文档库 最新最全的文档下载
当前位置:文档库 › 井下排水设备选型计算

井下排水设备选型计算

井下排水设备选型计算
井下排水设备选型计算

井下排水设备选型计算

矿井条件:

1、矿井年产量:60万吨

2、斜井排水

3、正常涌水量:Q=60米3/小时、其日期为365天(生产科提供)其中:1270水平46米3/小时

4、最大涌水量:Q′=65米3/小时(生产科提供)

5、中央水泵房标高:-344米;采区水泵房标高:-454米;地面高位水池标高:30米;排水管斜长:⑴中央水泵房——地面高位水池1050米;⑵1270水泵房——中央水泵房600米——地面高位水池1750米

6、矿井水为碱性(PH=7.6)

7、井下水经地面水处理设备处理后,主要用于锅炉、洗浴、井下液压泵站、二矿等。

方案设计:

1、采用一级排水:

主水泵房设在1270水平,采用三泵双管路。设甲乙水仓,仓容分别为400方、300方;1333水平涌水现在已经引到1270水仓;中央水泵房的水主要来自3条井筒,将来可以用2寸塑料管引到1270水仓或者用潜水泵排到1270水仓;

管路敷设路线为:

①、1270水泵房—1270石门联络巷—新轨道下山—1380

绕道—副井筒—地面高位水池或水厂(管路转弯太多,阻力大)

②、1270水泵房—1270石门—运输下山—1380运输下山绕道—主井筒—地面高位水池或水厂(不好固定,影响主井提升)

2、采用二级排水

其它同方案一,只保留中央变现有的水泵和管路

选型计算:

一、1270主排水泵选择计算

⑴、所需水泵最小排水能力:

正常涌水时:Q min =1.2Q=1.2×60=72米3/小时

最大涌水时:Q max=1.2 Q′=1.2×65=78米3/小时

⑵、水泵扬程:

Ha=L x SINa x+L p SINa p+H L=5+1750SIN25+50=795米

式中:L x——吸水管的倾斜长度,取5米

a x——吸水管与水平面之间的夹角,取90度

L p——排水管的倾斜长度,取1750米

a p——排水管与水平面之间的夹角,取25度

H L——管路损失扬程,考虑50米

在泵类产品样本中,选择能满足Q min及Ha效率较高的水泵为:D85—67,该水泵的额定流量85米3/小时,单级额定扬程Hi=67米,效率0.65

矿井水为碱性(PH=7.6),可不采取防酸措施

水泵级数:i=Ha/Hi=795/67=11.87取12级

水泵台数:根据《煤矿安全规程》规定,必须有工作、备用和检修水泵。

正常涌水时工作水泵台数:

Z1= Q min/ Q e=72/85=0.85取一(台)

备用水泵台数:

Z2=70% Z1=70%×1=0.7取一(台)

检修水泵台数:

Z3=25% Z1=25%×1=0.25取一(台)

水泵总台数:Z= Z1+ Z2+ Z3=3(台)

效验在最大涌水量时工作水泵台数:

Z m= Q max /Q e=78/85=0.92<2台

Z m<(Z1+ Z2),说明工作和备用水泵的总能力,能在20小时内排出24小时的最大涌水量,最后决定水泵总台数为3台。

⒉管路计算:

⑴、排水管直径:

d p′=√4 Q e/3600∏V=4×85/3600×3.14×2=0.122(米)

式中:V——1.5----2.2米/秒,取V=2米/秒

查相关资料,选排水管的公称内经d p=125mm、壁厚6mm、内经121mm、外经133mm无缝钢管

⑵、吸水管直径:

d X=d p=0.025=0.122+0.025=0.147(米)

查相关资料,选吸水管的公称内经d p=150mm、壁厚6mm、内经147mm、外经159mm无缝钢管

3、验算排水时间及排水管中流速:

T=24Q/ Q e=24×60/85=16.94小时﹤20小时

最大涌水期的排水时间:

T max=24Q/Z Q e=24×65/2×85=9.2小时

通过验算可知正常与最大涌水期的排水时间,都小于20小时,说明所选水泵型号及台数均合适。

排水管的实际流速:

V p= Q e/900∏d p2=85/900∏×0.1252=1.9(米/秒)

验算排水管实际流速,没有超出经济流速范围(1.5---2.2米/秒),因此所选管道合适。

4、电动机功率验算:

N=1.1γQ eHa/1000×3600ηAηn=1.1×10000×85×804/1000×3600×0.8×1=261.02KW

式中:γ——矿水重度10000(牛/米3)

验算电动机功率小于产品样本中D85-67型泵上所配300千瓦电动机,说明以上计算合理。

通过以上计算,1270主排水泵应选用D85-67×12型水泵3套(包括300KW电机、电控设备);应设5寸无缝钢管2趟既3500米。

二、排水设备的技术经济指标计算

1、排水设备年电耗量

E1270′=(1.05rQ eHa/36×105ηAηnηdηc)(Z1nT+ T max n max z max)(千瓦—小时/年)

=(1.05×10000×85×804/36×105×0.65×1×0.85×0.95)×(1×365×13)=1801947.4(千瓦—小时/年)

式中:ηd——电机效率取0.85

ηc——电网效率取0.95

⒉、排出1米3水电耗量

⑴、1270水泵排出1米3水电耗量

e1270= E1270′/Q e(ZnT+ T max n max z max)

=1801947.4/85×(1×365×13)=4.47(千瓦—小时/米3)

⒊吨煤排水电耗量

e T= E总′/A=1801947.4/600000=3 (千瓦—小时/吨煤)

设备、管路及管件费用估算附后

机电科

2006.7.29

井下排水设备选型计算王洼煤矿机电科

无负压供水设备选型计算方案

无负压供水设备选型计算 工程概况: 本项目为某小高层住宅楼工程,建筑物高度约38、6米,工程中生活给水水源为市政自来水管网,水质符合国家《生活饮用水卫生标准》要求。需二次加压户数为40户,按单卫一厨考虑;工程中生活给水采用分区供水方式;一至七层为市政管网直供;八层以上有设备加压,用水高峰期时自来水压力为0。4MPA,自来水进出水管径为 DN100,配一块DN100的总水表。 青岛三利: 一、设计原则 公司技术人员根据本工程特点,市政管网的供水状况以及工程的拟用水情况,结合我公司多年从事无负压技术研究的经验以及我公司无负压产品的独特技术,本着技术先进合理、运行安全可靠、卫生环保健康的原则,同时考虑一次性投资、占地面积、运行费用、日常维护管理、供水安全的情况,为本工程选用一套WWG无负压(无吸程)增压稳流供水设备保证整个系统的供水。 二、设计依据 1、本工程的基本资料 2、《建筑给水排水设计规范》GB 50015-2003 3、《泵站设计规范》GB/T50256-97 4、《给水排水设计手册》第2册(核工业第二研究设计院主编,

中国建筑工业出版社出版) 5、《高程建筑给水排水设计手册》(第二版,湖南科学技术出版社 出版) 6、《给水排水设计手册》第1册。常用资料(中国市政工程西南 设计院主编,中国建筑工业出版社出版) 7、《三利产品设计手册》 三、方案选型计算 1、设计生活给水流量 根据《建筑给水排水设计规范》(GB 50015-2003)第3.6.4条款计算设计流量: 根据住宅配置的卫生器具给水当量、使用人数、用水定额、使用时数及小时变化系数,按下式计算出住宅共40户,每户按单卫一厨设计的最大用水时卫生器具的给水当量 平均出流概率: U0=q0.m.k h/0.2.Ng.T.3600(%) 其中: U0--生活给水管道最大用水时卫生器具给水当量平均出流概率 q0--最高用水日的用水定额,取250L/(人/D) m --每户用水人数,取3.5人 kh --小时变化系数,取3.0 Ng --每户设置的卫生器具给水当量数,取Ng=4.0 T—用水时间,T=24H

-矿井排水设备选型设计

设计题目:矿井排水设备选型设计 综放工作面选型设计 本次设计是根据煤矿的实际情况、环境条件而制定的。好的煤矿机械设备选型设计和供电系统,对于企业来说,可以更好的利用和合理分配电力资源,促进安全生产和降低生产成本。所有的设计方案都要以《煤矿安全规程》、《煤矿井下供电设计规范》、《煤矿电工手册》等为准则。 本设计介绍了矿井排水设备选型、综放工作面供电系统;排水设备选型主要介绍确定排水系统、选择排水设备、给出指标经济核算、绘制水泵房布置图、绘制管路系统图等;紧力及选用的电机功率的计算等;综放工作面供电系统主要是介绍采煤工作面供电系统拟定、电缆选型校验、低压供电系统开关整定校验、高压系统整定校验、接地保护系统、漏电保护系统。 总之,所有的煤矿机械设备选型和供电系统都是以井下安全生产所服务为目的。设计一套完整、完善的煤矿机械设备选型设计和井下供电系统,对煤矿安全生产是必不可缺少的。 关键词:机械设备选型; 排水设备选型;选型设计;井下;综放工作面;供电。

目录 目录 (2) 绪论 (4) 第一部分矿山固定设备选型设计 (6) 矿井排水设备选型设计 (6) 1. 概述 (6) 2. 排水设备及系统的选择 (7) 2.1设计的原始资料 (7) 2.2水泵的型号及台数选择[6] (8) 2.3 管路的选择 (8) 3. 工况点的确定及校验 (10) 3.1 管路系统 (10) 3.2 校验计算 (12) 4. 电耗计算................................................................................................. 错误!未定义书签。 4.1 年排水电耗................................................................................... 错误!未定义书签。 4.2 吨水百米电耗校验....................................................................... 错误!未定义书签。 第二部分综放工作面供电设计............................................................... 错误!未定义书签。 1. 概述......................................................................................................... 错误!未定义书签。 1.1综放工作面供电系统拟定[2].......................................................... 错误!未定义书签。 1.2 综放工作面负荷统计.................................................................... 错误!未定义书签。 1.2.1材料道供电系统负荷:(660V).............................................. 错误!未定义书签。 1.2.2 溜子道供电系统负荷:(660V)............................................. 错误!未定义书签。 1.2.3 工作面1140 V 供电系统负荷:............................................ 错误!未定义书签。 2. 设备的选择、整定计算、校验[10] [11]: ............................................... 错误!未定义书签。 2.1功率因数[3]:.................................................................................. 错误!未定义书签。 2.2 各变压器容量校验:.................................................................... 错误!未定义书签。 3. 材料道供电系统:................................................................................. 错误!未定义书签。 3.1 设备选择:.................................................................................... 错误!未定义书签。 3.2 电缆的选择[5]................................................................................. 错误!未定义书签。 3.2.1干线............................................................................................ 错误!未定义书签。 3.2.2 负荷线....................................................................................... 错误!未定义书签。 3.3 电压损失检验[12]: ................................................................... 错误!未定义书签。 3.4材料道开关整定计算、校验:..................................................... 错误!未定义书签。 3.4.1 材料道配电点(3-5# KBD-200A)整定:(动力)............... 错误!未定义书签。 3.4.2 材料道分支馈电(3-4# KBD#- 400A)............................. 错误!未定义书签。 3.4.3 材料道总馈电(3-1# KBD-400A)....................................... 错误!未定义书签。 4. 溜子道供电系统:................................................................................. 错误!未定义书签。 4.1 设备选择、校验:................................................................................ 错误!未定义书签。 4.2 1# 移变(660V)供电系统:........................................................... 错误!未定义书签。 4.2.1 电缆选择、校验[1].................................................................... 错误!未定义书签。

流体机械,水泵的选型设计

流体机械课程设计 题目:矿井排水设备选型设计 1概述 2设计的原始资料 开拓方式为立井,排水高度为342m,正常涌水量为655m3/h; 最大涌水量为850m3/h;持续时间60d。矿水PH值为中性,重度为10003N/m3,水温为15℃。该矿井属于高沼气矿井,年产量为5万吨。 3排水方案的确定 在我国煤矿中,目前通常采用集中排水法。集中排水开拓量小,管路敷设简单,管理费用低,但由于上水平需要流到下水平后再排出,则增加了电耗。当矿井较深时可采用分段排水。 涌水量大和水文地质条件复杂的矿井,若发生突然涌水有可能淹没矿井。因此,当主水泵房设在最终水平时,应设防水门。 在煤矿生产中,单水平开采通常采用集中排水;两个水平同时开采时,应根据矿井的具体情况进行具体分析,综合基建投资、施工、操作和维护管理等因素,经过技术和经济比较后。确定最合理的排水系统。 从给定的条件可知,该矿井只有一个开采水平,故可选用单水平开采方案的直接排水系统,只需要在2343车场附近设立中央泵房,就可将井底所有矿水集中排至地面。

4水泵的选型与计算 根据《煤矿安全规程》的要求,主要排水设备必须有工作水泵、备用水泵和检修水泵。工作水泵的能力应能在20h 内排除矿井24h 的正常涌水量(包括充填水和其他用水)。备用水泵的能力应不小于工作水泵能力的70%,并且工作水泵和备用水泵的总能力,应能在20h 内排出矿井24h 的最大泳水量。检修水泵的能力应不小于工作水泵能力的25%。水文地质条件复杂的矿井,可根据具体情况在主水泵房内预留安装一定数量水泵的位置,或另增设水泵。 排水管路必须有工作和备用水管。工作水管的能力应能配合工作水泵在20h 内排完24h 的正常涌水量。工作和备用水管的总能力,应能配合工作和备用水泵在20h 内排出矿井24h 的最大涌水量。 水泵必须排水能力计算 正常涌水期 h m q q Q z z B /7866552.12.12024 3=?=== 最大涌水期 h m q q Q /10208502.12.12024 3max max max =?=== 式中 B Q ——工作水泵具备的总排水能力,3/m h ; max Q ——工作和备用水泵具备的总排水能力,3/m h ; z q ——矿井正常涌水量,3/m h ; max q ———— 矿井最大涌水量,3/m h 。

某煤矿主排水设备选型设计

安徽矿业职业技术学院 毕业设计说明书 设计题目某煤矿主排水设备选型设计作者姓名叶德伍 学号 1 系部机电工程系 专业矿山机电 指导教师张丽芳老师 2013年3月28日

本次论文设计是基于煤矿流体机械选型设计,完成煤矿主排水设备水泵的型与设计。 本文根据安全和工作能力的要求,选取相应的水泵,以与对应的电动机。并且根据煤矿需要,计算年耗电量,进行基本的生产成本算。 本文主要是煤矿用排水设备的选型,通过对以上设备的合理选型与设计,使工人的工作条件得到一定的改善,实现最大的经济效益。 选型设计中,根据《煤矿安全规程》的有关规定,在保证与时排除矿井涌水的前提下,使排水总费用最小,因而选择最优方案。 根据设计任务书所提供资料,以严格遵守《矿井安全规程》所规定的有关条款为依据,以安全可靠为根本,投入少、运行费用低为原则的设计指导思想,在煤矿生产中,单水平和两个水平开采,应根据矿井的具体情况进行具体分析,综合基建投资,施工,操作和维修管理等因素,在确定最合理的排水系统。 初步选择排水方案,进行设备选型以与相关计算,确定设备工况,校验水泵的稳定工作条件、经济运行条件,排除不合理方案。对所剩方案进行经济核算,根据各设备外形尺寸与安装要求,并考虑其运行条件,最终确定泵房与管路的布置图。 关键词:矿井涌水; 水泵; 工况点; 设备布置; 修改建议: 1、目录从第1页开始 2、7.4设备购置费7.5安装工程费这两部分去掉

第一章、绪论 (1) 1.1矿水 (4) 1.2矿山排水设备的组成 (4) 第二章、矿井排水系统的确定与要求 (5) 2.1排水系统的要求 (5) 2.2矿井排水系统的确定 (5) 2.3矿井主排水系统的设计 (6) 第三章、水泵的选型与台数计算 (7) 3.1设备最小能力计算 (7) 3.2水泵扬程 (7) 3.3预选水泵的形式 (8) 3.4确定水泵的级数 (8) 3.5选定水泵的有关参数 (8) 3.6校验水泵稳定性 (9) 3.7确定水泵的台数 (9) 第四章、吸、排水管道选型计算与管道的布置 (10) 4.1管路敷设 (10) 4.2主排水管路连接 (10) 4.3管路支承梁计算 (10) 4.4管径计算 (11) 4.5确定管路壁厚 (11) 4.6计算管路特性 (12) 4.7吸、排管道的布置 (13) 4.8管道特性曲线的绘制与工况点的确定 (13) 第五章、水泵工作合理性校验 (14) 5.1校验排水时间 (14) 第六章、水泵电动机的选型计算 (15) 6.1水泵电动机的选型要求 (15) 6.2电动机结构型式的选择 (15) 第七章、主排水经济指标的计算 (16) 7.1计算水泵安装高度 (16) 7.2验算电机容量 (16) 7.3计算耗电量 (17) 第八章、水泵房、水仓的布置尺寸确定 (20) 8.1水泵房的布置与尺寸的确定 (20) 8.2水仓的布置与尺寸的确定 (22) 8.3水泵房的草绘绘制 (23) 参考文献致 (24) 致谢 (25)

设备设计计算与选型

第三部分 设备设计计算与选型 3.1苯∕甲苯精馏塔的设计计算 通过计算D=1.435kmol/h , η=F D F D x x ,设%98=η可知原料液的处理量为F=7.325kmol/h ,由于每小时处理量很小,所以先储存在储罐里,等20小时后再精馏。故D=28.7h koml ,F=146.5kmol/h ,组分为18.0x =F ,要求塔顶馏出液的组成为90.0x D =,塔底釜液的组成为01.0x W =。 设计条件如下: 操作压力:4kPa (塔顶表压); 进料热状况:自选; 回流比:自选; 单板压降:≤0.7kPa ; 全塔压降:%52=T E 。 3.1.1精馏塔的物料衡算 (1) 原料液及塔顶、塔底产品的摩尔分率 苯的摩尔质量 11.78M A =kg/kmol 甲苯的摩尔质量 13.92M B =kg/kmol 18.0x =F 90.0x D = 01.0x W = (2) 原料液及塔顶、塔底产品的平均摩尔质量 =F M 0.18×78.11+(1-0.18)×92.13=89.606kg/kmol =D M 0.9×78.11+(1-0.9)×92.13=79.512kg/kmol =W M 0.01×78.11+(1-0.01)×92.13=91.9898kg/kmol (3) 物料衡算 原料处理量 F=146.5kmol/h 总物料衡算 146.5=D+W 苯物料衡算 146.5×0.18=0.9×D+0.01×W 联立解得 D=27.89kmol/h W=118.52kmol/h

3.1.2 塔板数的确定 (1)理论板层数T N 的求取 苯—甲苯属理想物系,可采用图解法求理论板层数。 ①由物性手册查得苯—甲苯物系的气液平衡数据,绘出x —y 图,见下图3.1 图3.1图解法求理论板层数 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e (0.45,0.45)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 667.0y q = 450.0x q = 故最小回流比为 1.1217 .0233 .045.0667.0667.09.0x y y x q q q min ==--= --= D R 取操作回流比为 R=22.21.12min =?=R ③求精馏塔的气、液相负荷 L=RD=2.2×27.89=61.358kmol/h

矿井排水设备选型设计课程设计

龙岩学院资源工程学院 课程设计 题目:矿井排水设备选型设计 姓名:xxx 学号:xxxxx 班级:采矿工程 年级 : 2010级 指导老师 :xxxxx老师 2013-7

矿井排水选型设计 1、设计题目 某矿正常涌水量为210m3/h,最大涌水量为290m3/h,矿水为中性、密度为1050kg/m3,竖井排水,井深200m,试选择水泵型式,确定台数,确定排水系统,选择管径、管材,验算排水时间,判别工作稳定性。 2、矿井排水系统确定 矿井主要根据第一水平情况进行设计,采用集中排水系统,对其它水平只作适当地数目。 矿井排水系统见图3-1。 图3-1 矿井排水系统简图 排水系统:主排水设备设置在第一水平,第二水平的涌水量由辅助排水设备排至上一水平的水仓中。然后由主排水设备排至地面。 3、排水设备选型计算 1水泵型号及台数 ⑴水泵最小排水量的确定 正常涌水量时:

Q B ′= 2420 Q =1.2Q m 3/h 式中: Q B ′——水泵最小排水量,m 3/h ; Q ——矿井正常涌水量,m 3/h ; 由此: Q B ′=1.2×210 =252 m 3/h 最大涌水量时: Q Br ′=2420 r Q =1.2 Q Br ′ m 3/h 式中: Q r ——矿井最大涌水量,m 3/h ; 由此: Q Br ′=1.2×290 =348 m 3/h ⑵水泵扬程的计算 'P X B g H H H η+= 式中: P H ——排水高度,取井筒垂深,m ; X H ——吸水高度,取5m ; g η——管道效果,竖井取0.89-0.9; 所以: '40050.9 B H += =450m ⑶水泵形式及台数的确定 根据水泵扬程和矿井正常涌水量,从产品样本中选择额定值接近所需值的水泵,水泵型号选250D60×7型,额定流量330 m 3/h ,扬程420m ,转速1480rpm ,吸程6.2m ,效率73%,配带电动机型号JKZ -1250型,容量850KW ,外形2620×1200×1210,自重3500kg 。 水泵台数的选择:根据《安全规程》规定:必须由工作、备用和检修的水泵。工作水泵的能力,应能在20h 内排出矿井24h 的正常涌水量。备用水泵的能力应不小于工作水泵能力的70%。工作和备用水泵的总能力,应能在20h 内排出矿井24h 的最大涌水量。

矿井排水设备选型设计课程设计

矿井排水设备选型设计课程设计

龙岩学院资源工程学院 课程设计 题目:矿井排水设备选型设计 姓名:xxx 学号:xxxxx 班级:采矿工程 年级: 2010级 指导老师:xxxxx老师 2013-7

矿井排水选型设计 1、设计题目 某矿正常涌水量为210m3/h,最大涌水量为290m3/h,矿水为中性、密度为1050kg/m3,竖井排水,井深200m,试选择水泵型式,确定台数,确定排水系统,选择管径、管材,验算排水时间,判别工作稳定性。 2、矿井排水系统确定 矿井主要根据第一水平情况进行设计,采用集中排水系统,对其它水平只作适当地数目。 矿井排水系统见图3-1。 图3-1 矿井排水系统简图 排水系统:主排水设备设置在第一水平,第二水平的涌水量由辅助排水设备排至上一水平的水仓中。然后由主排水设备排至地面。 3、排水设备选型计算 1水泵型号及台数 ⑴水泵最小排水量的确定 正常涌水量时:

Q B ′= 2420 Q =1.2Q m 3/h 式中: Q B ′——水泵最小排水量,m 3/h ; Q ——矿井正常涌水量,m 3/h ; 由此: Q B ′=1.2×210 =252 m 3/h 最大涌水量时: Q Br ′=2420 r Q =1.2 Q Br ′ m 3/h 式中: Q r ——矿井最大涌水量,m 3/h ; 由此: Q Br ′=1.2×290 =348 m 3/h ⑵水泵扬程的计算 'P X B g H H H η+= 式中: P H ——排水高度,取井筒垂深,m ; X H ——吸水高度,取5m ; g η——管道效果,竖井取0.89-0.9; 所以: '40050.9 B H += =450m ⑶水泵形式及台数的确定 根据水泵扬程和矿井正常涌水量,从产品样本中选择额定值接近所需值的水泵,水泵型号选250D60×7型,额定流量330 m 3/h ,扬程420m ,转速1480rpm ,吸程6.2m ,效率73%,配带电动机型号JKZ -1250型,容量850KW ,外形2620×1200×1210,自重3500kg 。 水泵台数的选择:根据《安全规程》规定:必须由工作、备用和检修的水泵。工作水泵的能力,应能在20h 内排出矿井24h 的正常涌水量。备用水泵的能力应不小于工作水泵能力的70%。工作和备用水泵的总能力,应能在20h 内排出

第五章设备选型及计算.

第五章设备平衡计算 设备选型的主要依据是物料平衡,根据由浆水平衡计算出来的生产1t风干浆所需要的物料的两来计算通过每一设备的物料量(通过量),然后用通过量来校核或计算每一设备所应具有的生产能力,最终确定同种设备的台数。 5.1设备平衡的原则 1.主要设备的确定:确定主要设备的生产能力时,要符合设备本身的要求, 既不能过大的超出设计能力的要求,又要适当的留有 余地。 2.设备数量的确定:对于需要确定台数的设备,其数量要考虑该设备发生 事故或检修时仍有其他设备做备用维持生产。 3.备品的确定 4.公式计算法的选择 5.避免大幅度波动 5.2设备台数的确定方法: 设备台数的确定,是通过理论或经验公式计算设备生产能力。根据我国现有纸厂的实践经验和理论建设,确定设备的生产能力或按设备产品目录查取其生产能力后,则可以用下列的公式计算出所需的台数。

式中 N——选用台数 Q——生产中需该种设备处理的物料量(t/d) G——该设备的生产能力(t/d) K——设备利用系数,其大小随不同设备,以及设备所处的生产位置不同 而不同,打浆,漂白筛选设备的取0.7,蒸煮设备的 K值取0.8等 5.3设备台数的确定方法 5.3.1备料工段 由备料段物料平衡计算可知,每天处理玉米秆料量 2551.3817×10-3×50=127.5691 t/d 则每小时处理苇料的数量=5.3154 t/h 1. 带式运输机:(1台) 已知:设定皮带运输机运输玉米秆的速度为1.4m/s。 带式运输机的生产能力可由公式: G=3600F·v·r ○1采用平行带运输,则物料层的截面积按三角形面积求得: F=b·h/2 ○2 式中: F——带上物料层的截面积,m2; r——物料表观重度,t/m3取值0.13 t/m3; v——运输机的速度; b——物料层宽度,m 取值0.8B( B为带宽); h——物料层的高度, h=b·tgα/2 α=30°(物料堆积角)

排水泵选型计算

一、井下排水 根据矿井开拓方式,本矿设计排水系统为一级排水,投产时在+2375m水平标高井底车场设1套井底主、副水仓及排水设施,矿井涌水由井底主、副水仓直接排至+2500m地面消防水池。 (一)、矿井不同时期井下正常、最大涌水量 根据《陇南市武都区龙沟补充勘查地质报告》预测计算,矿井最大涌水量4.5m3/h ,正常值涌水量3m3/h。涌水 PH≤5,管路敷设斜架倾角约 25°,排水垂高129m(地面消防水池+2500m,水泵标高+2375m,再加上井底车场至水仓最低水位距离 4m)。 (二)、设计依据 =3m3/h; (1)矿井正常涌水量:Q B =4.5m3/h; (2)矿井最大涌水量:Q max (3)排高:129m。 (三)、选型计算 1、所需水泵最小流量 Q1= 24Q B/20 = 24×3/20 =3.6(m3/h) 2、所需水泵最大流量 Q2= 24Q max/20 = 24×4.5/20 =5.4(m3/h) 3、排水总高度 h= 排水高度+吸水高度=125+4=129(m) 4、水泵所需扬程的估算。 HB=Hc/ηg(取0. 77∽0. 74) =129 /0.77∽0.74 =168∽175m 5、管路阻力计算 管路阻力按下式计算:

(m) 式中: Hat—排水管路扬程损失m; Hst—吸水管路扬程损失m; λ—水与管壁摩擦的阻力系数,查表D=108mm钢管0.038: —管路计算长度,等于实际长度加上底阀、异形管、逆止阀、闸阀及其它L i 部分补充损失的等值长度m,计算长度取值500m; D —管道公称直径m;取0.1m; g —水流速度,按经济流速取2.0m。 V d 将各参数代入公式,经计算=38m。管路淤积后增加的阻力系数取1.7,增加的阻力为65m。 6、水泵扬程 淤积前:H=129+38=167m; 淤积后:H=129+65=194m; (四)、排水泵选择 选择MD12-50×5型矿用多级离心泵,其流量为12m3/h,扬程为250m;配用防爆电机功率30kW、进出口50mm、效率46.5%。 (五)、排水泵的工作、备用、检修台数 选择MD12-50×5型矿用多级离心泵3台,其中1台工作、1台备用、1台检修。 (六)、排水能力、电机功率和吸上真空高度校验 按管路淤积后工况参数校验排水能力,按管路淤积前工况参数校验电机功

设备选型

5.设备计算及选型 5.1设备选型的目的、依据及基准 1.设备选型的目的 化工生产是原料通过一系列的化学、物理变化的过程,其变化的条件是化工设备提供的。因此,选择适当型号的设备、设计符合要求的设备,是完成生产任务、获得良好效益的重要前提。 2.设备选型的依据 设备的选择是根据物料衡算、热量衡算的结果进行的,根据物料衡算的数据可以从《化工工艺设计手册》上查取并选择所需的设备型号,在根据其所对应的参数结合热量衡算的数据对所选设备进行校核,使其经济上合理,技术上先进,投资少,加工方便,采购容易,水电汽消耗少,操作清洗方便,耐用易维修。 3.设备选型的基准 根据各单元操作反应的周期,计算出生产批次,在由总体积计算出单批生产体积,以此数据查找《化工工艺设计手册》,对设备进行选择。 5.2不同设备的选型计算 1.储罐的选型 储罐用以存放酸碱、醇、气体、液态等提炼的化学物质。其种类有很多,大体上有:滚塑储罐,玻璃钢储罐,陶瓷储罐、橡胶储罐、焊接塑料储罐等。就储罐的性价比来讲,现在以玻璃钢储罐最为优越,其具有优异的耐腐蚀性能,强度高,寿命长等,外观可以制造成立式,

卧式,运输,搅拌等多个品种。本次工程中需要用到的储罐有3-N-吗啡啉丙磺酸缓冲溶液储罐,四氢呋喃储罐,甲醇储罐,以及树脂预处理所用到的重生树脂所要用的溶剂乙醇的储罐。 (1)3-N-吗啡啉丙磺酸缓冲溶液储罐 缓冲溶液的体积:V= ρ 水 m = 1 1899 .1061=1061.1899L 圆整容积2500L ,选用V111钢衬塑储罐Φ1200*2240*4,材料纯聚乙烯,不锈钢304,容积2500L 面积1.1304m 2。 (2)四氢呋喃储罐 四氢呋喃的体积:V= 四氢呋喃 四氢呋喃 m ρ= 89 .0 1011.6276=1136.66L 选用V112玻璃钢卧式罐Φ1200*1400*5,材料不锈钢304,容积1583L ,面积1.1304m 2。 (3)甲醇储罐 甲醇的体积:V= 甲醇 甲醇 m ρ= 79 .0 149.9410=189.80L 选用V113 立式储罐Φ500*1000,材料不锈钢304,容积196.25L ,面积0.19625m 2 。 (4)浓缩储罐 浓缩储罐里面的物料是四氢呋喃和甲醇 甲醇的体积: V 甲醇= 甲醇 甲醇 m ρ= 79 .02706 .85=107.94L 四氢呋喃的体积:V 四氢呋喃= 四氢呋喃 四氢呋喃 m ρ= 89 .0 644.9393=724.65L 总的体积: V 总=107.94+724.65=832.59L

煤矿排水系统设计说明书

主排水泵选型计算设计 一、概述 本矿井采用主斜井、副立井、回风立井综合开拓方式,主斜井井口标高为+922m,副立井、回风立井井口标高均为+1195m,副立井、回风立井落底标高均为+220m,主斜井与暗主斜井斜交,暗主斜井落底标高为+206m,初期大巷最低点标高为+205m。 根据地质报告,本矿井正常涌水量807m3/h,最大涌水量为1234m3/h,正常涌水量大于120m3/h,最大涌水量大于600m3/h,对照现行《煤矿防治水规定》,属水文地质条件复杂矿井。按照现行《煤矿防治水规定》及《煤矿安全规程》要求,本矿井应当在井底车场周围设置防水闸门,或者在正常排水系统基础上安装配备排水能力不小于最大涌水量的潜水电泵排水系统。根据本矿井开拓方式,结合现有成熟的防水闸门产品参数,设置防水闸门抗灾暂无合适的设备,因此设计在正常排水系统基础上配备潜水电泵抗灾排水系统。 二、矿井主排水 (一)设计依据 地质报告提供矿井正常涌水量807m3/h,最大涌水量为1234m3/h,考虑矿井井下洒水和黄泥灌浆析出水增加50m3/h的排水量,因此在设备选型时按正常涌水量857m3/h,最大涌水量为1284m3/h计算;矿井水处理所需要增加15m扬程。 (二)排水系统方案 根据本矿井的开拓布置,矿井涌水量和排水高度等资料,设计对本矿井的排水系统方案进行了比较: 方案一:主排水泵房设置在初期大巷最低点,排水管路沿副立井井筒敷设,将矿井涌水排至地面副立井工业场地,在副立井工业场地设置水处理站。该方案虽然排水管路相对较短,降低了管路投资,但是由于副立井较主井井口标高高出约273m,年排水电费约增加560余万元,且送往井下的洒水管路水压大,需增加管路壁厚,管路投资增加约100万元,综合运营费用较高。 方案二:主排水泵房设置在初期大巷最低点,排水管路沿西大巷→主斜井井筒敷设,将矿井涌水排至主井场地。该方案虽然排水管路较长,管路损失较大,但主井较副立井井口低273m,排水设备工况扬程低,水泵级数少,设备投资省,电耗低。

机房主要设备选型计算过程

计算机机房冷负荷计算过程及结论 (一)外墙和屋面瞬变传热的冷负荷 在日射和室外气温综合作用下,外墙和屋面瞬变传热的空调冷负荷,可按下式计算: CL=FxK(t l-t n) 式中 CL_外墙和屋面瞬变传热引起的逐时冷负荷,W; F_外墙和屋面的面积,屋面127 m2+墙体143m2=270 m2 K_外墙和层面的传热系数,2.05W/m2.oC; 根据外墙和屋面的不同构造和厚度分别在表3-1中给出; t n_室内设计温度,23oC; t l_外墙和屋面的冷负荷计算温度的逐时值,按平均温度30oC计算。 CL = FxK(t l -t n ) =270*2.05*(30-23) =3874.5W 外墙结构类型表3-1

(二)室内得热冷负荷计算 (a)电子设备的冷负荷 电子设备发热量按下式计算: Q=1000n1n2n3N W 式中Q——电子设备散热量,W; N——电子设备的安装功率,按设备总功率120kW计算; n1——安装系数。电子设备设计轴功率与安装功率之比,一般可取0.7~0.9,本工程计算值为0.8; n2——负荷功率。电子设备小时的平均实耗功率与设计轴功率之比,根据设备运转的实际情况而定,一般可取0.2~0.8,本工程按0. 8计算。 n3——同时使用系数。房间内电子设备同时使用的安装功率与总功率之比。 根据工艺过程的设备使用情况,选最大值1。 Q =1000 n1n2n3N W =1000*120*0.8*0.8*1 =76800W (b)照明设备 照明设备散热量属于稳定得热,一般得热量是不随时间变化的。 根据照明灯具的类型和安装方式的不同,其得热量为: 白炽灯Q=1000N W 荧光灯Q=1000 n1n2N W 式中N——照明灯具所需功率,kW; n1——镇流器消耗功率系数,当明装荧光灯的镇流器装在空调房间内时,取n1=1.2;当暗装荧光灯镇流器设在顶棚内时,可取n1=1.0; n2——灯罩隔热系数,当荧光灯罩上部有小孔(下部为玻璃板),可利用 自然通风散热与荧光灯顶棚内时,取n2=0.5~0.6;而荧光灯罩无通风孔 者,则视顶棚内通风情况,n2=0.6~0.8。 Q =1000 n1n2N W =1000*1.2*0.6*2.5

排水设备选型计算

目录 目录 摘要 第一章绪论及设计原始资料与任务 第二章离心泵结构和特点 2.1 概述............................................................. 2.2 离心泵的工作原理、分类、型号及结构............................... 2.3 离心泵的气蚀..................................................... 2.4 离心泵的分类..................................................... 第三章排水设备选型计算 3.1 确定排水系统..................................................... 3.1.1预选的泵的型号和台数........................................... 3.1.2确定水泵的台数和级数........................................... 3.2管路及管路布置................................................... 3.2.1管路系统....................................................... 3.2.2计算管路特性................................................... 3.2.3 校验计算....................................................... 第四章确定水仓、水泵房尺寸及其附属设备 4.1 确定水仓尺寸..................................................... 4.2 泵房分配井闸直径的确定........................................... 4.3 水泵基础尺寸的确定............................................... 4.4 计算主泵房主要尺寸............................................... 第五章其余方案的选型计算及方案比较 5.1确定水泵台数..................................................... 5.2 管路及管路布置................................................... 5.3计算耗电量....................................................... 致谢 参考文献

给水排水设备选择及生活排水校核计算表说明

1.5.0室内给排水设备选择及生活排水校核计算表说明 1. 给水(包括中水)供水设备选择计算表编制说明 1.1 工频加压水泵(包括采用叠压供水装置)-高位水箱联合自动启停泵供水系统设备选择 1.1.1 供水管流速v 按下式校核: 2 910000j b d Q v ?= π(m/s ) (1.1.1) 当流速大于1.6m/s 时发出提示:“流速过大请调整管径”。 1.1.2 水泵出水口至高位水箱进水口之间管道比摩阻R 按下式计算: 85.1b 87.485 .1)3600/Q )1000/(105000(--=j h d C R (Pa/m ) (1.1.2) 1.1.3 加压水泵扬程H b 按下式计算: H b =h +1.2R/10000·L +2-H j (m ) (1.1.3) 1.1.4 高位水箱有效容积V x 按下式计算: V x =0.5 Q b (m 3) (1.1.4 ) 以上各式中: Q b ——水泵流量即管道流量(m 3 /h ),按服务区域的最大时用水量Q h 确定; d j ——管道计算内径(mm ),一般采用镀锌钢管,按下表确定; C h ——海澄-威廉系数,一般采用镀锌钢管C h =120。 h ——调贮水池(采用叠压供水时为加压水泵)与高位水箱进水口之间的高度差(m ); R ——水泵出水口至高位水箱进水口之间管道比摩阻(Pa/m ); L ——水泵出水口至高位水箱进水口之间管道长度(m ); 1.2——考虑管道局部阻力、水泵吸水阻力等的系数; 2 ——高位水箱进水口自由水头(m ); H j ——采用叠压供水设备时,市政自来水最小水压形成的水泵进口最小压力(m );本项 计算表给出提示:“设调贮水箱的系统不应填入数据”。 1.2 调贮水池-工频加压水泵-气压罐联合供水系统设备选择 1. 2.1 水泵流量Q b 按下式计算: Q b =1.2Q h (m 3 /h ) (1.2.1) 式中 Q h ——系统最大时用水量(m 3 /h )。 1.2.2 水泵扬程H b 按下式计算: H b =(P 1+P 2)/2 (m ) (1.2.2) 式中 P 1——系统最低工作压力(启泵压力)(m ),P 1=ΔH +ΣH z +H c ,其中: ΔH ——最不利卫生器具至调贮水池或供水泵之间的高差(m ); ΣH z ——最不利卫生器具至调贮水池或供水泵之间的总阻力(m ); H c ——最不利卫生器具所需流出水头(m )。 P 2——系统最高工作压力(停泵压力)(m ),P 2=(P 1+10)/α-10,α——压力比,取 α=0.65~0.85。

设备选型的原则和考虑的主要问题

1.生产率 设备的生产率一般用设备在单位时间(分、时、班、年)的产品产量表示。例如:锅炉以每小时蒸发蒸汽吨数、空气压缩机以每小时输出压缩空气的体积、发动机以功率、流水线以节拍等来表示生产率。但有些设备无法直接估计产量,则可用主要参数来衡量,如车床的中心高、主轴转速、压力机的最大压力等。设备生产率要与企业的经营方针、工厂的规划、生产计划、运输能力、技术力量、劳动力、动力和原材料供应等相适应,不能盲目要求生产率越高越好,否则生产不平衡,服务供应工作跟不上,不仅不能发挥全部效率,反而造成损失。这是因为生产率高的设备,一般自动化程度高、投资多、能耗大、维护复杂,如不能达到设计产量,平均单位产品的成本就会增高。 2.工艺性 机器设备最基本的一条是符合产品工艺的技术要求,设备满足生产工艺要求的能力叫工艺性。例如:金属切削机床应能保证所加工零件的尺寸精度,几何形状与位置精度以及表面质量的要求,需要坐标锉床的场合很难用铣床代替;加热设备要满足产品工艺的最高和最低温度要求、温度均匀性和温度控制精度等。除上述基本要求外,设备操作控制的要求也很重要,一般要求设备操作轻便、控制灵活。对产量大的设备,要求其自动化程度高、对于进行有毒有害作业的设备,则要求能自动控制或远距离监督控制等。 3.可靠性 机器设备,不仅要求其有合适的生产率和满意的工艺特性,而且要求其不发生故障,这样就产生了可靠性概念。可靠性只能在工作条件和下作时间相同的情况下才能进行比较,所以其定义是:系统、设备、零件、部件在规定的时间内,在规定的条件下完成规定功能的能力。 定量测量可靠性的标准是可靠度。可靠度是指系统、设备、零件、部件在规定的条件下,在规定的时间内能毫无故障地完成规定功能的概率。它是时间的函数。用概率表示抽象的可靠度以后,设备可靠性的测量、管理、控制、保证才有计量的尺度。 要认识到设备故障可能带来的重大经济损失和人身事故,尤其在设备趋向大型化、高速化、自动化、连续化的情况下,故障造成的后果将更为严重。选择设备可靠性时,要求设备平均故障间隔期越长越好,可以具体地从设备设计选择的安全系数、储备设计(又称冗余设计,是指对完成规定功能而设计的额外附加的系统或手段,既使其中一部分出现了故障,但整台设备仍能正常工作)、耐环境(日晒、温度、砂尘、腐蚀、振动等)设计、元器件稳定性、故障保护措施、人机因素(不易造成操作差错,发生操作失误时可防止设备发生故障)等方面进行分析。 4.维修性 维修性是指通过修理和维护保养手段,来预防和排除系统、设备、零件、部件等故障的难易程度。其定义是:系统、设备、零件、部件等在进行修理时,能以最小的资源消耗(人力、设备、仪器、材料、技术资料、备件等),在正常条件下顺利完成维修的可能性。同可靠性一样,对维修性也引入一个定量测定的标准——维修度。维修度是指能修理的系统、设备、零件、部件等按规定的条件进行维修时,在规定时间内完成维修的概率。 影响维修性的因素有易接近性、易检查性、坚固性、易装拆性、零部件标准化和互换性、零件的材料和工艺方法、维修人员的安全、特殊工具和仪器、备件供应、生产厂的服务质量等。希望设备的叮靠度能高些,但可靠度达到一定程度后,再继续提高就越来越困难了。相对微小地提高可靠度,会造成设备的成本费用按指数规律增长,所以可靠性可能达到的程度是有限的。因此,提高维修性,减少设备因故障修复到正常工作状态的时间和费用就相当重要了。于是,产生了广义可靠度的概念它包括设备不发生故障的可靠度和排除故障难易的维修度。

矿井排水设备选型方法朱晓军

摘要:本课题的主要内容是矿山排水设备的选型及压水室形状对水泵性能的影响。在此课题的过程中,主要运用分析、比较等方法,根据矿井安全生产的政策,法规,应用历史经验,结合煤炭行业发展现状,以安全可靠为根本,以投入少、运行费用低为原则的指导思想来进行综合的。 本课题来源与工程实际,因此在的过程中,通过多种渠道掌握给排水行业最新信息,初步选择排水方案并对设备选型,进行相关计算,确定设备工况,然后通过校验水泵的吸水高度、排水时间,以及对各方案水泵装置效率的比较,排除不合理的方案,最后再对方案进行经济核算以确定方案的合理性。 有关压水室的专题方面的讨论,进一步优化了水泵的整体结构。 关键词:排水系统;水泵;工况点

目录 1绪论 (1) 1.1 矿水来源及涌水量 (1) 1.2 离心式水泵的分类 (1) 1.3 的指导思想 (2) 2 必备的原始资料和任务 (2) 2.1 的原始资料 (2) 2.2 任务 (2) 3 排水设备选型计算 (2) 3.1 依据原始资料 (2) 3.2 排水设备方案 (3) 4 确定泵房、水仓和管子道尺寸并绘制泵房布置图 (5) 4.1 估算泵房尺寸 (5) 4.2 基础尺寸 (6) 4.3 泵房尺寸 (6) 4.4 水仓、水房及吸水井的尺寸 (8) 5 离心泵结构和特点 (9) 5.1 概述 (10) 5.2 离心泵的工作原理、分类、型号及结构 (10) 5.3 离心泵的气蚀 (10) 5.4 离心泵型号及结构 (11) 5.5 离心泵的主要零部件 (11) 参考文献 (13)

浅谈矿山排水设备 1绪论 1.1 矿水来源及涌水量 在矿井建设和生产过程中,涌入矿井的水流称为矿水。矿井水的来源分为地面水和地下水,地面水是江、河、湖、溪、池塘的存水及雨水、融雪和山洪等。 矿水可以用单位时间涌入矿井内的体积来度量,称为绝对涌水量。一般用“q”表示,其单位为m3/h。涌水量的大小与该矿区的地理位置、地形、水文地质及气候等条件有关;同一矿井在一年四季中涌水量也是不同的,如春季融雪或雨季里涌水量大些,其他季节则变化不大,因此前者称最大涌水量,而后者称为正常涌水量。 为了对比不同矿井涌水量的大小,通常还采用同一时期内,相对于单位煤炭产量(以吨计)的涌水量作为比较参数,称它为相对涌水量,或称为含水系数。若以K表示相对涌水量,则 24 (1-1) q t K/ 式中 q——绝对涌水量; T——同期内煤炭日产量。 排水设备主要包括:水泵、配套电机、管路、泵房、管子道、水仓及电控设备等。 1.2 离心式水泵的分类 1. 按叶轮数目分 (1) 单级水泵泵轴上有仅装有一个叶 (2) 多级水泵泵国上装有几个叶轮 2. 按水泵吸水方式 (1) 单吸水泵 (2) 双吸水泵 3. 按泵壳的结构分 (1) 螺壳式水泵 (2) 分段式水泵 (3) 中开式水泵

相关文档
相关文档 最新文档