文档库 最新最全的文档下载
当前位置:文档库 › 贴片0.1ppm高精度温补晶振

贴片0.1ppm高精度温补晶振

贴片0.1ppm高精度温补晶振

TS Type

7.0 x 5.0 mm SMD High Precision Voltage Controlled T e m p e r a t u r e C o m p e n s a t e d C r y s t a l O s c i l l a t o r

Specifications subject to change without notice

FEATURE

- Typical 7.0 x 5.0 x 1.9 mm ceramic SMD package. - High Precision for -40 o C~+85 o C, ±0.28ppm

- CMOS and Clipped Sine wave (without DC-cut capacitor) output optional.

TYPICAL APPLICATION

- Femtocell, Base Stations

- WLAN / WiMAX / WiFi, Wireless Communications - Mobile Phone

DIMENSION (mm) SOLDER PAD LAYOT (mm)

ELECTRICAL SPECIFICATION

Parameter

5.0V

3.3V

Unit Min. Max. Min. Max. Supply Voltage Variation (VDD) ±5% 4.75 5.25 3.13 3.47 V Frequency Range

5

40 5 40

MHz Standard Frequency (for CMOS)

5, 6.4, 8, 8.192, 10, 12.5, 12.8, 16, 16.384, 19.44, 25

Standard Frequency (for Clipped Sine Wave) 8.192, 10, 12.5, 12.8, 16, 16.384, 19.44, 25

Frequency Tolerance* ±2.0 ±2.0 ppm Frequency Stability

Vs Supply Voltage (±5%) change - ±0.5 - ±0.5

ppm Vs Load (±10%) change - ±0.2 - ±0.2

ppm Vs Aging

- ±1.0 - ±1.0 ppm Supply Current (CMOS output)

- 6.0 - 6.0 mA Supply Current (Clipped Sine Wave) - 3.5 - 3.5

Output Level (CMOS)

Output Low (Logic"1") 4.5 - 2.97 - V Output Low (Logic"0") - 0.5 - 0.33 Duty

45 55 45 55 % Output Level (Clipped Sine Wave) 0.8 - 0.8

Vp-p Load (CMOS)

15pF 15pF Load (Clipped Sine Wave)

10 K? // 10pF 10 K? // 10pF Control Voltage Range (VCTCXO) 0.5 2.5 0.5 2.5 V Pulling Range (VCTCXO)

±5.0 ±12.0 ±5.0 ±12.0 ppm Vc Input Impedance (VCTCXO) 100 - 100 -

K? Phase Noise @ 19.2MHz

100 Hz -120 -120 dBc / Hz 1 KHz -140 -140 10 KHz -148 -148

Start Time - 2 - 2

mSec Tri-State

Disable - 1.5 - 0.99 V

Enable

3.5 - 2.31 - Storage Temp. Range

-55 125 -55 125 o

C

Standard frequencies are frequencies which the crystal has been designed and does not imply a stock position *Frequency at 25 o

C, 1 hour after reflow

Note: not all combination of options are available. Other specifications may be available upon request.

深圳捷比信--高品质精密元件供应商

www.jepsun.com

压控温补晶振

晶振,电子产品都得依赖的一款电子器件,它是通常应用到一些高端电子产品当中,就好比智能手机晶振,产品具有高精度超小型的表面贴片型石英晶体振荡器,最适用于移动通信终端的基准时钟等移动通信领域.例如:智能手机,无线通信,卫星导航,平台基站等较高端的数码产品都使用到压控温补晶振,压控温补晶振本身小型,薄型具备各类移动通信的基准时钟源用频率,贴片晶振具有优良的电气特性,耐环境性能适用于移动通信领域,满足无铅焊接的高温回流温度曲线要求.晶振产品面向社会备受电子元器件市场青睐,不断努力不断创新给社会创造价值这离不开广大消费者的支持与厚爱.然而使我们生产晶振的生厂商有了饱满的信心和使用晶振的客户给的支持,晶振是越做越好,照这样的发展情况来看晶振就会成为新一代电子元器件中的骄傲神器. 压控温补晶振是内置高精度SMD温度补偿的石英晶体振荡器,可以使用在全球卫星GPS接收机.晶振在电子产品的要求上已经有了更近一步的规划,因为一些电子产品它是需要带电压的晶振和该产品内的其它电子器件相互刺激性的传输能稳定的电压,才能够使压控温这个功能作用起来,压控温补晶振 (VC-TCXO),尺寸2016mm 3225mm是目前有源晶振中体积最小的一款.压控温补晶振产品本身带温度补偿作用的晶体振荡器,该体积产品最适合于GPS以及卫星通讯系统,智能电话等多用途的高稳定的频率温度特性晶振.为对应低电源电压的产 品.(DC+1.8V ± 0.1V to +2.9V ± 0.1V 对应IC可能) 高度:最高

0.8 mm,体积:0.0022 cm3,重量:0.008 g,超小型,轻型.低消耗电流,表面贴片型产品.(可对应回流焊)无铅产品.满足无铅焊接的高温回流温度曲线要求,带有频率控制功能,产品本身可根据使用需要进行选择;科技不单单只晶振,只要是能幻想的事物都能用高科技的手段和精密帷幄的思维把它更好的创造出来。

最全贴片元件的封装

常用贴片元件封装 1 电阻: 最为常见的有0201、0402、0805、0603、1206、1210、1812、2010、2512几类1)贴片电阻的封装与尺寸如下表: 英制(mil) 公制(mm) 长(L)(mm) 宽(W)(mm) 高(t)(mm) 0201 0603 0.60±0.05 0.30±0.05 0.23±0.05 0402 1005 1.00±0.10 0.50±0.10 0.30±0.10 0603 1608 1.60±0.15 0.80±0.15 0.40±0.10 0805 2012 2.00±0.20 1.25±0.15 0.50±0.10 1206 3216 3.20±0.20 1.60±0.15 0.55±0.10 1210 3225 3.20±0.20 2.50±0.20 0.55±0.10 1812 4832 4.50±0.20 3.20±0.20 0.55±0.10 2010 5025 5.00±0.20 2.50±0.20 0.55±0.10 2512 6432 6.40±0.20 3.20±0.20 0.55±0.10 2)贴片电阻的封装、功率与电压关系如下表: 英制(mil)公制(mm)额定功率@ 70°C 最大工作电压(V) 0201 0603 1/20W 25 0402 1005 1/16W 50 0603 1608 1/10W 50 0805 2012 1/8W 150 1206 3216 1/4W 200 1210 3225 1/3W 200 1812 4832 1/2W 200 2010 5025 3/4W 200 2512 6432 1W 200 3)贴片电阻的精度与阻值 贴片电阻阻值误差精度有±1%、±2%、±5%、±10%精度, J -表示精度为5%、 F-表示精度为1%。 T -表示编带包装 阻值范围从0R-100M 4)贴片电阻的特性 ·体积小,重量轻; ·适应再流焊与波峰焊; ·电性能稳定,可靠性高; ·装配成本低,并与自动装贴设备匹配; ·机械强度高、高频特性优越。 2电容: 1)贴片电容可分为无极性和有极性两种,容值范围从0.22pF-100uF 无极性电容下述两类封装最为常见,即0805、0603; 英制尺寸公制尺寸长度宽度厚度 0402 1005 1.00±0.05 0.50±0.05 0.50±0.05 0603 1608 1.60±0.10 0.80±0.10 0.80±0.10 0805 2012 2.00±0.20 1.25±0.20 0.70±0.20

ZKJ晶振3225封装40MHz-15PF-10PPM规格书

深圳市中科晶电子有限公司 一、适用范围 本规格书用于规定 40.000000 MHz 石英晶体谐振器。 二、构造 2.1封装:■ 3.2*2.52.2封装形式:■电阻焊2.3封装介质:■真空 三、尺寸、材料 基座 上盖 晶片 银丝 导电胶 单位:mm

四、晶体技术参数指标 1.频率:40.000000MHz 2.型号:3225 3.振荡模式:Fundamental(AT) 4.频率频差:±10ppm at25℃±3℃ 5.温度频差:±20ppm温度频差测试的基准温度是:25±2℃ 6.工作温度范围:-20℃~+70℃ 7.储存温度范围:-40℃~+85℃ 8.负载(CL):15pF 9.激励功率:100uW/Max 10.静电容:7.0pF MAX 11.等效电阻:60ΩMax. 12.绝缘阻抗:500MΩmin/DC100V 13.年老化率:±3ppm/年 14.包装方式:卷包3000PCS/Reel 15.备注

五、可靠性试验

六、包装方式 6.1带子尺寸( unit:mm ) Marking Marking A B C D E F G H J K t 2.7 3.4 8.0 3.5 1.75 4.0 2.0 4.0 1.55 1.4 0.25 6.2卷盘尺寸(unit:mm ) 七、注意 本产品不能折弯使用,在电路板安装时使用过大的机械压力可能造成产品损坏,同时本规格书只规定了部件本身的品质,应用于您的产品时请确认图纸该产品是否适用。 M N P Q R S U 178.0 60.2 11.5 8.0 2.5 11.0 13.0

常见贴片元器件封装

SMT贴片元器件封装类型的识别 封装类型是元件的外观尺寸和形状的集合,它是元件的重要属性之一。相同电子参数的元件可能有不同的封装类型。厂家按照相应封装标准生产元件以保证元件的装配使用和特殊用途。 由于封装技术日新月异且封装代码暂无唯一标准,本指导只给出通用的电子元件封装类型和图示,与SMT工序无关的封装暂不涉及。 1、常见SMT封装 以公司内部产品所用元件为例,如下表: 名称 缩写含义 备注 Chip Chip 片式元件 MLD Molded Body 模制本体元件 CAE Aluminum Electrolytic Capacitor 有极性 Melf Metal Electrode Face 二个金属电极 SOT Small Outline Transistor 小型晶体管 TO Transistor Outline 晶体管外形的贴片元件 OSC Oscillator 晶体振荡器 Xtal Crystal 二引脚晶振 SOD Small Outline Diode 小型二极管(相比插件元件) SOIC Small Outline IC 小型集成芯片 SOJ Small Outline J-Lead J型引脚的小芯片 SOP Small Outline Package 小型封装,也称SO,SOIC DIP Dual In-line Package 双列直插式封装,贴片元件 PLCC Leaded Chip Carriers 塑料封装的带引脚的芯片载体 QFP Quad Flat Package 四方扁平封装 BGA Ball Grid Array 球形栅格阵列 QFN Quad Flat No-lead 四方扁平无引脚器件 SON Small Outline No-Lead 小型无引脚器件 通常封装材料为塑料,陶瓷。元件的散热部分可能由金属组成。元件的引脚分为有铅和无铅区别。

贴片封装知识

贴片封装知识 1)贴片元件封装说明 发光二极管:颜色有红、黄、绿、蓝之分,亮度分普亮、高亮、超亮三个等级,常用的封装形式有三类:0805、1206、1210 二极管:根据所承受电流的的限度,封装形式大致分为两类,小电流型(如 1N4148)封装为1206,大电流型(如IN4007)暂没有具体封装形式,只能给出具体尺 寸:5.5 X 3 X 0.5 电容:可分为无极性和有极性两类,无极性电容下述两类封装最为常见,即0805、0603;而有极性电容也就是我们平时所称的电解电容,一般我们平时用的最多的为铝电解电容,由于其电解质为铝,所以其温度稳定性以及精度都不是很高,而贴片元件由于其紧贴电路版,所以要求温度稳定性要高,所以贴片电容以钽电容为多,根据其耐压不同,贴片电容又可分为A、B、C、D四个系列,具体分类如下: 类型封装形式耐压 A 3216 10V B 3528 16V C 6032 25V D 7343 35V 拨码开关、晶振:等在市场都可以找到不同规格的贴片封装,其

性能价格会根据他们的引脚镀层、标称频率以及段位相关联。 电阻:和无极性电容相仿,最为常见的有0805、0603两类,不同的是,她可以以排阻的身份出现,四位、八位都有,具体封装样式可参照MD16仿真版,也可以到设计所内部PCB库查询。 注: A\B\C\D四类型的封装形式则为其具体尺寸,标注形式为L X S X H 1210具体尺寸与电解电容B类3528类型相同 0805具体尺寸:2.0 X 1.25 X 0.5 1206具体尺寸:3.0 X 1.5 0X 0.5 固定电阻常用的封装模型为“AXIAL”系列的,包括“AXIAL-0.3”、“AXIAL -0.4”“AXIAL-0.5”、“AXIAL-0.6”、“AXIAL-0.7”、“AXIAL-0.8”、“AXIAL -0.9”和“AXIAL-1.0”等,其后缀的数字表示封装模型中两个焊盘的间距,单位为 “英寸”(1英寸=1000mil=2.54cm)。贴片电阻封装模型0805指的是80mil*50mil 的。 无极性电容的封装模型为RAD系列,例如“RAD-0.1”“RAD-0.2”“RAD-0.3”“RAD -0.4”等,其后缀的数字表示封装模型中两个焊盘间的距离,单位为“英寸”。电解

恒温晶振与温补晶振的区别

恒温晶振与温补晶振的区别 恒温晶振与温补晶振都属于晶体振荡器,都是有源晶振,所以组成的震荡电路都需要电源加入才能工作。下面将简单介绍一下两者的区别。 定义上恒温晶体振荡器简称恒温晶振,英文简称为OCXO(Oven Controlled Crystal Oscillator),是利用恒温槽使晶体振荡器中石英晶体谐振器的温度保持恒定,将由周围温度变化引起的振荡器输出频率变化量削减到最小的晶体振荡器。OCXO是由恒温槽控制电路和振荡器电路构成的。通常人们是利用热敏电阻电桥构成的差动串联放大器,来实现温度控制。 温补晶振即温度补偿晶体振荡器(TCXO),是通过附加的温度补偿电路使由周围温度变化产生的振荡频率变化量削减的一种石英晶体振荡器。 温补晶振术语来自石英晶体振荡器的一种补偿方式已达到产品应用方面的精度要求。温补晶振定义是将压电石英晶体原有的物理特性(压电效应下频率随温度成三次曲线变化)通过外围电路逆向改变使得石英晶体原有频率随温度的变化尽可能的变小的一种补偿方式所做的石英晶体振荡器。 恒温晶振温补晶振 工作原理上恒温晶振,由于晶体振荡器的震荡频率会随着温度的变化而变化,故为了保持频率的稳定性,将晶振控制在一个恒定的温度下工作以此来提高晶振的相频特性。 温补晶振,由于晶体振荡器的震荡频率会随着温度的变化而变化,为了抵消温度对晶振频率的影响,控制晶振的谐振电容随温度变化而变化,抵消温度晶体影响提高频率稳定性。测量精度上一般的恒温晶振要比温补晶振频率稳定度高两个数量级以上。如温补晶振一般能达到-7量级,而恒温晶振可达到-9量级。因此恒温晶振一般用于高端测量仪器,如频率计、信号发生器、网络分析仪等。 而温补晶振的开机特性较好。恒温晶振就算采用现在最好的加热元件,也需要一个加温过程。想达到-7量级,怎么也需要5分钟左右,而达-9以上量级甚至需要一天。因此开机即

温补晶振的热敏网络分析及参数计算

简单, 加工方便. 目前所能达到的补偿精度一般为 10 ~10 . 1998 年 12 月 沈 阳 工 业 学 院 学 报 V ol. 17 N o. 4 第17卷 第4期 JOURNAL OF SHENYANG INST IT U T E OF T ECH NOL OGY Dec. 1 9 9 8 温补晶振的热敏网络分析及参数计算 崔旭晶 ( 沈阳工业学院自动控制系, 沈阳 110015) 摘 要 论述了温度补偿石英晶体振荡器的工作原理, 对几种常见温 度补偿网络( 热敏网络) 进行试验分析, 利用 New t on 等方法计算热敏网络 参数并给出微机辅助设计. 关键词 热敏网络, 曲线拟合, 残差. 分类号 T M 135 0 引言 晶体振荡器的频率是随温度变化的. 为达到频率稳定的目的, 过去常加设一个恒温槽, 使 振荡器的体积大、造价高, 耗电功率增加, 还需预热时间. 而使用“温度补偿”的晶体振荡器可以 克服上述缺点, 并且对 AT 切晶体谐振器的各种频率温度系数曲线都能进行补偿, 有利于成批 生产. 温度补偿的方法是设计一个“热敏网络”, 该热敏网络由固定电阻和热敏电阻组成, 结构 - 6 - 7 1 温补晶振的补偿原理及补偿过程 如图 1 所示. 使用一个热敏网络和一个变容二极管, 变容二极管的结电容与其偏压成反 比. 晶体振荡器的负载电容基本上等于变容二极管的结电容. 当环境温度改变时, 使石英谐振 器的频率发生变化( 见图 2) , 热敏网络同时输出一个随温度变化的电压 V 0 , V 0 改变变容二极 管的结电容, 使石英晶体振荡器的频率变化. 当热敏网络随温度变化输出的 V 0 改变变容二极 管的结电容, 使晶体振荡器的频率变化( 曲线 b ) 和由于环境温度变化引起晶体振荡器的频率 变化( 曲线 a) 相反且相等时, 两种变化互相抵消得到稳定的频率曲线 c, 则达到补偿的目的. 从上述补偿原理可得到补偿过程如下: 测试出补偿电压—温度曲线 ( V -T 曲线) 用电位器代替热敏网络, 改变环境温度( 温度变化根据需要选取) , 使晶体振荡器的频率变 化, 记下对应温度的频率值. 调节电位器, 改变加在变容二极管上的偏压, 使晶体频率变化到等 于标称值, 记下对应温度变容二极管上的偏压值, 即得到第四象限中所需要的补偿电压 — 温

恒温晶振、温补晶振的调试及测试

恒温晶振、温补晶振的调试及测试时的注意点 恒温晶振、温补晶振的调试及测试时的注意点 1) 每一个单独指标必须单独测试,不能同时测试几种指标,也不能同时测试几只晶振。 2) 测试时要严格按照标准的测试电路和测试环境进行测试。 3) 在没有相当的测试设备和测试人员的情况下,不建议客户自行测试晶振,更不能随意调试晶振,测试设备的等级应至少比晶振指标高一个数量级。 4) 对不同厂家的产品,尤其是来自不同国家的产品,有一些指标的测试方法不尽相同,应提前了解各厂家的异同点,统一意见,以减少不必要的麻烦。 5) 对一些短期指标如频率精度,开机特性等,应多做几次重复的测试,以减少测试结果的偶然性。 恒温晶振OCXO选型和采购时应该注意的问题 1) 不要一味追求高指标,因为高指标意味着成本大幅度增加,交货期加长; 2) 注意封装的可替代性,尽量不选用非标准封装; 3) 尽量不要压缩交货期限; 4) 了解厂家情况的时候,应该着重考察厂家的晶体来源、工艺控制能力; 5) 如果可能的话,应允许在研发阶段就让厂家参与到指标的确认工作中。 恒温晶振、温补晶振主要技术指标定义的IEC标准 1)标称频率(Nominal frequency) IEC标准定义:振荡器标明的工作频率。 2)中心频率偏差 (Frequency accuracy) IEC标准定义:在基准点温度环境(25 ± 2 ℃)和中心控制电压时,测得的频率值与标称频率的偏差。 3)频率调谐范围(Frequency adjustment range) IEC标准定义:用某种可变元件使振荡器频率能够改变的频率范围。 注:调整的目的: 1)把频率调到规定调整范围内的任一特定值。 2)由于老化和其它条件变化而引起频率偏移后,能够把振荡器频率修正到规定值。 调整的方式: 3)调节方式有机械调节和电压调节两种4)可变元件通常指变容二极管、多圈电位器等。 4)工作温度范围 (Operating temp. range) IEC标准定义:振荡器能够正常工作,其频率及其它输出信号性能均不超过规定的允许偏差的温度范围。注: 1)工作温度范围的下限越低,振荡器功耗越大,同时频率温度稳定度越难实现。 2)工作温度范围的上限越高,晶体拐点设置越高,晶体成本上升越多。 5)压控特性(电压范围、极性、线性、压控输入阻抗) IEC标准定义:当控制电压变化时,引起的振荡器输出的频率、波形特征等电特性的变化。 注: 1)电压范围:用来调节频率的电压的可调范围。常见的有0~3.3V, 0.3~3.0V, 0~ 5V, 0.5~4.5V等。2)压控范围:压控电压在电压范围内变化的时候,振荡器的频率能够变化的范围。3)极性:当振荡器的频率随压控电压的增加而增加的时候,压控极性 3)极性:当振荡器的频率随压控电压的增加而增加的时候,压控极性为正极性,反之为负极性。 4)线性度:理想的压控电压和频率变化量的关系是线性的,但实际上总会有所偏差,这个偏差就是表征理想程度的压控线性度,通常用百分比表示。5)如果系统不能给出稳定的电压信号,或者对输出频率有严格的控制要求时,通常振荡器可以自己给出经过稳压后的精准的电压供压控电压用,这个精准的电压就是参考电压。 6)输出波形(Output waveform)正弦: 负载能力 方波: 上升沿时间、下降沿时间、占空比、高/低电平 IEC标准定义:振荡器工作时输出的波形及波形的具体特性。 注:常见输出波形及输出特性指标: 1)正弦波(Sine):谐波抑制(Harmonic attenuation)、杂波抑制(Noise attenuation )、负载(Load)、输出幅度(Output level)。 2)削峰正弦波(Clipping Sine):负载(Load)、输出幅度(Output level)。 3)方波(Square):又分为MOS和TTL两类输出。负载(Load)、占空比(Duty cycle)、上升/下降时间(Rise/fall time)、高低电平(“1” and “0” level)。

常用晶振频率

常用晶振频率

常用晶振频率 32.768KHz 100KHz 200KHz 455KHz 600KHz 1MHz 1.8432MHz 2MHz 2.68MHz 3MHz 3.2MHz 3.575611MHz 3.579MHz 3.579545MHz 3.64MHz 3.6864MHz 3.6864MHz 4MHz 4.032MHz 4.09MHz 4.096MHz 4.14MHz 4.194MHz 4.195MHz 4.1952MHz 4.25MHz 4.332MHz 4.433MHz 4.433619MHz 4.49923MHz 4.5MHz 4.91MHz 4.915MHz 5MHz 5.927MHz 6MHz 6.431091MHz

7.1137MHz 7.2MHz 7.2MHz 7.3728MHz 7.3728MHz 7.6MHz 7.732MHz 7.9296875MHz 8.192MHz 8.38MHz 9.216MHz 9.216MHz 9.6MHz 9.6MHz 9.8MHz 9.83MHz 9.8304MHz 9.8304MHz 10MHz 10.01MHz 10.238MHz 10.24MHz 10.245MHz 10.245MHz 10.25MHz 10.7MHz 10.8MHz 11.013MHz 11.0592MHz 11.15MHz 11.15MHz 11.288MHz 11.5MHz 12MHz 12.288MHz 12.288MHz 12.5MHz

12.8MHz 12.8MHz 13MHz 13.25MHz 13.5MHz 13.56MHz 14MHz 14.31818MHz 14.74MHz 14.745MHz 14.7456MHz 15.36MHz 15.36MHz 15.36MHz 15.36MHz 15.4MHz 15.4MHz 15.5MHz 16MHz 16MHz 16.367667MHz 16.368MHz 16.384MHz 16.8MHz 16.8MHz 16.8MHz 16.9344MHz 16.9344MHz 17.28MHz 17.734MHz 17.734475MHz 18.432MHz 18.432MHz 19.2MHz 19.2MHz 19.3125MHz 19.44MHz

京瓷kyocera温补晶振KT7050规格参数、数据手册、规格书信息

Temperature Compensated Crystal Oscillators (TCXO, VCTCXO)Surface Mount Type TCXO (LSI Type) KT7050 Series for Femtocell/ Stratum3 7.0×5.0mm Features ? H igh stability and high reliability ? 2.7 to 5.5V drive available ? C lipped sine wave or CMOS level output ? L ow phase noise ? D isable Function (KT7050A) Applications ? F emtocell, Stratum3? S ONET/ SDH/ Ethernet ? C ompliant to the GR1244-Core & GR253-Core ? R ecommended in Microsemi’s ZLAN - 68 app. note for Stratum3 applications based on tests performed by Kyocera. How to Order For Femtocell (Standard Spec.) Freq. Temp. Chrst. : ±0.1×10?6/ ?10°C to 70°C KT7050A 20000A G T 33T xx ① ② ③ ④⑤⑥⑦⑧⑨ For Stratum3 (Standard Spec.) Freq. Temp. Chrst. : ±0.28×10?6/ ?40°C to 85°C KT7050A 20000K A W 33T xx ① ② ③ ④⑤⑥⑦⑧⑨ ①Series ② Land Type Freq. Temp. Chrst. ⑥ Upper Operating Temp. ⑨Option Code  Packaging (Tape & Reel 1000 pcs./ reel) Dimensions Recommended Land Pattern (Unit: mm) 号,上晶振商城】

晶振的基本原理及特性

晶振的基本原理及特性 晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。 分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv 三个电容串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。 采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。 晶振的指标 总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。 说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。 频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。一个晶振的输出频率随时间变化的曲线如图2。图中表现出频率不稳定的三种因素:老化、飘移和短稳。

图2 晶振输出频率随时间变化的示意图 曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。表现了晶振的老化。 频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。 ft=±(f max-fmin)/(fmax+fmin) ftref =±MAX[|(fmax-fref)/fref|,|(fmin-fref)/fref|] ft:频率温度稳定度(不带隐含基准温度) ftref:频率温度稳定度(带隐含基准温度) fmax :规定温度范围内测得的最高频率 fmin:规定温度范围内测得的最低频率 fref:规定基准温度测得的频率 说明:采用ftref指标的晶体振荡器其生产难度要高于采用ft指标的晶体振荡器,故ftref指标的晶体振荡器售价较高。 开机特性(频率稳定预热时间):指开机后一段时间(如5分钟)的频率到开机后另一段时间(如1小时)的频率的变化率。表示了晶振达到稳定的速度。这指标对经常开关的仪器如频率计等很有用。 说明:在多数应用中,晶体振荡器是长期加电的,然而在某些应用中晶体振荡器需要频繁的开机和关机,这时频率稳定预热时间指标需要被考虑到(尤其是对于在苛刻环境中使用的军用通讯电台,当要求频率温度稳定度≤±0.3ppm(-45℃~85℃),采用OCXO作为本振,频率稳定预热时间将不少于5分钟,而采用MCXO只需要十几秒钟)。 频率老化率:在恒定的环境条件下测量振荡器频率时,振荡器频率和时间之间的关系。这种长期频率

常用无源晶振封装尺寸及实物图

常用无源晶振封装尺寸及实物图 晶振尺寸较多,为了查找资料方便,特整理一下: 石英晶振:即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。一般的概念中把晶振就等同于谐振器理解了,振荡器就是通常所指钟振。石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中。 石英晶振封装一般分为插件(DIP)和贴片(SMD)。 插件中又分为HC-49U、HC-33U、HC-49S、全尺寸(长方体)、半尺寸(正方体)、音叉型(圆柱状晶振)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49S一般称49S,俗称“矮型”,音叉型(圆柱状晶振)按照体积分可以分为φ3*10、φ3*9、φ3*8、φ2*6、φ1*5、、φ1*4等。贴片型是按尺寸大小和脚位来分类:例如7050(7.0*5.0)、6035(6.0*3.5)、5032(5.0*3.2)、3225(3.2*2.5)、2025(2.0*2.5)等。脚位有4pin和2pin之分。所谓全尺寸的,又称长方形或者14pin,半尺寸的又称正方形或者8pin。不过要注意的是,这里的14pin 和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。 而从不同的应用层面来分,有源晶振又可分为普通晶振(OSC)、温补晶振(TCXO)、压控晶振(VCXO)压控晶振恒温晶振(OCXO)等。 A、直插封装(Through-Hole) 1、 HC-51/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7

2、HC-33/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7 3、HC-49/U 1 - 150 MHz 11.2 x 4.7 x 13.6

晶振的基本原理及特性(精)

晶振的基本原理及特性 晶振的基本原理及特性 晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。 分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,

非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。 采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。 晶振的指标 总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。 说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。例如:精密制导雷达。 频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。一个晶振的输出频率随时间变化的曲线如图2。图中表现出频率不稳定的三种因素:老化、飘移和短稳。

贴片二极管封装

贴片二极管封装各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢MMBD4148贴片式-SOT封装-二极管SOT-23 Plastic-Encapsulate Diodes Electrical Ratings @TA=25℃ Parameter Reverse Breakdown V oltage Typ. Max. Conditions V (BR) RIR=100μA IF=1mA IF=10mA Forward voltage VF3IF=50mA VF4IF=150mA IR1μR=75V IR2VR=20V VR=0V,f=1MHz CTIF=IR=10mA trrIrr=,RL=100? Reverse current Capacitance between terminals Reverse Recovery Time贴片元件封装-电阻,电容,电感,二极管,三极管,IC

贴片元件封装1电阻 最为常见的有0201、0402、0805、0603、1206、1210、1812、2016、2512几类 1)贴片电阻的封装与尺寸如下表: 英制(mil) 公制(mm) 长(L)(mm) 宽(W)(mm) 高(t)(mm) 0201 0603 ±±±0402 1005 ±±±0603 1608 ±±±0805 2016 ± ± ± 1206 3216 ± ± ± 1210 3225 ±±±1812 4832 ±±±2016 5025 ±±±2512 6432 ± ± ± 2)贴片电阻的封装、功率与电压关系如下表:英制(mil)公制(mm)额定功率@ 70°C 最大工作电压(V) 0201 06031/20W 25 040210051/16W 50 060316081/10W 50 080520161/8W 150 1206 32161/4W 200 1210 32251/3W 200 181248321/2W 200 201650253/4W

晶振关键参数

晶振关键参数 1、工作频率 晶振的频率范围一般在1到70MHz之间。但也有诸如通用的32.768kHz钟表晶体那样的特殊低频晶体。晶体的物理厚度限制其频率上限。归功于类似反向台面(inverted Mesa)等制造技术的发展,晶体的频率上限已从前些年的30MHz提升到200MHz。工作频率一般按工作温度25°C时给出。 可利用泛频晶体实现200MHz以上输出频率的更高频率晶振。另外,带内置PLL 频率倍增器的晶振可提供1GHz以上的频率。当需要UHF和微波频率时,声表波(SAW)振荡器是种选择。2、频率精度:1PPM=1/1,000,000 频率精度也称频率容限,该指标度量晶振实际频率于应用要求频率值间的接近程度。其常用的表度方法是于特定频率相比的偏移百分比或百万分之几(ppm)。例如,对一款精度±100ppm的10MHz晶振来说,其实际频率在10MHz±1000Hz之间。 (100/1,000,000)×10,000,000=1000Hz 它与下式意义相同:1000/10,000,000=0.0001=10-4或0.01%。典型的频率精度范围在1到1000ppm,以最初的25°C 给出。精度很高的晶振以十亿分之几(ppb)给出。 3、频率稳定性 该指标量度在一个特定温度范围(如:0°C到70°C 以及-40°C到85°C)内,实际频率与标称频率的背离程度。稳定性也以ppm给出,根据晶振种类的不同,该指标从10到1000ppm 变化很大(图2)。 4、老化 老化指的是频率随时间长期流逝而产生的变化,一般以周、月或年计算。它于温度、电压及其它条件无关。在晶振上电使用的最初几周内,将发生主要的频率改变。该值可在5到10ppm 间。在最初这段时间后,老化引起的频率变化速率将趋缓至几ppm。 5、输出 有提供不同种类输出信号的晶振。输出大多是脉冲或逻辑电平,但也有正弦波和嵌位正弦波输出。一些常见的数字输出包括:TTL、HCMOS、ECL、PECL、CML 和LVDS。 许多数字输出的占空比是40%/60%,但有些型号可实现45%/55%的输出占空比。一些型号还提供三态输出。一般还以扇出数或容抗值(pF)的方式给出了最大负载。 6、工作电压 许多晶振工作在5V直流。但新产品可工作在1.8、2.5和3.3V。 7、启动时间 该规范度量的是系统上电后到输出稳定时所需的时间。在一些器件内,有一个控制晶振输出开/闭的使能脚。 8、相噪 在频率很高或应用要求超稳频率时,相噪是个关键指标。它表度的是输出频率短时的随机漂移。它也被称为抖动,它产生某类相位或频率调制。该指标在频率范围内用频谱分析仪测量,一般用dBc/Hz表示相噪。 晶振输出的不带相噪的正弦波被称为载波,在频谱分析仪上显现为一条工作频率上的垂直线。相噪在载波之上和之下产生边带。相噪幅度表示为边带功率幅值(Ps)与载波功率幅值(Pc)之比,以分贝表示: 相噪(dBc)=10log(Ps/Pc)

温补晶振(TCXO)振荡器

温补晶振(TCXO)振荡器 本文档由https://www.wendangku.net/doc/9a8072826.html,整理 温补晶振由普通化转换成小型化是一个过程,在近十几年中得到稳定长足发展,其中在精密TCXO的研究开发与生产方面,日本居领先和主宰地位。在70年代末汽车电话用TCXO的体积达20 以上,目前的主流产品降至0.4 ,超小型化的TCXO器件体积仅为0.27 。在30年中,TCXO的体积缩小了50余倍乃至100倍。日本京陶瓷公司采用回流焊接方法生产的表面贴装TCXO厚度由4mm降至2mm,在振荡启动4ms后即可达到额定振荡幅度的90%。金石(KSS)集团生产的TCXO 频率范围为2~80MHz,温度从-10℃到60℃变化时的稳定度为±1ppm或±2ppm;数字式TCXO的频率覆盖范围为0.2~90MHz,频率稳定度为±0.1ppm(-30℃~+85℃)。日本东泽通信机生产的TCO-935/937型片式直接温补型TCXO晶振,频率温度特性(点频15.36MHz)为±1ppm/-20~+70℃,在5V±5%的电源电压下的频率电压特性为±0.3ppm,输出正弦波波形(幅值为1VPP),电流损耗不足2mA,体积1 ,重量仅为1g。PiezoTechnology生产的X3080型TCXO采用表面贴装和穿孔两种封装,正弦波或逻辑输出,在-55℃~85℃范围内能达到±0.25~±1ppm的精度。国内的产品水平也较高,日本爱普生EPSON公司推出的TCXO(32~40MHz)在室温下精度优于±1ppm,第一年的频率老化率为±1ppm,频率(机械)微调≥±3ppm,电源功耗≤120mw。目前高稳定度的TCXO器件,精度可达±0.05ppm。高精度、低功耗和小型化,仍然是TCXO的研究课题。在小型化与片式化

晶振封装形式

一呼百应网经石英晶振:即所谓石英晶体谐振器(无源晶振)和石英晶体振荡器(有源晶振)的统称。一般的概念中把晶振就等同于谐振器理解了,振荡器就是通常所指钟振。石英晶振是一种用于稳定频率和选择频率的电子元件,已被广泛地使用在无线电话、载波通讯、广播电视、卫星通讯、仪器仪表等各种电子设备中。 石英晶振封装一般分为插件(Dip)和贴片(SMD)。 插件中又分为HC-49U、HC-33U、HC-49S、全尺寸(长方体)、半尺寸(正方体)、音叉型(圆柱状晶振)。HC-49U一般称49U,有些采购俗称“高型”,而HC-49S一般称4 9S,俗称“矮型”,音叉型(圆柱状晶振)按照体积分可以分为φ3*10、φ3*9、φ3*8、φ2*6、φ1*5、、φ1*4等。贴片型是按尺寸大小和脚位来分类:例如7050(7.0*5.0)、6035(6. 0*3.5)、5032(5.0*3.2)、3225(3.2*2.5)、2025(2.0*2.5)等。脚位有4pin和2pin

之分。所谓全尺寸的,又称长方形或者14pin,半尺寸的又称正方形或者8pin。不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。 而从不同的应用层面来分,有源晶振又可分为普通晶振(OSC)、温补晶振(TCXO)、压控晶振(VCXO)压控晶振恒温晶振(OCXO)等。 A、直插封装(Through-Hole) 1、HC-51/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7 2、HC-33/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7

常用无源晶振封装尺寸及实物图.562

常用无源晶振封装尺寸及实物图 A、直插封装(Through-Hole) (3) 1、HC-51/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7 (3) 2、HC-33/U 0.455 - 4.5 MHz 18.4 x 9.3 x 19.7 (3) 3、HC-49/U 1 - 150 MHz 11.2 x 4.7 x 13.6 (4) 4、HC-49/U-S 3.2 - 70 MHz 11.2 x 4.7 x 3.6 (4) 5、CSA-310 3.5 - 4 MHz ? 3.2 x 10.5 (5) 6、CSA-309 4 - 70 MHz ? 3.2 x 9.0 (5) 7、UM-1 1 - 200 MHz 7.0 x 2.2 x 8.0 (6) B、贴片封装(SMD) (7) 1、HC-49/MJ 1 - 150 MHz 13.8/17.1 x 11.5 x 5.4 (7) 2、UM-1/MJ 1 - 200 MHz 7.9 x 3.5 x 8.2/12.5 (8) 3、UM-5/MJ 10 - 200 MHz 7.9 x 3.5 x 6.2/10.5 (8) 4、SM-49 3.2 - 66 MHz 12.9 x 4.7 x 4.0 (9) 5、SM-49-4 3.5 - 66 MHz 13.0 x 4.7 x 5.0 (9) 6、SM-49-F 3.5 - 60 MHz 12.5 x 5.85 x 3.0 (10) 7、MM-39SL 3.579 - 70 MHz 12.5 x 4.6 x 3.7 (11) 8、CPX-25 3.5 - 30 MHz 11.6 x 5.5 x 2.0 (11) 9、CPX-20 3.5 - 60 MHz 11.0 x 5.0 x 3.8 (12) 10、CPX-84 10 - 80 MHz 8.0 x 4.5 x 1.6 (13) 11、CPX-02 8 - 100 MHz 8.0 x 4.5 x 1.8 (13) 12、CPX-75GN 9.8 - 100 MHz 7.0 x 5.0 x 1.6 (14) 13、CPX-75GN2 9.8 - 100 MHz 7.0 x 5.0 x 1.6 (15) 14、CPX-75GT 12.8 - 100 MHz 7.0 x 5.0 x 1.1 (15) 15、CPX-75GT2 12.8 - 100 MHz 7.0 x 5.0 x 1.1 (16) 16、CPX-49S 8 - 150 MHz 7.5 x 5.0 x 1.5 (17) 17、CPX-63GA 10 - 100 MHz 6.0 x 3.5 x 1.1 (18) 18、CPX-63GB 10 - 100 MHz 6.0 x 3.5 x 1.1 (18) 19、CPX-49SM 8 - 150 MHz 6.0 x 3.5 x 1.2 (19) 20、CPX-49SP 8 - 45 MHz 5.0 x 3.2 x 0.8 (20) 21、CPX-53GA 8 - 50 MHz 5.0 x 3.2 x 0.8 (21) 22、CPX-53GB 8 - 50 MHz 5.0 x 3.2 x 1.2 (22) 23、CPX-42 12 - 40 MHz 4.0 x 2.5 x 0.8 (23) 24、CPX-32 13 - 54 MHz 3.2 x 2.5 x 0.7 (24) 25、CPX-22 16 - 40 MHz 2.5 x 2.0 x 0.45 (25) C、时钟晶振(CLOCkCrystals (kHz-Crystals)) (26) 1、TC-38 32.768 kHz ? 3.0 x 8.2 (26) 2、TC-26 32.768 kHz ? 2.1 x 6.2 (26) 3、TC-26 Funkuhrquarz 77.5 kHz ? 2.1 x 6.2 (26) 4、TC-15 32.768 kHz ? 1.5 x 5.1 (27) 5、MM-25S 30 - 150 kHz 8.0 x 3.8 x 2.5 (27) 6、MM-20SS 32.768 kHz 8.0 x 3.8 x 2.5 (27)

相关文档