文档库 最新最全的文档下载
当前位置:文档库 › 高温超导材料及其应用前景

高温超导材料及其应用前景

高温超导材料及其应用前景
高温超导材料及其应用前景

大科技2015年9月高温超导材料及其应用前景

张闽

(湖南师范大学附属中学410006)

一百多年前,人们神奇的发现了一种对后世产生非常积极影响的材料——

—超导材料。在这一百多年里,科学家们一直在研究和探索超导材料,取得了巨大的成绩。现如今,超导材料的使用在我们的生活工作中是极其广泛的。

1高温超导材料

高温超导体具有着零电阻、抗磁性的特性,和超导材料一样都具备着其结构上的特性特征,高温超导材料就是超导材料中的一个小类,现在已经发现28种元素以及一千多种合金及化合物可以作为超导材料,我们平时听到的铜氧化物超导体就是我们现在说的高温超导材料。一提到高温大家肯定都会想到几百度、几千度甚至更多,但高温超导材料可不是实际意义上的高温,这个高温是相对超导材料而言的,超导材料的所需温度接近于绝对零度,然而高温超导材料也只是比原来的超导材料所需温度稍稍高一些,当然了,高温超导材料的所需温度还是在零下200℃左右的,虽然看上去温度还是很低,但在人们研究的这些超导材料中已经算是高的了,所以将这种超导材料定义为高温超导材料,在1911年突然发现超导材料的时候,科学家神奇的发现这些材料都具有电阻等于零、排斥磁力线和量子隧道效应的特性,科学家深深地被其吸引,并不断研究,可是在后来几十年的研究的超导材料还是只有在23K的极低温度下才能实现超导,这让超导材料的使用受到了极大地阻碍。

2高温超导材料的应用

高温超导材有稀土系(90K)、有铋系(110K)、有铊系(125K)、还有汞系(135K)这四种,上文介绍高温超导材料又叫铜氧化物超导体是因为它们都含有铜和氧,在导体表面会有一层结晶结构,就是铜氧层,这层结晶就是超导层。

在我们的现实生活中,高温超导材料已经得到了实际的应用。钇钡铜氧高温超导材料通常被我们用于制备超导薄膜,在电子、通信等领域得到了极大的应用。通讯基站运用了这种材料后通讯质量明显提高,电磁干扰显著减少;铋锶钙铜氧高温超导材料在电力的运输上起到了高效的作用,通常用在导线上,自从使用了铋锶钙铜氧高温超导材料在电力能源方面得到了良好的传输效果,并且极大地减少了电力能源在运输过程中的损耗,在环保方面、能源保护方面、经济方面等诸多方面铋锶钙铜氧高温超导材料都体现出了其强大的作用和优点。高温超导材料还应用到电动机上,传统的电动机耗电多、体积大、噪声大等,但相同功率的超导电动机具有造价低廉、环保节能、性能稳定、体积小巧和单机容量大等特性;就损耗能源来讲,在经济方面超导电动机相比普通电动机每年要少10亿美元的运行费用。在军事上高温超导电机也发挥着巨大的作用,使安装了高温超导电机的军舰性能更加优化,高效快捷、运行稳定并且空间布置更加灵活,最重要的是高温超导电机可以高速静音运行,这达到了很好的军事隐蔽功能。高温超导材料制成的超导储能装置可以很好将电磁能储存起来,利用超导线圈可以将多余的电磁能进行蓄能,如果这时候需要电能了,那么就会将电能释放出来可供使用,并且超导材料性能稳定,所以工作起来十分的平稳。同样,在我们的生活中也是能看到超导的影子,比如我们的交通工具。随着时代的发展,生活的改进,人们对出行运输的要求更加苛刻,因此,磁悬浮列车诞生。在众多交通工具中,超导磁悬浮列车非常的显眼,超导磁悬浮列车通过磁能的运用具有很多的优点,运行速度更快、安全系数更高、产生的运行噪音更低,运行冷却费用更少,这都无不展现了高温超导材料的优势,虽然超导磁悬浮列车的应用尚不广泛,但随着社会的发展、科技的进步,超导磁悬浮会进入主导地位。

3高温超导材料的未来使命

目前,很多地方都是通过煤炭来进行发电,但是这个过程中煤的消耗十分庞大,地下能源在日益枯竭,自然生态环境也在逐渐恶化,煤炭也在慢慢减少,全球上下都在面临着一个严峻的问题,就是资源枯竭,那么煤炭的作用是十分重要的。为了保护自然能源,水就成为了缓解资源枯竭的一个措施,利用水能发电,代替煤炭,可以有效解决这一问题。如今的社会人们离不开电,事事需要电,人们的生活与电可谓是形影不离,如今发电的途径主要依然还是通过火力,其次还有一些像风力、太阳能等发电方式,可毕竟还是不能满足人们的生活需求,根据上文的介绍,将高温超导材料应用在这一领域中可以取得良好的成果,相信在不久的将来,高温超导材料必然可以得到普及性应用。

参考文献

[1]马平,戴远东,甘子钊,杨小牛,华军.超导量子干涉器先进军用电子装备中的基础元件[J].真空电子技术,2009(01).

[2]李明亚,张宇,张梦龙,韩征和.铋系高温超导材料中3321相生成机理[J].稀有金属材料与工程,2008(S4).

[3]翟光荣,汪永华.高温超导及其在电力工业中的应用[J].安徽建筑工业学院学报(自然科学版),2012(01).

收稿日期:2015-9-15

摘要:高温超导材料给人们的生产和生活带来了极大的便捷,本文主要分析高温超导材料的应用与未来前景。关键词:高温超导材料;应用前景;分析

中图分类号:TM26文献标识码:A文章编号:1004-7344(2015)27-0266-01

266

高温超导材料及其应用前景

作者:张闽

作者单位:湖南师范大学附属中学 410006

刊名:

大科技

英文刊名:Super Science

年,卷(期):2015(27)

引用本文格式:张闽高温超导材料及其应用前景[期刊论文]-大科技 2015(27)

高温超导体及其研究近况

高温超导体及其研究近况 姓名:高卓班级:材料化学09-1 学号:200901130805 所谓超导,是指在一定温度、压力下,一些金属合金和化合物的电阻突然为零的性质.利用此次性质做成的材料称为超导材料. 超导材料按其化学组成可分为:元素超导体,合金超导体,化合物超导体。近年来,由于具有较高临界温度的氧化物超导体的出现,有人把临界温度Tc达到液氮温度(77K)以上的超导材料称为高温超导体,上述元素超导体,合金超导体,化合物超导体均属低温超导体。以下就高温超导体作一个简要介绍。 一材料特点 自1964年发现第一个超导体氧化物SrTiO3以来,至今已发现数十种氧化物超导体。这些氧化物超导体具有如下共同的特征:(1)超导温度相对而言比较高,但载流子浓度低;(2)临界温度Tc随组分成单调变化,且在某一组分时会过渡到绝缘态;(3)在Tc以上温度区,往往呈现类似半导体的电阻-温度关系;(4)Tc和其他超导参量对无需程度敏感。 高温超导体在结构和物性方面具有以下特征;(1)晶体结构具有很强的地维特点,三个晶格常数往往相差3-4倍;(2)输运系数(电导率、热导率等)具有明显的各向异性;(3)磁场穿透深度远大于相干长度,是第二类超导体;(4)载流子浓度低,且多为空穴型导电;(5)同位素效应不显著;(6)迈斯纳效应不完全;(7)隧道实验表明能隙存在,且为库柏型配对。氧化物超导体的这些特征,引起人们的兴趣和关注。 二发展趋势 目前,在高温超导研究领域中,各国科学家正着重进行三个方面的探索,一是继续提高Tc,争取获得室温超导体;二是寻找适合高温超导的微观机理;三是加紧进行高温超导材料与器件的研制,进一步提高材料的Jc和Tc,改善各种性能,降低成本,以适用实用化的要求。 三国内外发展现状 超导材料技术是21世纪具有战略意义的高新技术,极具发展潜力和市场前景。世界各主要国家政府纷纷制订相关计划和加大研发投资,推动基础研究和产业化发展,竞争十分激烈。 一、美国 美国能源部(DOE)早在1988年就创建了超导计划,该计划将高科技公司、国家实验室和大学结合起来,进行具有高度复杂性的高温超导技术的应用研发工作,并在此基础上于1993年底制定了超导伙伴计划(Superconductivity Partnership Initiative,SPI)。SPI是整个超导计划的一部分,目的是加速高温超导(High temperature superconductors,HTS)电力设备走进市场。DOE 在2001年9月24日宣布了新一轮的高温超导计划——SPI二期,投入总资金达1.17亿美元,支持高温超导商业化示范电缆、100MVA高温超导发电机、1000英尺、3相长距离高温超导输电电缆、高温超导变压器、高温超导核磁共振成像装置、超导飞轮储能装置、高温超导磁分离器等7个项目的研发。 2003年7月,DOE在公布的《‘Grid 2030’A National Vision for Electricity’s Second 100 Years》报告中,把高温超导技术列为美国电力网络未来30年中发展的关键技术之一。该计划制订了2010年、2020年和2030年美国在电力方

高温超导材料的发展及应用

高温超导材料的发展及应用 摘要:现代社会高度物质文明和材料科学进步密切有关,本文通过介绍超导及高温超导材料的相关知识阐述目前高温超导材料的发展和应用。 Abstract: the modern social highly material civilization Closely relates to the material's science progress, this paper is about the knowledge of superconducting and HTS materials,and it introduces High temperature superconducting materials 's development and application. 关键词:超导、高温超导材料、材料、技术。 Keywords: superconductivity, high temperature superconducting materials, materials, technology. 正文:日新月异的现代技术的发展需要很多新型材料的支持。自从第三次科技浪潮席卷全球以来,新型材料同信息、能源一起,被称为现代科技的三大支柱。新材料的诞生会带动相关产业和技术的迅速发展,甚至会催生新的产业和技术领域。 超导体由于其得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用,因而需要探索新的高温超导材料。所谓高温超导材料是指具有高临界转变温度(Tc)的超导材料,目前高温超导材料主要有:钇系(92 K)、铋系(110K)、铊系(125K)和汞系(135K)以及2001年1月发现的新型超导体二硼化镁(39K)。其中最有实用前途的是铋系、钇系(YBCO)和二硼化镁( Mg B)。氧化物高温超 2 导材料是以铜氧化物为组分的具有钙钦矿层状结构的复杂物质,在正常态它们都是不良导体。同低温超导体相比,高温超导材料具有明显的各向异性,在垂直和平行于铜氧结构层方向上的物理性质差别很大。高温超导体属于非理想的第II类超导体,且具有比低温超导体更高的临界磁场和临界电流,因此是更接近于实用的超导材料,特别是在低温下的性能比传统超导体高得多。 一、高温超导材料 1、高温超导线带材高温超导体在强电方面众多的潜在应用(如:磁体、电缆、限流器、电机等)都需要研究和开发高性能的长线带材(千米量级)。所以,人们先后在YBCO、BSCCO及 Mg B线材带化实 2

超导材料的发展

超导材料的发展 摘要:超导材料的发现为人类诸多梦想的实现提供了可能,新型超导材料一直是人类追求的目标。该文主要从超导材料的探索与发现、制备技术、研究面临的挑战等几个方面来探讨超导材料的发展与研究现状。 关键词:超导材料高温超导 引言:超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。正如半导体带来了资讯时代、光纤带来了传讯时代,高温超导材料将从根本上改变人类的用电方式,给电力、能源、交通以及其它与电磁有关的科技业带来革命性的发展。 1.超导材料的探索与发展 探索新型超导材料在超导材料研究中始终起着关键的作用,同时也是一项高风险、高投人的研究工作。自191 1年荷兰物理学家卡麦林·昂尼斯发现汞在4.2K 附近的超导电性以来,人们发现的新超导材料几乎遍布整个元素周期表,从轻元素硼、锂到过渡重金属铀系列等。超导材料的最初研究多集中在元素、合金、过渡金属碳化物和氮化物等方面。至1973年,发现了一系列A15型超导体和三元系超导体,如Nb3Sn、V3Ga、Nb3Ge,其中Nb3Ge超导体的临界转变温度(T c)值达到23.2K。以上超导材料要用液氦做致冷剂才能呈现超导态,因而在应用上受到很大限制。 1986年,德国科学家柏诺兹和瑞士科学家穆勒发现了新的金属氧化物超导材料即钡镧铜氧化物(La—BaCuO),其T c为35K,第一次实现了液氮温区的高温超导。铜酸盐高温超导体的发现是超导材料研究上的一次重大突破,打开了混合金属氧化物超导体的研究方向。l987年初,中、美科学家各自发现临界温度大于90K的YBaCuO超导体,已高于液氮温度(77K),高温超导材料研究获得重大进展。后来法国的米切尔发现了第三类高温超导体BiSrCuO,再后来又有人将Ca掺人其中,得到BiSrCaCuO超导体,首次使氧化物超导体的零电阻温度突破100K大关。

高温超导材料临界转变温度

实验 预习说明 1.附录不必看,因为示波器改用Kenwood CB4125A 型,它的使用指南见实验室说明资料。 2.测量B-H 曲线,用示波器直接测出R 1上的电压值u 1(3.11.1)式和电容上电压值u C ()式。 3.由于R 1、R 2和C 值不确定,仍需要用教材方法标定B 0、H 0,但是(3.11.7)、()式中L x 、L y 分别用标 定时的电压u x 、u y 代替。u x 、u y 为电压的峰峰值。 选做实验 高温超导材料临界转变温度的测定 一.引言 1911年荷兰物理学家卡默林翁纳斯(Kamerling Onnes)首次发现了超导电性。这以后,科学家们在超导物理及材料探索两方面进行了大量的工作。二十世纪五十年代BCS 超导微观理论的提出,解决了超导微观机理的问题。二十世纪六十年代初,强磁场超导材料的研制成功和约瑟夫森效应的发现,使超导电技术在强场、超导电子学以及某些物理量的精密测量等实际应用中得到迅速发展。1986年瑞士物理学家缪勒(Karl Alex Muller)等人首先发现La-Ba-Cu-O 系氧化物材料中存在的高温超导电性,世界各界科学家在几个月的时间内相继取得重大突破,研制出临界温度高于90K 的 Y-Ba-Cu-O (也称YBCO )系氧化物超导体。1988年初又研制出不含稀土元素的Bi 系和Tl 系氧化物超导体,后者的超导完全转变温度达125K 。超导研究领域的一系列最新进展,特别是大面积高温超导薄膜和临界电流密度高于105A/cm 2 Bi 系超导带材的成功制备,为超导技术在各方面的应用开辟了十分广阔的前景。测量超导体的基本性能是超导研究工作的重要环节,临界转变温度T C 的高低则是超导材料性能良好与否的重要判据,因此T C 的测量是超导研究工作者的必备手段。 二.实验目的 1.通过对氧化物超导材料的临界温度T C 两种方法的测定,加深理解超导体的两个基本特性; 2.了解低温技术在实验中的应用; 3.了解几种低温温度计的性能及Si 二极管温度计的校正方法; 4.了解一种确定液氮液面位置的方法。 三.实验原理 1.超导现象及临界参数 1)零电阻现象 我们知道,金属的电阻是由晶格上原子的热振动(声子)以及杂质原子对电子的散射造成的。在低温时,一般金属(非超导材料)总具有一定的电阻,如图1所示,其电阻率 与温度T 的关系可表示为: 50AT +=ρρ (1) 式中0是T =0K 时的电阻率,称剩余电阻率,它与金属的纯度和晶格的完整性有关,对于实际的金属,其内部总是存在杂质和缺陷,因此,即使使温度趋于绝对零度时,也总存在 0。 1911年,翁纳斯在极低温下研究降温过程中汞电阻的变化时,出乎意料地发现,温度在附近,汞的 电阻急剧下降好几千倍(后来有人估计此电阻率的下限为1023cm ,而迄今正常金属的最低电阻率 仅为1013cm ,即在这个转变温度以下,电阻为零(现有电子仪表无法量测到如此低的电阻),这就是零电阻现象,如图2所示。需要注意的是只有在直流情况下才有零电阻现象,而在交流情况下电阻不为零。 目前已知包括金属元素、合金和化合物约五千余种材料在一定温度下转变为具有超导电性。这种材料称为超导材料。发生超导转变的温度称为临界温度,以T C 表示。 图1 一般金属的电阻率温度关系 图2 汞的零电阻现象 T 0 105 电 阻 ︵ ︶ T (K)

超导的研究现状及其发展前景

题目:超导的研究现状及其发展前景 作者单位:陕西师范大学物理学与信息技术学院物理学一班 作者姓名:杜瑞,程琳,党晓菲,闫甜,王福琼,刘洁,刘园,郭丽丽 学号:40606043,40606042,40606044,40606045,40606046,40606047,40606048,40606049 指导教师:郭芳侠 交论文时间:20007-11-28

超导的研究现状及其发展前景 (陕西师范大学物理学一班第七组 710062) 摘要:本文简单介绍了一些与超导相关的概念,超导材料,超导的简史,超导的研究现状及对超导应用的前景展望。 关键字:超导,超导体,超导现象,超导材料,临界参量,研究现状,前景 Superconductivity research present situation and prospects for development (Shaanxi normal university physics one class Seventh group 710062) Abstract: This article simply introduced some and the superconductivity correlation concept, the superconductivity material, the superconductivity brief history, the superconductivity research present situation and to the superconductivity application prospect forecast.

高温超导材料的特性与表征

四川理工学院 材料物理性能 高温超导材料论文 【摘要】 在本实验中我们的主要目的是通过通过氧化物高温超导材料特性的测量和演示,加深理解超导体的两个基本特性,即零电阻完全导电性和完全抗磁性。我们还通过此实验对不同的温度计(铂电阻温度计和硅二极管温度计)进行比较。我们采用的是四引线测量法,利用低温恒温器和杜瓦容器测量了超导电性,绘制了超导样品的电阻温度曲线,验证了超导在高温冷却电阻突然降为零的电特性。我们也绘制了磁悬浮力与超导体-磁体间距的关系曲线,对其进行了分析。在进行磁悬浮的实验中我们验证了超导体的混合态效应和完全抗磁性。 关键词: 超导体零电阻温度完全磁效应磁场 一、引言: 1911年H.K.Onnes首次发现在4.2K水银的电阻突然消失的超导现象,此温度也被称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。

但这里所说的高温,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。此后,科学家们几乎每隔几天,就有新的研究成果出现。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。 高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。 本实验中,我们通过对氧化物超导材料特性的测量和演示,加深理解超导体的两个基本特性;了解金属和半导体的电阻随温度的变化及温差电动势;了解超导磁悬浮的原理;掌握液氮低温技术。 二、原理: 物理原理: 1.超导现象及临界参数 (1)零电阻现象 1911年,卡麦林·翁纳斯用液氮冷却水银线并通以几毫安电流,在测量其电压时发现,当温度稍低于液氮沸点时,水银电阻突然降为零,这就是零电阻现象或超导现象。具有此现象的物体称为超导体。只有在直流条件下才会存在超导现象,在交流下电阻不为零。 临界温度是指当电流,磁场及其他外部条件保持为零或不影响测量时,超导体呈现超导态的最高温度。我们用电阻法测定超导临界温度。 (2)MERSSNER效应 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,而且,不管加磁场的顺序如何,超导体内磁场总为零。这种现象称为抗磁性即MERSSNER效应。 3)超导体分类 超导体分为两类第1类超导体是随温度变化只分为超导态和正常态,第2类是在超导态和正常态中间部分还存在混合态。 纯金属材料的电阻特性 纯金属材料的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射。ρ=ρL(T)+ρ R,其中ρL(T)表示晶格热振动对电子散射引起的电阻率,与温度有关。ρ r表示杂质和缺陷对电子的散射所引起的电阻率,不依赖与温度,与杂质和缺陷的密度成正比,称为剩余电阻率。 半导体材料电阻温度特性 ρi=1/nie(μe+μp) 本征半导体的电阻率ρi与载流子浓度ni及迁移率μ=μe+μp有关, 因ni随温度升高而成指数上升,迁移率μ随温度增高而下降较慢,故本证半导体电阻率随温度上升而电调下降。 实验仪器及其原理:

超导材料基础知识介绍

超导材料基础知识介绍 超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性超导材料和常规导电材料的性能有很大的不同。主要有以下性能。 ①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。 ②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。 ③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量有以下 3个基本临界参量。 ①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为0.012K。到1987年,临界温度最高值已提高到100K左右。 ②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。 ③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic 称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶

高温超导材料1.29

高温超导材料 高温超导材料,是具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料。 1.结构 高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。氧化物中的金属元素(如铜)可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性。除此之外,高温超导材料具有明显的层状二维结构,超导性能具有很强的各向异性。 已发现的高温超导材料按成分分为含铜的和不含铜的。含铜超导材料有镧钡铜氧体系(Tc=35~40K)、钇钡铜氧体系(按钇含量不同,T发生复化。最低为20K ,高可超过90K)、铋锶钙铜氧体系(Tc=10~110K)、铊钡钙铜氧体系(Tc=125K)、铅锶钇铜氧体系(Tc约70K)。不含铜超导体主要是钡钾铋氧体系(Tc约30K)。已制备出的高温超导材料有单晶、多晶块材,金属复合材料和薄膜。高温超导材料的上临界磁场高,具有在液氦以上温区实现强电应用的潜力 2.特性 超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。

1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 2月15日美国报道朱经武、吴茂昆获得了98K超导体.2月20日,中国也宣布发现100K以上超导体.3月3日,日本宣布发现123K超导体.3月12日中国北京大学成功地用液氮进行超导磁悬浮实验.3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象.很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象.高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用.氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100.液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一. 高温超导体通常是指在液氮温度(77 K)以上超导的材料。人们在超导体被发现的时候(1911年),就被其奇特的性质(即零电阻,反磁性,和量子隧道效应)所吸引。但在此后长达七十五年的时间内所有已发现的

超导材料的现状及发展趋势分析

超导材料的现状及发展方向自1911年荷兰莱顿实验室的卡末林·昂纳斯首次在4.2K时发现水银零电阻现 象即超导现象以来。人们相继在超导 材料方面取得很多突破,后来在梅斯 勒发现超导体的抗磁性之后, 1934 —1985年后超导物理学理论逐步发 展,超导材料逐步应用于实际科学技 术领域。但由于种种原因,至今超导 物理学理论也不够完善。在这一阶段 人们研究的超导材料临界转变温度 较低。 后来进入高温超导研究阶段,高温超导材料指的是:钇系(92 K)、铋系(110 K)、铊系(125 K)和汞系(135 K)以及2001年1月发现的新型超导体二硼化镁(39 K)。高温超导体属于非理想的第II类超导体。临界磁场和临界电流且比低温超导体更高。同时已对高温超导材料进研究开发,氧化物复合超导材料具有耐用和稳定性好的特点。通过研究浸泡实验表明,超导电性的退化主要来自于杂相及时效过程中的析出相。为了改善薄膜对环境的敏感性,美国西北大学的Mirkin建议把分子单层表面化学改性引入到高温超导铜氧化合物中。 以铋锶钙铜氧系为第一代高温超导带材,它的可加工性优良,在超导强电应用领域占据重要位置。但铋系材料的实用临界电流密度较低,并且在77 K的应用磁场也很低。然而钇钡铜氧化物材料在77 K的超导电性比铋锶钙铜氧材料好的多;但它的可加工性极差,故要做出超导性好的带材通过传统的压力加工和热处理工艺就很难。 随着材料科学工艺技术的发展,近年来一种在轧制金属基带上制造钇钡铜氧超导带材的工艺被称作“第二代”带材。欧洲国家努力开展高温超导材料工艺及应用研究。丹麦已批量制造铋系超导带材。2003年11月我国第一个10m、 10.5kV/1.5kA 三相交流高温超导电缆系统日前在中国科学院电工研究所研制成功,并于成功地进行了试验运行。2011年5月信赢和公司团队研发的世界最大功率的超导限流器刚成功。2011年9月25日,特拉维夫大学的研究小组开发出了一种超导体材料——蓝宝石单晶体纤维,可用于高压电缆输电,输电量是相同直径铜线输电量的40倍。研究人员称这种超导材料将有可能彻底改变电力输送占空间、高损耗的状况。 高温超导材料主要有:膜材(薄膜、厚膜)、块材、线材和带材等类型。薄膜最常用、最有效的两种镀膜技术是:磁控溅射和脉冲激光沉积。还有金属有机

超导材料的未来应用前景

超导材料——当代科学的明珠 超导材料的未来应用前景 超导是超导电性的简称。是一种材料,如某种金属、合金或化合物在温度下降至某一临界温度时,其电阻完全消失,这种现象称为超导电性,具有这种现象的材料称为超导材料。超导体的另外一个特征是:当电阻消失时,磁感应线将不能通过超导体,这种现象称为抗磁性。 超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。 超导体的巨大前景 ●超导材料不可思议 那么,为什么世界各国对“超导”技术的研究与开发如此重视呢?这主要是因为超导材料具有极其优越的物理特性:一是零电阻效应,二是约瑟夫逊效应,三是迈斯纳效应。超导体这些突出特性的重大意义,不亚于半导体的发现。甚至有专家预言,超导体的应用将导致一场新技术革命,特别是在军事领域的应用,将引起一系列巨大变革。 ●军事应用前景广阔 超导体在军事领域的应用将十分广泛。采用超导体材料,可使许多重要的军用装备,如C4I系统、聚能武器、舰艇、飞机、坦克、装甲车辆、导弹等武器的性能得到大幅度的改善。 超导飞机设计制造大功率、小体积的发动机,对提高飞机的作战性能至关重要。目前,飞机所采用的均是磁流体发电,但利用普通磁体,很难使磁场强度高于15高斯,而如果利用超导磁体就能产生数万至几十万高斯的磁场,从而大大提高磁体发电的输出功率。所以,超导技术的突破,为大容量、小型化磁流体发电机的研制成功提供了条件,这种超导发电机正在加速走向实用化。目前,有些国家已在研制几百至一千兆瓦的体积小、重量轻的超导发电机,预计机载大功率超导发电机将成为超导技术在军事上率先得到应用的重点项目。 超导舰船20世纪70年代以来,美、苏、英、日等国积极开展超导技术在海军舰船方面应用的研究,并不断取得成效。美国试制了7500马力的超导驱动系统;英国研制了650马力的超导电磁力推进装置;日本制成了世界上第一艘超导船。超导舰船由于取消了传统的螺旋桨推动部件,因而具有结构简单、维修方便、推力大、航速高、无震动、无噪声、无污染、造价低等诸多优点。潜艇应用超导推进系统后,能有效地消除噪音、降低红外辐射,从而不易被敌方发现,大大提高了舰船的快速机动能力和突防能力。

超导材料研究现状及其应用

超导材料研究现状及其应用 [摘要]:本文主要介绍了超导现象,超导的应用及我国超导研究现状。 [关键词]:超导现象超导的应用超导研究现状 材料是人类赖以生存和发展的物质基础,某一种新材料的问世及其应用,往往会引起人类社会的重大变革因此使用什么样的材料制造工具往往成为人类文明发达程度的一个重要标志。人们把人类历史分为石器、青铜器和铁器时代。在群居洞穴的猿人旧石器时代,通过简单加工获得石器帮助人类狩猎护身和生存,随着对石器加工制作水平的提高,出现了原始手工业如制陶和纺织,人们称之为新石器时代。青铜时代大约源于4000-5000年前。青铜是铜锡铝等元素组成的合金,与纯铜相比,青铜熔点低,硬度高,比石器易制作且耐用。青铜器大大促进了农业和手工业的出现。铁器时代则被认为是始于2000多年前,春秋战国时代,由铁制作的农具、手工工具及各种兵器,得以广泛应用,大大促进了当时社会的发展。钢铁、水泥等材料的出现和广泛应用,人类社会开始从农业和手工业社会进入了工业社会。本世纪半导体硅、高集成芯片的出现和广泛应用,则把人类由工业社会推向信息和知识经济社会。 超导现象 1911年,荷兰物理学家昂尼斯发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到4.15K附近时,水银的电阻突然降到零.为了证实这一现象,他用磁铁在水银环路中感应出电流,经过长达一年多的观察发现,只要水银环路保持在4.15K的低温,环路中的电流就不会有能测量到的衰减,电流不断地沿着环路转起来,就像不知疲倦的一匹马一样.当温度降到某一温度时,金属的电阻变为零的现象叫超导现象,能够发生超导现象的物质,叫做超导体.超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度) T C.现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性.如钨的转变温度为0.012K,锌为0.75K,铝为1.196K,铅为7.193K.而且超导临界温度的纪录不断地被打破,例如,1975年,有人发现铌三锗的超导临界温度为23.2K.1986年,又有人发现钡镧铜氧化物的超导临界温度为30K,这个现象引起了科学家对氧化物高温超导陶瓷的高度重视.1986年12月,中国科学院的赵忠贤研究组获得了起始转变温度为48.6K的锶镧铜氧化物.1987年2月,美籍华裔科学家、美国休斯敦大学的朱经武教授获得了起始转变温度为90K的高温超导陶瓷.1987年3月,中国科学院公布了起始转变温度为93K的8种钡钇铜氧化物.1988年,中国科学院发现了超导临界温度 为120K的钛钡钙铜氧化物.这些成就显示了我国高 温超导材料的研究已经名列世界前茅 超导应用 寻找工业应用永远是推动研究的推动力。从应用角 度看,初期的超导材料很容易被外界磁场所抑制。 实际应用困难较多。被称为I型超导材料。能在强 Fig.4, Hc2 vs Tc [17]

高温超导材料

高温超导材料 樊世敏 摘要自从1911年发现超导材料以来,先后经历了简单金属、合金,再到复杂化合物,超导转变温度也逐渐提高,目前,已经提高到164K(高压状态下)。本文主要介绍高温超导材料中的其中三类:钇系(YBCO)、铋系 ),以及高温超导材料的应用。与目前主要应用领(BSCCO)和二硼化镁(MgB 2 域相结合,对高温超导材料的发展方向提出展望。 关键词高温超导材料,超导特性,高温超导应用 1 引言 超导材料的发现和发展已经有将近百年的历史,前期超导材料的温度一直处于低温领域,发展缓慢。直到1986年,高温超导(HTS)材料的发现,才进一步激发了研究高温超导材料的热潮。经过20多年的发展,已经形成工艺成熟的第一代HTS带材--BSCCO带材,目前正在研发第二代HTS带材--YBCO涂层导体,近一步强化了HTS带材在强电领域中的应用。与此同时,HTS薄膜和HTS块材的制备工艺也在不断地发展和完善,前者己经在强电领域得到了很好的应用,后者则在弱电领域中得到应用,并且有着非常广阔的应用前景。 2 高温超导体的发现简史 20世纪初,荷兰莱顿实验室科学家卡默林昂尼斯(H K Onnes)等人的不断努力下,将氦气液化[1-7],在随后的1911年,昂尼斯等人测量了金属汞的低温电阻,发现了超导电性这一特殊的物理现象。引起了科学家对超导材料的研究热潮。从1911到1932年间,以研究元素超导为主,除汞以

外,又发现了Pb 、Sn 、Nb 等众多的金属元素超导体;从1932到1953年间,则发现了许多具有超导电性的合金,以及NaCl 结构的过渡金属碳化合物和氮化物,临界转变温度(Tc )得到了进一步提高;随后,在1953到1973年间,发现了Tc 大于17K 的Nb 3Sn 等超导体。直到1986年,美国国际商用机器 公司在瑞士苏黎世实验室的科学家柏诺兹(J. G. Bednorz )和缪勒(K. üller)首先制备出了Tc 为35K 的镧-钡-铜-氧(La-Ba-Cu-O )高温氧化物超导体,高温超导材料的研究才取得了重大突破[10,11]。临界转变温度超过90K 的钇-钡-铜-氧等一系列高温氧化物超导体被发现,成为了高温超导材料研究领域中一个划时代的标志,它使得高温超导材料的研究不只是停留在理论阶段[12]。到目前为止,人们已经发现了几千种超导材料,典型的超导材料临界转 变温度与发现时 间如图1所示。 一百多年来, 人们对于超导材 料的研究一直充 满兴趣。在2011 年,人们在全国 各地举行 了各种活动纪念超导 现象发现100周年,用以探讨超导材料的研究现状和发展方向。随着新超导材料被不断发现,超导材料的临界转变温度也不断被提高,理论机制获图1 超导体Tc 提高的历史简图

超导体的发展史

超导体的发展史 1911年: 1911年,荷兰科学家卡末林—昂内斯(Heike Kamerlingh-Onnes)用液氦冷却汞,当温度下降到4.2K(﹣268.95℃)时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。 1933年: 1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。 1973年: 1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K(﹣249.95℃),这一记录保持了近13年。 1986年: 1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K(﹣240.15℃)的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K(﹣235.15℃)液氢的“温度壁垒”(40K)被跨越。 1987年: 1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K(﹣185.15℃)以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K(﹣150.15℃)。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。 来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。 1988年:

超导材料应用与制备概况

摘要:新型超导材料一直是人类追求的目标。本文主要从超导材料的性质,制 备,应用等方面探索超导材料科学的发展概况。随着高温超导材料制备方法的不断成熟,超导材料将越来越多的应用于尖端技术中去,超导材料的应用将给电工技术带来质的飞跃,因此,超导材料技术有着重大的应用发展潜力,可解决未来能源,交通,医疗和国防事业中的重要问题。 关键词:超导材料强电应用弱电应用超导制备 1. 引言 1911年荷兰科学家onnes发现纯水银在附近电阻突然消失,接着发现其他一些金属也有这样的现象,随着人们在Pb和其它材料中也发现这种性质:在满足临界条件(临界温度Tc,临界电流Ic,临界磁场Hc)时物质的电阻突然消失,这种现象称为超导电性的零电阻现象。只是直流电情况下才有零电阻现象,这一现象的发现开拓了一个崭新的物理领域。 超导材料具有1)零电阻性2)完全抗磁效应3)Josephson效应。这些性质的研究与应用使得超导材料的性能不断优化,实现超导临界温度也越来越高。一旦室温超导达到实用化、工业化,将对现代科学技术产生深远的影响。 2. 超导材料主要制备技术 控制和操纵有序结晶需要充分了解原子尺度的超导相性能。有序、高质量晶体的超导转变温度较高 ,晶体质量往往强烈依赖于合成技术和条件。目前,常用作制备超导材料的技术主要有: 2.1.1单晶生长技术 新超导化合物单晶样品有多种生长方法。溶液生长和气相传输生长法是制备从金属间氧化物到有机物各类超导体的强有力工具。溶液生长的优点就是其多功能性和生长速度 ,可制备出高纯净度和镶嵌式样品。但是 ,它并不能生产出固定中子散射实验所需的立方厘米大小的样品。浮动熔区法常用来制备大尺寸的样品 ,但局限于已知的材料。这种技术是近几年出现的一些超导氧化物单晶生长的 主要技术。这种技术使La 2 - x Sr x CuO 4 晶体生长得到改善 ,允许对从未掺杂到高度 掺杂各种情况下的细微结构和磁性性能进行细致研究。在T 1Ba 2 Ca 2 Cu 3 O 9+d 和 Bi 2Sr 2 CaCu 2 O 8 中 ,有可能削弱无序的影响从而提高临界转变温度。最近汞基化合 物在晶体生长尺寸上取得的进展 ,使晶体尺寸较先前的纪录高出了几个数量级。但应该指出的是即使是高 Tc的化合物 ,利用溶液生长技术也可制备出高纯度的YBCO等单晶。 2.1.2高质量薄膜技术 目前 ,薄膜超导体技术包括活性分子束外延(MBE ) 、溅射、化学气相沉积和脉冲激光沉积等。MBE能制造出足以与单个晶体性能相媲美的外延超导薄膜。在晶格匹配的单晶衬底上生长的外延高温超导薄膜 ,已经被广泛应用于这些材料物理性质的基础研究中。在许多实验中薄膜的几何性质拥有它的优势 ,如可用光刻技术在薄膜上刻画细微的特征;具备合成定制的多层结构或超晶格的潜能。 在过去的 20年里 ,多种高温超导薄膜生长技术快速发展。有些技术已经适用于其它超导体的制备。目前所使用主要方法有溅射和激光烧蚀(脉冲激光沉积)。类似分子束外延这种先进薄膜生长技术也已经发展得很好。臭氧或氧原

超导材料论文

超导材料的研究进展 陈志义 2011326690110 应用物理11(1)班 摘要:超导是金属或合金在较低温度下电阻变为零的性质。超导材料是当代材料科学领域一个十分活跃的重要前沿,其发展将推动功能材料科学的深入发展。高温超导材料经过近 20年的研发,已经初步进入了大规模实际应用和产业化。随着超导材料临界温度的提高和材料加工技术的发展,它将会在许多高科技领域获得重要应用。 关键词:超导高温超导体进展超导超导材料临界温度进展 引言:随着社会的进步,工业的发展,人们对能源的需求量越来越大。但是,像石油、煤等能源储备有限且不可再生。故而,如何在有限能源的条件下使社会健康稳步地发展,亦即如何做到可持续发展成了当今人们亟需解决的问题。对于这些问题的解决方法,超导材料表现出了巨大的潜力。长期以来,如何找到一种完全没有电阻,能消除电能损耗的导电材料,一直是物理学家和材料科学工作者梦寐以求的愿望。1911年,荷兰物理学家卡麦林·昂尼斯首次意外地发现了超导现象:将水银冷却到接近绝对零度时,其电阻突然消失。这一现象的发现为解决电路损耗带来了福音。从此,对于超导材料的研究如火如荼。 一、超导材料的概念 超导材料是在低温条件下能出现超导电性的物质。超导材料最独特的性能是电能在输送过程中几乎不会损失。超导材料的发展经历了从低温到高温的过程,经过无数科学家的努力,超导材料的研究已经取得了巨大的发展。近年来,随着材料科学的发展,超导材料的性能不断优化,实现超导的临界温度也越来越高。高温超导材料的制备工艺也得到了长足的发展,一些制备高温超导材料的材料陆续被科学家发现。现在,超导材料的研究主要集中在超导输电线缆,超导变压器等电力系统方面,还有,利用超导材料可以形成强磁场,是超导材料在磁悬浮列车的研究上有了用武之地,另外,超导材料在医学,生物学领域也取得了很大的成就。超导材料的研究未来,超导材料的研究将会努力向实用化发展。一旦室温超导体达到实用化、工业化,将对现代文明社会中的科学技术产生深刻的影响。 二、超导材料的分类 超导材料分为低温超导材料和高温超导材料。 1、低温超导材料 何谓低温超导材料?低温超导材料是具有低临界转变温度(T c<3OK=在液氦温度条件下工作)的超导材料,分为金属、合金和化合物。具有实用价值的低温超导金属是Nb(铌),T c 为9.3K已制成薄膜材料用于弱电领域。合金系低温超导材料是以Nb为基的二元或三元合金组成的β相固溶体,T c在9K以上。低温超导材料一般都需在昂贵的液氦环境下工作,由于液氦制冷的方法昂贵且不方便,故低温超导体的应用长期得不到大规模的发展。低温超导材料的应用分为:强电应用,主要包括超导在强磁场中的应用和大电流输送;弱电应用,主要包括超导电性在微电子学和精密测量等方面的应用。 2、高温超导材料 高温超导体材料(HTS)具有超导电性和抗磁性两个重要特性。要让超导体得到现实的应用,首先要有容易找到的超导材料。即主要研究方向就是寻找能在较高温度下存在的超导体材料。高温超导材料用途非常广泛,大致可分三大类:大电流应用、电子学应用和抗磁性应用。大电流应用是由于超导材具有零电阻和完全的抗磁性,因此只需消耗极少的电能,就可以获得的稳定强磁场。超导体的基本特性之一是当它处于超导态时具有理想的导电性,同时由于其载流能力远远强于常规导体,因此,利用超导体可以传输大电流和产生强磁场,并且没有电阻热损耗。电工设备的基本特点是大电流、强磁场和高电压,因此在电工设备中使用超导材料可以减少电气损耗、提高效率、缩小体积、减轻重量、降低成本,还可以提高装置

超导材料的特性及应用

浅谈超导材料的超导特性及应用 摘要:作为一种新型材料,超导材料越来越广泛地应用到各个领域,人类对超导电性及其应用将越来越重视。超导材料的应用有着巨大的潜力和发展前景,这是不容置疑的。超导的实用前景似乎既近既远,近者,在人类的生活中已得到了超导电技术带来的好处,如医用的核磁共振成像的超导磁体;同时,在电子器件上的应用,近几年将会在市场上出现。远者,人们会看到例如在微波通讯、计算机器件、储能及平衡电网方面的应用。在总结超导电性的同时,本文将就超导材料的应用作简要的介绍。 关键字:超导、特性、应用、前景 1、超导材料的超导特性 导体在温度下降到某一值时,电阻会突然消失,即零电阻,这一现象称为“超导现象”,将具有超导性的物质,称为超导体,超导体如钛、锌、铊、铅、汞等,在超导状态,当温度降至温度(超导转变温度)时,皆显现出某些共同特征。1.1电阻为零。一个超导体环移去电源之后,还能保持原有的电流。有人做过实 验,发现超导环中的电流持续了二年半而无显著衰减。 1.2完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的, 只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。 2、超导材料的应用 2.1 超导应用的巨大潜力 超导态是物质的一种独特的状态,它的新奇特性,立刻使人想到要将它们应用到技术上。超导体的零电阻效应显示其具有无损耗输运电流的性质。工业、国防、科研上用的大功率发电机、电动机如能实现超导化,将大大降低能耗并使其小型化。利用超导隧道效应,人们可以制造出世界上最灵敏的电磁信号的探测元件和用于高速运行的计算机元件。用这种探测器制造的超导量子干涉磁强计可以测量地球磁场几十亿分之一的变化,也能测量人的脑磁图和心磁图。超导体用于微波器件可以大大改善卫星通讯的质量。 因此,超导体显示了巨大的应用潜力。 2.2 超导材料在强电方面的应用

超导材料发展状况综述

材料科学与工程进展课程论文 题目:超导材料发展状况综述 学院: 班级: 学号: 姓名:

目录 摘要 (2) 超导材料的特性 (2) 超导材料发展史 (4) 超导材料的制备 (5) 超导材料的应用 (7) 展望与建议 (9)

新能源材料——超导材料发展状况综述 摘要 随着人类社会的不断发展,人们对于自然能源的需求也与日俱增。然而自然资源是有限的,面对自然资源日渐紧缺、环境遭到破坏等状况的发生,在科学工作者的努力下,各种各样的新能源材料相继面世。本文将从特性、发展史、制备、应用这几个方面,对众多新能源材料中的一种材料——超导材料,做一个综述,以增进广大读者对超导材料的了解。 关键词:超导材料、特性、发展史、制备、应用。 超导材料的特性 超导材料是指具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。超导材料具有以下特性: 零电阻性 超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。超导现象是20世纪的重大发明之一。科学家发现某物质在温度很低时,如铅在7.20K(-265.95摄氏度)以下,电阻就变成了零。 采用“四引线电阻测量法”可测出超导体的R-T特性曲线,如图所示。

图中的R n为电阻开始急剧减小时的电阻值,对应的温度称为起始转变温度T S;当电阻减小到R n/2时的温度称为中点温度T M;当电阻减小至零时的温度为零电阻温度T0。由于超导体的转变温度还与外部环境条件有关,定义在外部环境条件(电流,磁场和应力等)维持在足够低的数值时,测得的超导转变温度称为超导临界温度。 完全抗磁性 1933年,迈斯纳(W.Meissner)发现:当置于磁场中的导体通过冷却过渡到超导态时,原来进入此导体中的磁力线会一下子被完全排斥到超导体之外(见下图),超导体内磁感应强度变为零,这表明超导体是完全抗磁体,这个现象称为迈斯纳效应。 实验表明,超导态可以被外磁场所破坏,在低于T C的任一温度T下,当外加磁场强度H小于某一临界值H C时,超导态可以保持;当H大于H C时,超导态会被突然破坏而转变成正常态。临界磁场强度H C,其值与材料组成和环境温度等有关。超导材料性能由临界温度T C和临界磁场H C两个参数决定,高于临界值时是一般导体,低于此数值时成为超导体。 约瑟夫森效应 当在两块超导体之间存在一块极薄的绝缘层时,超导电子(对)能通过极薄的绝缘层,这种现象称为约瑟夫森(Josephson)效应,相应的装置称为约瑟夫森器件。如图所示。

相关文档