声波,通过对这种波的检测来达到对材料性质 的无损评价、对复合材料构件进行评估等的应用技术。利用激光脉冲来激发超声脉冲,不仅是非接触的,而且可以重复产生很窄的超声脉冲,在时间和空间都具有极高的分辨率。还可以在不同形状的试样中激发超声,可以在高温、高压、有毒、放射性等各种恶劣环境下进行超声检测。它适合于超薄材料的检测和物质微结构的研究,因此激光超声技术以其优异特性而得到迅速发展并被关注[4]。激光超声检测技术的工业应用情景广阔。国内外就激光超声检测技术的应用已大量的报 收稿日期:2005-06-08 第一作者简介:周益军(1966-),男,扬州职业大学机械工程系讲师,江苏大学博士研究生。 第9卷第3期2005年9月 扬州职业大学学报 Journal of Y angzhou Polytechnic College Vol.9 No.3Sep.2005

超声技术在医学的发展及应用

超声技术在医学的发展及应用 摘要: 随着声学原理和电子计算机科学的迅速发展,医学超声影像学的新技术层出不穷,从B型、M型、彩色多普勒超声发展到三维、声学造影、血管内超声等多种技术,极大地拓展了超声影像学的临床应用范围,几乎包括对所有疾病的超声诊断、结构成像和运动成像,医学超声诊断技术已成为临床诊断中必不可少的甚至是首选的方法。 关键词:超声;影像学;临床应用 医学超声诊断技术产生于20世纪40年代,其发展主要依赖于声学原理、探头技术、电子电路、计算机技术、实验研究及临床应用的紧密配合。由于其操作无创伤及对患者无电离辐射损伤而深得医学界推崇。目前医学超声影像学的新技术层出不穷,诸如三维超声成像、谐波成像、腔内超声已广泛应用于疾病诊断、治疗和预后评估。现对医学超声的进展和临床应用作一综述。 1 医学超声技术的发展及其临床应用 1.1 二维超声成像 B型超声应用回声原理,即发射脉冲超声进入人体,然后接受各层组织界面的回声作为诊断依据。由于B超能直观地显示脏器的大小、形态、内部结构,并可将实质性、液性或含气性组织区分开来,故医生根据得到的一系列人体切面声像图进行诊断。它所构成的二维(2D)实时动态图像具有真实性强、直观性好、无损伤、操作方便等优点,目前应用最广泛。主要用于心脑血管疾病、腹部脏器损伤、肿瘤、儿科和妇产科疾病及其它疾病的诊断。如二维超声诊断感染性心内膜炎时可清楚地观察到心内膜赘生物的形状大小及部位,检查率达80%~100%,特异性达80%以上,还可以发现腱索断裂瓣周脓肿、心包积液等并发症[1]。但二维超声对含气空腔(胃、肠)和含气组织(肺)以及骨骼显示不清,还由于切面范围和扫查深度有限,对病变所在脏器或组织的毗邻结构显示不清。 1.2 三维超声成像三维(3D)超声成像的基本原理主要有立体几何构成法、表现轮廓提取法和体元模型法。3D超声成像的基本步骤是利用二维超声成像的探头,按一定的空间顺序采集一系列的2D图像存入3D重建工作站中,计算机对按照某一规律采集的2D图像进行空间定位,并对相邻切面之间的空隙进行像素补差平滑,形成一个3D立体数据库,即图像的后处理,然后勾划感兴趣区,通过计算机进行3D重建,将重建好之3D图像在计算机屏幕上显示出来。3D超声成像技术包括数据获取、三维图像重建和三维图像的显示。1961年Baum和Greewood最先提出3D超声的概念,但其后的30年发展比较缓慢。近十年来,随着计算机技术与超声影像技术的不断发展,3D超声成像技术已由实验研究阶段走向临床应用阶段[2],可分为(1)静态3D:收集一定数量的2D图后作3D组图,然后作各种3D显示,其中又分脏器实质3D和血管流道3D。(2)动态 3D:在不同时间点取不同空间的多幅2D图输入存储,然后用心电统一时间点,将原不同时间中取得的图形作3D组图,依心电图时间序列组图后回放。目前在心脏、妇产科、小器官、

超声导波检测技术的发展与应用

2008大庆石化情报课题 超声导波检测技术的发展与应用 王学增侯贵富刘华王辉 李媛媛李健奇 大庆石化工程检测技术公司 2008年12月8日

超声导波检测技术的发展与应用 相对于传统的超声波检测技术,超声导波具有传播距离远、速度快的特点,因此在大型构件(如在役管道)和复合材料板壳的无损检测中有良好的应用前景。 一、超声导波技术的原理 1.1超声导波的产生 机械振动在弹性介质中的传播称为弹性波(声波)。将弹性介质定义为波导,在波导中传播的超声波称为超声导波。超声波的本质是机械振动,在扰动源的激发下产生,并通过介质传播,因而它既携带扰动源的信息,同时又包含介质本身的特征。 导波是由于声波在介质中的不连续交界面间产生多次往复反射,并进一步产生复杂的干涉和几何弥散而形成的。 导致超声波弥散的原因有物理弥散和几何弥散。物理弥散是由于介质的特性而引起的,而几何弥散是由于介质的几何效应引起。超声导波技术则是利用传播介质几何上某些特征尺寸而导致的几何工件往往有很多声学性质不连续的交界面存在。当介质中有一个以上的交界面存在时,超声波就会在这些界面间产生多次往复反射,并进一步产生复杂的干涉作用,由于受到这些界面几何尺寸的影响,超声波的传播速度将依赖于波的频率,从而导致波的几何弥散。由于超声波在交界面上的复杂行为,如果工件的交界面复杂无规则,则导波信号很难识别,所以导波技术一般用于特殊的规则的工件(板、管、棒等)检测。无缝管中的超声导波技术则是利用管子的几何效应,在管子中

激发导波。导波可沿轴向传播数米至数十米,因此利用管壁中沿管子轴向传播的导波可对管子进行长距离快速无损检测。 1.2 导波的频散特性和谐振模式 1.2.1导波的频散特性 当把被测物件视为无限均匀弹性介质时,各种类型的反射波、透射波以及界面等以恒定的速度传播,传播速度只与传播介质本身材质有关。而当超声波倾斜入射到各向同性的管子边界上,波源处的机械振动在管子中传播时,由于管子自由表面的反射,波运动变为轴向运动和径向运动的合成,使得超声波被拘束在管状的边界内而形成导波。 频散是导波的特征之一,即超声波的相速度随频率不同而有所变化。频散特性是导波应用于复合材料无损检测的主要依据。由于导波脉冲由多个不同频率的谐波成分叠加而成,介质质点振动是各个波作用下振动的合成,质点振动最大振幅的传播速度(群速度)不同于各单个波的传播速度(相速度),导波能量以群速度向前传播,相速度则随频率的不同而有所改变。 导波在介质中的传播特性与介质特性有很大的关系。目前的研究已不仅仅局限于导波在各向同性弹性介质中的传播特性,还涉及到各项异性和具有黏弹性的材料。 导波相速度不仅取决于探头频率,还与管材的特性(包括材质的声学性质和规格尺寸)有关,即使是同类材料的管子,如果其壁厚和直径不同,其频散曲线也不同。这给导波技术的实际检测应用带来了

超声技术在医疗方面的应用

超声技术在医疗方面的应用 超声技术在医疗方面的独特疗效已得到医学界的普遍认可,并越来越被临床重视和采用。国内外医学专家利用超声技术在治疗肢体软组织损伤、肢体慢性疼痛康复、肢体运动康复方面积取得了非常好的疗效,并把超声治疗拓展到中医科、骨科、外科、内科、儿科、肿瘤科、男科、妇产科等,在临床得以广泛应用,取得了满意的治疗效果。 机械 超声振动可引起组织细胞内物质运动,由于超声的细微按摩,使细胞浆流动、细胞震荡、旋转、摩擦、从而产生细胞按摩的作用,也称为“内按摩”这是超声波治疗所独有的特性,可以改变细胞膜的通透性,刺激细胞半透膜的弥散过程,促进新陈代谢、加速血液和淋巴循环、改善细胞缺血缺氧状态,改善组织营养、改变蛋白合成率、提高再生机能等。 温热 人体组织对超声能量有比较大的吸收能力,因此当超声波在人体组织中传播过程中,其能量不断地被组织吸收而变成热量,其结果是组织的自身温度升高。即内生热。超声温热效应可增加血液循环,加速代谢,改善局部组织营养,增强酶活力。一般情况下,超声波的热作用以骨和结缔组织为显著,脂肪与血液为最少。 理化 超声的机械效应和温热效应均可促发若干物理化学变化。 a.弥散作用:超声波可以提高生物膜的通透性,对钾,钙离子的通透性发生较强的改变。从而增强生物膜弥散过程,促进物质交换,改善组织营养。 b.触变作用:超声作用下,可使凝胶转化为溶胶状态。对肌肉,肌腱的软化作用,以及对一些与组织缺水有关的病理改变。如类风湿性关节炎病变和关节、肌腱、韧带的退行性病变的治疗。 c.空化作用:空化形成,或保持稳定的单向振动,或继发膨胀以致崩溃,细胞功能改变,细胞内钙水平增高。成纤维细胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,胶原张力增加。 d.聚合作用与解聚作用:水分子聚合是将多个相同或相似的分子合成一个较大的分子过程。大分子解聚,是将大分子的化学物变成小分子的过程。可使关节内增加水解酶和原酶活性增加。 e.消炎,修复细胞和分子:超声作用下,可使组织PH值向碱性方面发展。缓解炎症所伴有的局部酸中毒。超声可影响血流量,产生致炎症作用,抑制并起到抗炎作用。使白细胞移动,促进血管生成。从而达到对受损细胞组织进行清理、激活、修复的过程。 临床应用编辑 软组织损伤及慢性疼痛 广泛用于软组织损伤及慢性疼痛的治疗。超声波的穿透力强,可轻易深入到体内10-15cm。提高治疗部位细胞膜的通透性、改善血液循环、促使细胞修复过程的发生和发展;同时,人体神经和体液系统对超声能的作用具有较强的敏感性,其形成的神经反射和体液反应,具有综合调节人体的机制,特别是对陈旧性损伤有特效,超声在传播时,超声能量的方向集中,具有独特的高能量特性。主要适应症:急、慢性软组织损伤、软组织慢性疼痛、颈椎病、腰椎间盘突出症、慢性腰肌劳损、风湿类关节炎、类风湿性关节炎、慢性血肿、慢性膝盖筋腱疼痛等 肢体康复

激光超声波可视化检测仪

激光超声波可视化检测 仪 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

「激光超声波可视化检测仪」及其应用 罗朝莉 ?王波 ?陈林 摘要:激光超声检测是超声检测发展起来的新分支,属于光、声、电等的交叉科学。与传统的超声检测技术相比,激光超声波可视化技术以其非接触地高速扫描检测,消除了传统超声检测技术中的耦合剂影响,用于各种较复杂形状工件的无损检测。加之可重复产生很窄的超声脉冲,在时间和空间均具有极高的分辨率,使之成为极具应用前景的无损检测新技术。本公司在日本筑波科技株式会社的大力协助下,成功研发了「激光超声波可视化检测仪」。应用该仪器对各种难检样件进行实际检测,其效果甚佳。 关键词:激光超声;可视化;检测技术 1.「激光超声波可视化检测仪」简介 激光超声检测技术是用强度调制激光束射入物体时发生热弹效应产生声波,通过检测该声波对金属、非金属及复合材料等表面和内部进行无损检测。目前,多数激光超声技术采用脉冲激光照射试样表面产生超声波,利用传感器或光学系统接收。采用压电传感器与试样耦合接收激光超声产生的宽带信号。如图1所示,传感器必须与试件接触,才能获得较高的灵敏度;或者利用空气超声传感器接近试件表面(距离试件不超过5mm)接收激光超声信号,一但距离加大,接收信号的灵敏度衰减甚快。 图1 ?激光激励产生超声波 ? ? ? ? ? ? ? ? ? ? ?图2 ?激光超声波可视化检测仪可视化技术是图形学的新领域,它运用图形学和图像处理技术,将计算机中的数据及计算结果转化成图像,呈现在计算机屏幕上,用图像直观地表达抽象数据所蕴含

超声波检测新技术

超声波检测新技术-TOFD 摘要:本文通过简单介绍超声波检测中TOFD方法的物理原理和在无损探伤中的应用,提出了TOFD检测技术将会更加广泛应用于焊缝的无损检测工作中。TOFD检测技术的发展过程、TOFD检测的原理、优点及其局限性,对TOFD检测主要应用范围进行了阐述。给出了TOFD检测的一般工艺流程,并结合实际操作,说明了该技术的重要用途,对TOFD技术对缺陷精确定量进行了简要说明。 关键词:超声波;TOFD;检测 New technology of ultrasonic TOFD ABSTRACT: in this paper, the physical principle of TOFD in ultrasonic testing method is briefly introduced and applied in non-destructive inspection, put forward a nondestructive test technique for the detection of TOFD will be more widely used in the welding seam. TOFD detection technology development process, the TOFD detection principle, advantages and limitations of TOFD testing, main application range are described. The general process of TOFD detection is presented, and combined with the actual operation, explains the important uses of the technology, the TOFD technology of the precise and quantitative defects are introduced briefly. Keywords: ultrasonic; TOFD; detection 0 引言 TOFD(Time-of-flight-diffraction technique)检测技术于1977年,由英国Silk教授根据超声波衍射现象首次提出。现已在核电、建筑、化工、石化、长输管道等工业的厚壁容器和管道方面多有应用。TOFD技术的检测费用是脉冲回声技术的1/10。现在,TOFD检测技术在西方国家是一个热门话题,现已开始大量推广应用,几年以后,将有取代RT的可能。 2006年9月TOFD标准组成立暨首次会议上,中国特检院提出由全国锅容标委归口,2009年12月《固定式压力容器安全技术监察规程》(简称“新容规”)开始实施,后延至2010年11月正式实施。TOFD监测系统由计算机超声波探伤仪本体、发射探头、接收探头、前置放大器、光学或磁性编码器以及连接电缆组成。仪器能以不可更改的方式将所有扫描信号和TOFD图像存储于磁、光等永久介质,并能输出其硬拷贝。[1] 《固定式压力容器安全技术监察规程》第4.5.3.1无损检测方法的选择:压力容器的对接接头应当采用射线检测或者超声检测,超声检测包括衍射时差超声检测(TOFD)、可记录的脉冲反射法超声检测和不可记录的脉冲反射法超声检测;当采用不可记录的脉冲反射法超声检测时,应当采用射线检测或者衍射时差超声检测(TOFD)做为附加局部检测。第 4.5.3.4.2超声检测技术要求:采用衍射时差超声检测(TOFD)的焊接接头,合格级别不低于II级。[2] 1 TOFD检测的原理和应用 1.1 基本原理 TOFD检测原理:当超声波遇到诸如裂纹等缺陷时,将在缺陷尖端发生叠加到正常反射波上的衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。也可理解为当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射波以外,还要发生衍射现象。 两束衍射波信号在直通波与底面反射波之间出现。缺陷两端点的信号在时间上将是可分辨的,根据衍射波信号传播的时间差可判定缺陷高度的量值。因为衍射波分离的空间(或时间)与裂纹高度直接相关。[3] 非平行扫查一般作为初始的扫查方式,用于缺陷的快速探测以及缺陷长度、缺陷自身高度的

电磁超声波快速检测技术及应用

电磁超声波快速检测技术及应用 【摘要】本文主要对电磁超声波检测技术特点、电磁超声技术原理、电磁超声技术原理、电磁超声波探伤装置和可使用的波型进行了论述。 【关键词】电磁超声波;检测技术;特点;原理 1、前言 常规的压电式超声波无损检测技术已经广泛应用于各个领域。由于它是一种接触性检测技术,要求受检工件表面具有较高的光洁度(一般要求粗糙度 Ra12.5―Ra6.3μm之间)。探头和工件之间要加耦合器剂,并对探头施加一定的压力。以上特点造成检测成本高、工作量大、劳动强度高、时间长,难于实现大围、普查性质的检查,只能是一种点或区域性质的抽查方法。因此发展一种克服常规超声检测技术不足之处的检测技术具有实际意义。电磁超声检测技术,是一种依靠电磁感应和电磁致伸缩原理在工件中产生和接收超声波的方法,因此电磁超声探头不需要接触工件,也可在工件中产生超声波。电磁超声检测技术是一种非接触性检测技术,它不要求对工件表面进行处理。是一种快速、方便、有效的检测技术,可容易

的实现大围、普查性质的检查,检测成本低、劳动强度小。电磁超声检测技术早已被人们研究掌握,由于当时的科学技术发展水平限制了它的发展和应用。80年代以来,随着科学技术的不断发展,电磁超声检测水平得到了极大的发展和提高,可以实际应用于许多种类工件的缺陷检测。近几年,电磁超声检测技术已成功应用于火力发电厂水冷壁管的壁厚测量和缺陷检测,以及电站高、低压加热器钢管和凝汽器管的缺陷检测,电磁超声检测技术的优势,将使其愈来愈多的应用于热力设备的检测当中。 2、电磁超声技术原理 在铁磁性金属材料当中,电磁超声波的激发机制有三种:一是罗仑兹力;二是磁致伸缩力;三是电磁力。第三种电磁力机制产生超声波的作用可以不考虑。 3、电磁超声波探伤装置和可使用的波型 电磁超声波探伤装置主要由电磁超声换能器和探伤仪两部分组成。探伤仪主要由高频脉冲源?D?D用于对探头的发射/接收线圈激磁;直流电源?D?D用于对探头的直流线圈激磁;显示器?D?D显示放大器传送来的工件中回波情况的信号;同步电路?D?D产生周期性的同步信号,使仪器各部分协调有序的工作。 电磁超声探伤仪的工作原理和组成结构与常规超

超声波在技术上的应用

超声波在技术上的应用 今天的物理学家和技术专家已经有方法可以创造振动频率比刚才说过的高得多的“听不见的声音”,超声波的振动频率可以高到每秒钟10亿次。 产生超声波的一种方法是利用石英片的一种性能,石英片是用一定的方法从石英晶体上切下来的,在压缩的情况下,它的表面会起电。 如果反过来,在这种石英片的表面上周期地使它带电,那末这表面就会在电荷的作用下,交替着一伸一缩,也就是起了振动:使我们得到超声波振动。使石英片带电,得用无线电技术里所用的电子管振荡器,振荡器的频率可以挑选同石英片“固有”振动周期相合的。 超声波虽然不能被我们听见,但是它们却能用别的极明显的方式来显示出它们的作用。例如,如果把振动着的石英片浸在油缸里,那末,在受到超声波作用的那一部分液体的表面上,就会激起高达10厘米的波峰,同时还有小油滴飞溅到40厘米高。把一根长1米的玻璃管的一头浸在这油缸里,并且用手抓住玻璃管的另一头,你的手就会感到非常烫,烫得你的皮肤上会留下伤痕。让这玻璃管的一端跟木料接触,会把木料烧穿一个洞,超声波的能量变成了热能。 现在各国的研究家都在仔细地研究着超声波。这种振动对于生物能够起强烈的作用:遇到它们,海草的纤维会裂开,动

物的细胞会破碎,血球会破坏,小鱼和蛙类会在一二分钟里面被杀死。 用超声波做实验的时候,动物的体温会提高,譬如老鼠的体温会提高到45摄氏度。以后超声波还一定会在医药方面起相当重要的作用;听不见的超声波会同看不见的紫外线一起,帮助医师治病。 特别有成就的是在冶金术方面,人们利用超声波来探察金属内部是不是均匀,有没有气泡、裂缝等缺点。利用超声波来“透视”金属的方法,就是把被检查的金属浸在油里,然后使它受到超声波的作用。这时候金属里不均匀的区域就会把超声波漫射开,投射出一种好像是“声音的阴影”来。结果,在那均匀的油面上就会出现金属的不均匀部分的轮廓,这轮廓非常明显,甚至可以照下相来用超声波可以“透视”厚到1米以上的金属,这是用爱克斯射线来透视所完全做不到的。超声波在这时候可以发现极小的。小到1毫米的不均匀的部分。毫无疑问,超声波是有非常远大的前途的。

医学超声影像技术发展综述

医学超声影像技术发展综述 张禄鹏 摘要:本文回顾了医学超声影像技术的发展历史,阐述了A型、B型、M型和D型超声诊断方法的历史、原理、特点、用途和发展状况,总结了医学超声影像技术的局限性,介绍了三维超声和超声造影等医学超声影像技术的新进展。 关键词:医学超声影像技术,超声诊断法,三维超声,超声造影 Abstract:This paper reviews the development history of medical ultrasound imaging technology. The history, principles, characteristics, uses and development status of A model, B model, M model and D model ultrasonic diagnostic method. This paper also sums up the limitations of medical ultrasound imaging technology and introduces three-dimensional ultrasound and ultrasound contrast and other new medical ultrasound imaging technology advances. Keyword:medical ultrasound imaging technology,ultrasonic diagnostic method,three-dimensional ultrasound ,ultrasound contrast 医学超声影像技术和X-CT、MRI及核医学影像(PET、SPECT)一起被公认为现代四大医学影像技术,成为现代医学影像技术中不可替代的支柱。医学超声影像技术是指运用超声波的物理特性,通过电子工程技术对超声波发射、接收、转换及电子计算机的快速分析、处理和显象,从而对人体软组织的物理特性、形态结构与功能状态影像一种非创伤性技术。 目前,由于超声显像技术具有实时动态、灵敏度高、易操作、无创伤、无特殊禁忌症、可重复性强、费用低廉和无放射性损伤等优点。从而使这一诊断技术成为了现今临床各学科疾病的检查、诊断和介入治疗中所不可缺的重要手段之一。 1.超声影像技术发展历史 1880年,两位法国科学家Jacques和Pierre Curie发现了压电现象,成为超声探头的基础。某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷,当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应,或称为电致伸缩现象。根据压电效应,用压电晶体可以用来作为声波的产生器与接收器,压电效应是可逆的,这奠定了用同一超声波换能器既能发射又能吸收的基础。 直到第一次世界大战,随着声纳在军事上的应用,压电效应才得到重视。1915年,法国科学家Paul Langevin发现了超声的第一个用途:水下声波测距法探测水下目标,也就是今天大家熟知的声纳。正常人的耳朵可接听到声波频率的范围为16-20000Hz,高于2万赫兹的声波就称为超声波。 超声医学影像所用的声频率通常是300万-750万次/秒(3MHz-7.5MHz)。超声波是一种机械波,其传播是通过介质中粒子的机械振动进行的,它不同于电磁波,在真空中不能传播,但在人体复杂的介质中传播较好,同时它属直线传播,因此有良好的方向性[1]。超声诊断技术出现后获得了迅速的发展,上世纪40年代末,A型(Amplitude Mode)超声诊断仪开始应用于临床,常用A型法测量界面距离、脏器径值以及鉴别病变的物理性质,结果比较准确,为最早兴起和使用的超声诊断法,目前已多被其他方法取代,只在脑中线测量等方面还在应

超声波检测技术的应用概述

现代工程测试技术论文

超声波技术应用综述 +++ (++++++++++++++++++) 摘要 简述超声波的产生方式,特点和主要参数,其特点决定在实际生活中的诸多领域广泛应用,着重分析了超声波传感器的应用和研究现状,对超声波技术发展做出展望。 关键词:超声波,检测技术,传感器 Abstract The article sketch the main parameters, features and the production of ultrasonic. Its features determine the wide application in our lives. We analyzed the application of the ultrasonic sensor and the research status and prospect the development of ultrasonic technology. Key words: Ultrasonic; Measurement Technique; Sensor 超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业等诸多领域有广泛应用。 1.超声波的产生和主要参数 声波是物体机械振动状态(或能量)的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数(频率)甚高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。超声和可闻声本质上是一致的,它们的共同点都是一种机械振动模式,通常以纵波的方式在弹性介质内传播,是一种能量的传播形式。 1.1超声波特点 超声波有如下特点: (1)方向性强,能量易于集中。 (2)能在各种不同媒质中传播,且可传播较远距离。 (3)与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息诊断或对传声媒质产生效用及治疗。 (4)反射、干涉、叠加和共振现象明显。 1.2超声波的两个主要参数 频率:F≥20KHz(在实际应用中因为效果相似,通常把F≥15KHz的声波也称为超声波)。 功率密度:p=发射功率(W)/发射面积(cm2),通常p≥0.3w/cm2。

三维超声成像的新技术及其临床应用

【摘要】随着医学影像技术的发展,超声成像已经成为临床上应用最广泛的医学成像模式之一。近年来,随着电子技术、计算机技术的发展,超声成像设备在成像方法和技术等层面上不断得到改进,临床诊断能力也得到进一步提高。本文主要介绍三维超声成像的新技术及其临床应用。 【关键词】超声成像;临床应用 【中图分类号】r 445.1 【文献标识码】a 【文章编号】1004-7484(2012)12-0440-02 随着社会科学技术的进步与人们生活水平的提高,医学影像学作为医生诊断和治疗重要手段已成为医学技术中发展最快的领域之一,它使得临床医生对人体内部病变部位的观察更直接、更清晰,确诊率更高。而超声成像技术在医学成像领域中以其特有的优势发挥了巨大的作用,在临床上得到了广泛的应用。20世纪40年代初就已探索利用超声检查人体,50年代已研究、使用超声使器官构成超声层面图像,70年代初又发展了实时超声技术,可观察心脏及胎儿活动。三维超声成像技术与传统二维超声成像相比,具有明显的优势:首先三维超声成像技术能直接显示脏器的三维解剖结构;其次还可对三维成像的结果进行重新断层分层,能从传统成像方式无法实现的角度进行观察;再有还可对生理参数进行精确测量,对病变位置精确定位。因此,近几年来三维超声成像已经成为医学成像领域备受关注的方面。 1 三维超声的成像技术 可靠的数据提取是得到精确三维超声图像的前提。采用二维面阵超声探头,使超声束在三维扫查空间中进行摆动,即可直接得到三维体数据。但二维面阵换能器的制作工艺限制了阵元数,使得三维图像的分辨率受到了一定的限制。目前已有使用二维阵列的超声成像系统面世。目前三维超声数据的提取仍广泛采用一维阵列探头。用一维阵列探头提取三维超声数据,需要外加定位装置,如目前临床广泛采用的一体化探头。该探头是将一个一维超声探头和摆动机构封装在一起,操作者只要将该探头放在被探查部位,系统就能自动采集三维数据。还有一种新型探头专门用于解决定位问题。该探头有三个阵列,中间的主阵列用于超声成像,与主阵列垂直的两个侧阵列用于提取定位图像。由于探头移动的连续性,所以定位图像两两重叠部分很大,可以通过两侧的定位图像确定两次采样间的位移、旋转,从而确定图像的空间位置。此外,还有一些文献提供了通过相邻图像的相关和图像的斑点噪声统计规律来确定探头侧向位移的方法。 2 三维超声的临床应用 2.1 三维超声在空腔脏器中的应用 2.1.1 胃、肠道疾病嘱受检者适量饮水或灌肠后可建立良好的透声窗。清楚显示胃肠道隆起性病变与溃疡的大小、深度、边缘形态,观察恶性肿瘤的浸润深度、范围及与邻近组织、血管的立体位置关系,进行术前tnm分期,对协助临床制定相应的治疗方案,具有重要意义。3d-cde对溃疡出血和胃底静脉曲张的诊断,也可提供较大的帮助。 2.1.2 膀胱疾病膀胱充盈后可形成极佳的透声窗,三维超声与二维超声一样清晰显示病变的形态、大小、数目、内部回声,同时三维超声还能显示病变的整体、表面形态及肿瘤对膀胱壁的浸润情况,从而提高了其诊断的准确性,并有助于肿瘤术前方案的抉择。对慢性膀胱炎症、憩室、结石、凝血块等膀胱疾病的诊断,也显示出优越性。 2.2 在实质性脏器中的应用 肝脏疾病肝囊肿与肝脓肿二维超声诊断准确性较高,而肝癌与肝内其它性质占位性病变相互间的鉴别有时较为困难。三维超声可从不同方位观察肝表面和边缘轮廓,肿三维超声成像在临床上有广泛的应用前景。可用于精确测量和定位在产科临床上,三维超声成像可用于鉴别早期胎儿是否存在畸形以及检查各个孕期胎儿的生长发育情况;在心血管疾病诊断中,可用于多种心脏疾病以及血管内疾病的检查。随着实时三维超声成像(一般要求帧频必须大

超声波的原理及其应用

超声波的原理及其应用 目录 摘要......................................... 错误!未定义书签。 1. 绪论 (25) 2.超声波的基本原理 (26) 2.1什么是超声波 (26) 2.2波的传播 (26) 2.3超声波传播的特点 (32) 3.超声波的应用 (32) 3.1超声波传感器 (33) 3.2超声波测距 (34) 3.3超声波测量流量 (36) 3.4超声波提取技术 (39) 3.5超声清洗 (40) 3.6超声波在军事中的应用 (42) 3.7超声波技术在纳米材料制备中的应用 (42) 3.8超声波在医疗方面的应用 (43) 4. 后记 (44) 5. 致谢........................................ 错误!未定义书签。参考文献. (44) 湖北师范学院学士学位论文评审表................. 错误!未定义书签。

超声波的原理及其应用 1. 绪论 早在1830年,F·Savart曾用齿轮,第一次产生4 10 4.2?HZ的超声,1876年F·Galton用气哨产生4 3?Hz 的超声。1912年4月10日,泰坦尼克号 10 触冰山沉没,引起科学界注意,希望可以探测到水下的冰山。直到第一次世界大战中,德国大量使用潜艇,击沉了协约国大量舰船,探测潜艇的任务又提到科学家的面前[1]。当时的科学家郎之万和他的朋友利用当时已出现的功率很大的放大器和石英压电晶体结合起来,能向水下发射几十千赫兹的超声波,成功的将超声波应用到实际中。 我国解放前超声研究是个空白,超声学的研究始于1956年的12年科学规划。1959年超声应用(探伤、加工、种子处理、显示、医疗、粉碎、乳化及染料等)取得了进展。在基础研究反面也有相当深度,如棒的声振动、超声乳化和水中气泡的超声吸收问题;建立了分子声学试验设备,对弛豫吸收、悬浮体的声吸收进行了系列研究;建立了固体中超声衰减的测量设备;对粘弹性和可压缩流体的声速和衰减进行了深入研究。1965年开始研究了声表面波换能器。进入80年代,我国超声学面向实际应用。B超医疗开始投入生产;超声加工、超声研磨、超声焊接、超声清洗、超声催化与滤矿及超声技术育种等逐步开始形成一定规模的产业。压电复合换能器研制成功,窄脉冲短余振探头问世;PVDF新颖压电薄膜换能器及超声显微镜获得实用;高频压电材料LiNbO3研制成功和走向实用[2]。九十年代以来,在中国科学院声学研究所与南京大学声学研究所相继批准建立了国家级重点实验室。总之,我国的超声学研究过的巨大的发展,有些方面已达到国际先进水平。 超声技术是一门以物理、电子、机械及材料学为基础的、各行各业都要遇上的通用技术之一。在国民经济中,对提高产品质量,保障生产安全和设备安全运行,降低生产成本,提高生产效率特别具有潜在能力。因此,我国近十年来,对超声技术的应用研究十分活跃,涉及的应用范围非常广泛。但归纳起来,也无非是两大类:第一类是超声加工和处理技术;第二类就是超声检测与控制技术[3],其他的超声理论和实验,实际上都是为这两类应用服务的。 超声加工和处理技术是利用高强度的超声波来改变物质的性质和状态

相关文档
相关文档 最新文档