文档库 最新最全的文档下载
当前位置:文档库 › 第八章第二讲:抽屉原理.课后练习

第八章第二讲:抽屉原理.课后练习

第八章第二讲:抽屉原理.课后练习
第八章第二讲:抽屉原理.课后练习

抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是:

1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题;

5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。

一、知识点介绍

抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.

二、抽屉原理的定义

(1)举例

桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义

一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。

三、抽屉原理的解题方案

(一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - , 结论:至少有(商+1)个苹果在同一个抽屉里

(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题

将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.

模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论

知识精讲

知识点拨

教学目标

【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?

【例 3】三个小朋友在一起玩,其中必有两个小朋友都是男孩或者都是女孩.

【例 4】“六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.

【例 5】在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?

【例 6】证明:任取8个自然数,必有两个数的差是7的倍数.

【例 7】任给11个数,其中必有6个数,它们的和是6的倍数.

【例 8】任意给定2008个自然数,证明:其中必有若干个自然数,和是2008的倍数(单独一个数也当做和).

【例 9】求证:可以找到一个各位数字都是4的自然数,它是1996的倍数.

【例 10】求证:对于任意的8个自然数,一定能从中找到6个数a,b,c,d,e,f,使得()()()

---

a b c d e f

是105的倍数.

【例 11】把1、2、3、…、10这十个数按任意顺序排成一圈,求证在这一圈数中一定有相邻的三个数之和不小于17.

【例 12】证明:在任意的6个人中必有3个人,他们或者相互认识,或者相互不认识.

【例 13】上体育课时,21名男、女学生排成3行7列的队形做操.老师是否总能从队形中划出一个长方形,使得站在这个长方形4个角上的学生或者都是男生,或者都是女生?如果能,请说明理由;

如果不能,请举出实例.

【例 14】8个学生解8道题目.(1)若每道题至少被5人解出,请说明可以找到两个学生,每道题至少被过两个学生中的一个解出.(2)如果每道题只有4个学生解出,那么(1)的结论一般不成立.试

构造一个例子说明这点.

(2)求抽屉

【例 15】把十只小兔放进至多几个笼子里,才能保证至少有一个笼里有两只或两只以上的小兔?

【例 16】把125本书分给五⑵班的学生,如果其中至少有一个人分到至少4本书,那么,这个班最多有多少人?

【例 17】某班有16名学生,每个月教师把学生分成两个小组.问最少要经过几个月,才能使该班的任意两个学生总有某个月份是分在不同的小组里?

(3)求苹果

【例 18】班上有50名小朋友,老师至少拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到

不少于两本书?

【例 19】 海天小学五年级学生身高的厘米数都是整数,并且在140厘米到150厘米之间(包括140厘米到

150厘米),那么,至少从多少个学生中保证能找到4个人的身高相同?

【例 20】 一次数学竞赛出了10道选择题,评分标准为:基础分10分,每道题答对得3分,答错扣 1分,

不答不得分。问:要保证至少有4人得分相同,至少需要多少人参加竞赛?

(二)、构造抽屉利用公式进行解题

【例 21】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以

从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?

【例 22】 红、蓝两种颜色将一个25 方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是

否存在两列,它们的小方格中涂的颜色完全相同?

【例 23】 将每一个小方格涂上红色、黄色或蓝色.(每一列的三小格涂的颜色不相同),不论如何涂色,

其中至少有两列,它们的涂色方式相同,你同意吗?

【例 24】 从2、4、6、8、 、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?

【例 25】 (北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取 个

数,能使这些数中任意两个数的差都不等于9.

【例 26】 (2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、10、

11和12中至多选出 个数,使得在选出的数中,每一个数都不是另一个数的2倍.

【例 27】 从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一

个数的倍数?

【例 28】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,

其中的一个是另一个的倍数. 【例 29】 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,

则最多能取出多少个数?

【例 30】 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有

两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.

第二行

第一行第五列第四列第三列第

第一

【例 31】 有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排

成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子?

【例 32】 要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少

个盒子中的乒乓球数目相同?

【例 33】 将400本书随意分给若干同学,但是每个人不许超过11本,问:至少有多少个同学分到的书的

本数相同?

【例 34】 有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶

数?

【例 35】 (难度等级 ※※※)在长度是10厘米的线段上任意取11个点,是否至少有两个点,它们之间

的距离不大于1厘米?

【例 36】 在边长为3的正三角形内,任意放入10个点,求证:必有两个点的距离不大于1.

【例 37】 在一个直径为2厘米的圆内放入七个点,请证明一定有两个点的距离不大于1厘米

【例 38】 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9 条

直线中至少有3 条通过同一个点。

【例 39】 如图,能否在8行8列的方格表的每一个空格中分别填上1,2,3这三个数,使得各行各列及

对角线上8个数的和互不相同?并说明理由.

N M

Q

P

H

G F

E D

C

B

A

【例 40】 (南京市第三届“兴趣杯”少年数学邀请赛决赛C 卷第12题)如下图① ,A 、B 、C 、D 四

只小盘拼成一个环形,每只小盘中放若干糖果,每次可取出1只、或3只、或4只盘中的全部

糖果,也可取出2只相邻盘中的全部糖果.要使1至13粒糖果全能取到,四只盘中应各有 粒糖果.把各只盘中糖果的粒数填在下图②中.

图① 图②

【例 41】 如右图,分别标有数字1,2,,8 的滚珠两组,放在内外两个圆环上,开始时相对的滚珠所标的数

字都不相同.当两个圆环按不同方向转动时,必有某一时刻,内外两环中至少有两对数字相同的滚珠相对.

【例 42】 时钟的表盘上按标准的方式标着1,2,3,…,11,12这12个数,在其上任意做n 个120°的

扇形,每一个都恰好覆盖4个数,每两个覆盖的数不全相同.如果从这任做的n 个扇形中总能恰好取出3个覆盖整个钟面的全部12个数,求n 的最小值.

模块三、最不利原则

【例 43】 (2008年第六届“走进美妙的数学花园”中国青年数学论坛趣味数学解题技能展示大赛决赛)

“走美”主试委员会为三~八年级准备决赛试题.每个年级12道题,并且至少有8道题与其他

各年级都不同.如果每道题出现在不同年级,最多只能出现3次.本届活动至少要准备 道决赛试题.

【例 44】 有一个布袋中有40个相同的小球,其中编上号码1、2、3、4的各有10个,问:一次至少要取

出多少个小球,才能保证其中至少有3个小球的号码相同?

【例 45】 黑色、白色、黄色的筷子各有8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的

两双筷子。问至少要取多少根才能保证达到要求?

【例 46】 有红、黄、蓝、白4色的小球各10个,混合放在一个布袋里.一次摸出小球8个,其中至少有

几个小球的颜色是相同的?

【例 47】 两个布袋各有12个大小一样的小球,且都是红、白、蓝各4个。

从第一袋中拿出尽可能少的球,

D

C

B

A

但至少有两种颜色一样的放入第二袋中;再从第二袋中拿出尽可能少的球放入第一袋中,使第

一袋中每种颜色的球不少于3个。这时,两袋中各有多少个球?

【例 48】一个玻璃瓶里一共装有44个弹珠,其中:白色的2个,红色的3个,绿色的4个,蓝色的5个,黄色的6个,棕色的7个,黑色的8个,紫色的9个.如果要求每次从中取出1个弹珠,从而

得到2个相同颜色的弹珠,请问最多需要取几次?

【例 49】(2008年中国台湾小学数学竞赛选拔赛复赛)在100张卡片上不重复地编写上1~100,请问至少要随意抽出几张卡片才能保证所抽出卡片上的数相乘后之乘积可被4整除?

【例 50】一副扑克牌,共54张,问:至少从中摸出多少张牌才能保证:⑴至少有5张牌的花色相同;⑵四种花色的牌都有;⑶至少有3张牌是红桃.(4) 至少有2张梅花和3张红桃.

【例 51】(2006年华罗庚金杯数学邀请赛)自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅.每种牌都有1点,2点,…,13点牌各一张).洗好后背面向上放好,⑴一次至少抽

取张牌,才能保证其中必定有2张牌的点数和颜色都相同.(2)如果要求一次抽出的

牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。

小学奥数之容斥原理

五.容斥原理问题 1.有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( ) A 43,25 B 32,25 C32,15 D 43,11 解:根据容斥原理最小值68+43-100=11 最大值就是含铁的有43种 2.在多元智能大赛的决赛中只有三道题.已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是 解出第三题的人数的2倍:(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( ) A,5 B,6 C,7 D,8 解:根据“每个人至少答出三题中的一道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。 分别设各类的人数为a1、a2、a3、a12、a13、a23、a123 由(1)知:a1+a2+a3+a12+a13+a23+a123=25…① 由(2)知:a2+a23=(a3+ a23)×2……② 由(3)知:a12+a13+a123=a1-1……③ 由(4)知:a1=a2+a3……④ 再由②得a23=a2-a3×2……⑤ 再由③④得a12+a13+a123=a2+a3-1⑥ 然后将④⑤⑥代入①中,整理得到 a2×4+a3=26 由于a2、a3均表示人数,可以求出它们的整数解: 当a2=6、5、4、3、2、1时,a3=2、6、10、14、18、22 又根据a23=a2-a3×2……⑤可知:a2>a3 因此,符合条件的只有a2=6,a3=2。 然后可以推出a1=8,a12+a13+a123=7,a23=2,总人数=8+6+2+7+2=25,检验所有条件均符。 故只解出第二题的学生人数a2=6人。 3.一次考试共有5道试题。做对第1、2、3、、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少? 答案:及格率至少为71%。 假设一共有100人考试 100-95=5 100-80=20 100-79=21 100-74=26 100-85=15 5+20+21+26+15=87(表示5题中有1题做错的最多人数)

六年级下册抽屉原理习题答案版

-教育精选- 抽屉原理练习题 习题精选一:------找“抽屉”,找“苹果” 1、三个小朋友同行,其中必有两个小朋友性别相同,为什么? 两种性别:2个“抽屉”三个小朋友:3个“苹果” 3÷2=1(个)···1(个)1+1=2(个) 2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。 1年有52周:52个“抽屉”53个学生:53个“苹果” 53÷52=1(个)···1(个)1+1=3(个) 3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么? 12个属相:12个“抽屉”13个观众:13个“苹果” 13÷12=1(个)···1(个)1+1=2(个) 4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。 五种颜色:5个“抽屉”六个面:6个“苹果” 6÷5=1(个)···1(个)1+1=2(个) 5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的? 四个班:4个“抽屉”6个同学:6个“苹果” 6÷4=1(个)···2(个)1+1=2(个) 6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的? 四种花色:4个“抽屉”抽牌:“苹果” 4+1=5(张)习题精选二:-------求至少数=商(苹果数÷抽屉数)+1 1、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的? 列式:17÷3=5(次)···2(次)5+1=6(次) (分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。) 2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人? 列式:152÷3=50(人)···2(人)50+1=51(人) (分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。) 习题精选三:--------求物体数(当至少数=2时,直接判断物体数比抽屉数多1;当至少数>2时,物体数=抽屉数×(至少数--1)+1。) 1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有2个球的颜色相同,则最少要取出多少个球? 列式:3+1=4(个) (分析:把三种颜色看作3个抽屉,为保证取出的球中有两个球的颜色是相同的,说明一个抽屉中至少要有2个物体,物体数比抽屉数多1,所以至少要取出4个球。)2、一个盒子里有红色、蓝色、黄色、白色球若干个,为保证取出的球中有5个球颜色相同,则最少要取出多少个球? 列式:4×(5-1)+1=17(个) (分析:把四种颜色看做4个抽屉,为保证取出的球中有5个球的颜色是相同的,说明一个抽屉中至少要有5个物体,物体数=4×(5-1)+1=17个,所以至少要取出17个球。)

抽屉原理例习题

8-2抽屉原理 教学目标 抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。本讲的主要教学目标是: 1.理解抽屉原理的基本概念、基本用法; 2.掌握用抽屉原理解题的基本过程; 3. 能够构造抽屉进行解题; 4. 利用最不利原则进行解题; 5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。 知识点拨 一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n+1或多于n+1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个

苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 模块一、利用抽屉原理公式解题 (一)、直接利用公式进行解题 (1)求结论 【例 1】 6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【解析】 6只鸽子要飞进5个笼子,如果每个笼子装1只,这样还剩下1只鸽子.这只鸽子可以任意飞进 其中的一个笼子,这样至少有一个笼子里有2只鸽子.所以这句话是正确的. 利用刚刚学习过的抽屉原理来解释这个问题,把鸽笼看作“抽屉”,把鸽子看作“苹果”, 6511÷= ,112+=(只)把6个苹果放到5个抽屉中,每个抽屉中都要有1个苹果,那么 肯定有一个抽屉中有两个苹果,也就是一定有一个笼子里有2只鸽子. 【巩固】 把9条金鱼任意放在8个鱼缸里面,请你说明至少有一个鱼缸放有两条或两条以上金鱼. 【解析】 在8个鱼缸里面,每个鱼缸放一条,就是8条金鱼;还剩下的一条,任意放在这8个鱼缸其中的 任意一个中,这样至少有一个鱼缸里面会放有两条金鱼. 【巩固】 教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业 试说明:这5名 学生中,至少有两个人在做同一科作业. 【解析】 将5名学生看作5个苹果 将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉 由抽 屉原理,一定存在一个抽屉,在这个抽屉里至少有2个苹果.即至少有两名学生在做同一科的 作业. 【巩固】 年级一班学雷锋小组有13人.教数学的张老师说:“你们这个小组至少有2个人在同一月过生 日.”你知道张老师为什么这样说吗? 【解析】 先想一想,在这个问题中,把什么当作抽屉,一共有多少个抽屉?从题目可以看出,这道题显 知识精讲

小学数学典型应用题合集之抽屉问题

小学数学典型应用题之抽屉问题 一、含义 在数学问题中有一类与“存在性”有关的问题,如367个人中至少有两个人是同一天过生日,这类问题在生活中非常常见,它所依据的理论,我们称之为“抽屉原理”。抽屉原理又名狄利克雷原则,是符合某种条件的对象存在性问题有力工具。 二、数量关系 1、基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。 2、抽屉原则可以推广为:如果有m个抽屉,元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。 三、解题思路和方法 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。 四、例题 例题(一):不透明的箱子中有红、黄、蓝、绿四种颜色的球各20个,一次至少摸出多少个球才能保证摸出两个相同颜色的球? 解:(1)解决这个问题要考虑最不利的情况,因为有4种颜色,想要摸出两个相同颜色的球。 (2)那么最不利的情况就是,每种颜色的各摸出一个,这时再摸一个球,一定与前几个球有颜色相同的。因此至少要摸4+1=5(个)球。

例题(二):袋子中有2个红球,3个黄球,4个蓝球,5个绿球,一次至少摸出多少个球就能保证摸到两种颜色的球? 解:(1)解决这个问题要考虑最不利情况,想要摸出两种颜色的球,最不利的情况应该是将一种颜色的球都拿出来时,不论接下来摸的球是什么颜色都与之前颜色不同。 (2)因为4种球的个数各不相同,所以最不利的情况应该是先将个数最多的球都拿出来,接下来摸的球都一定与之前颜色不同。因此至少摸出5+1=6(个)球。 例题(三):一次数学竞赛共5道选择题,评分标准为:基础分5分,答对一题得3分,答错扣1分,不答不得分。要保证至少有4人得分相同,最少需要多少人参加竞赛? 解:(1)本题考察的是抽屉原理的相关知识,解决本题的关键是要知道得分一共有多少种不同的情况,进而从最坏的情况开始考虑解决问题。 (2)一共有5题,且有5分的基础分,那么每道题就有1分的基础分。也就相当于答对一题得4分,答错不得分,不答得1分。 (3)这次数学竞赛的得分情况有以下几种: ●5题全对的只有1种情况:得20分; ●对4题的有2种情况:1题答错得16分,1题没答得17分; ●对3题的有3种情况:2题全错得12分,只错1题得13分,2题不做得14分; ●对2题的有4种情况:3题全错得8分,只错2题得9分,只错1题得10分;3题全不答得11分;

2015国家公务员考试行测:数学运算-容斥原理和抽屉原理

【导读】国家公务员考试网为您提供:2015国家公务员考试行测:数学运算-容斥原理和抽屉原理,欢迎加入国家公务员考试QQ群:242808680。更多信息请关注安徽人事考试网https://www.wendangku.net/doc/9b12640853.html, 【推荐阅读】 2015国家公务员笔试辅导课程【面授+网校】 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠 的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数 目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是 A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、 数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一 门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现 两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1 次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩ C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到: 公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

五年级简单的抽屉原理练习题及答案【五篇】

【第一篇方格涂色】把一个长方形画成 3 行 9 列共 27 个小方格, 然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。
是否一定有两列小方格涂色的方式相同? 将 9 列小方格看成 9 件物品,每列小方格不同的涂色方式看成不 同的抽屉。 如果涂色方式少于 9 种,那么就可以得到肯定的答案。 涂色方式共有下面 8 种 9 件物品放入 8 个抽屉,必有一个抽屉的物品数不少于 2 件,即 一定有两列小方格涂色的方式相同。 【第二篇相同的四位数】用 1,2,3,4 这 4 个数字任意写出一 个 10000 位数,从这个 10000 位数中任意截取相邻的 4 个数字,可以 组成许许多多的四位数。 这些四位数中至少有多少个是相同的? 猛一看,谁是物品,谁是抽屉,都不清楚。 因为问题是求相邻的 4 个数字组成的四位数有多少个是相同的, 所以物品应是截取出的所有四位数,而将不同的四位数作为抽屉。 在 10000 位数中,共能截取出相邻的四位数 10000-3=9997 个, 即物品数是 9997 个。 用 1,2,3,4 这四种数字可以组成的不同四位数,根据乘法原 理有 4×4×4×4=256 种,这就是说有 256 个抽屉。 9997÷256=3913,所以这些四位数中,至少有 40 个是相同的。 【第三篇取数字】从 1,3,5,7,,47,49 这 25 个奇数中至少

任意取出多少个数,才能保证有两个数的和是 52。 首先要根据题意构造合适的抽屉。 在这 25 个奇数中,两两之和是 52 的有 12 种搭配 {3,49},{5,47},{7,45},{9,43}, {11,41},{13,39},{15,37},{17,35}, {19,33},{21,31},{23,29},{25,27}。 将这 12 种搭配看成 12 个抽屉,每个抽屉中有两个数,还剩下一
个数 1,单独作为一个抽屉。 这样就把 25 个奇数分别放在 13 个抽屉中了。 因为一共有 13 个抽屉,所以任意取出 14 个数,无论怎样取,至
少有一个抽屉被取出 2 个数,这两个数的和是 52。 所以本题的答案是取出 14 个数。 【第四篇班级人数】 把 125 本书分给五 2 班学生,如果其中至少有 1 人分到至少 4 本
书,那么,这个班最多有多少人? 这道题一下子不容易理解,我们将它变变形式。 因为是把书分给学生,所以学生是抽屉,书是物品。 本题可以变为 125 件物品放入若干个抽屉,无论怎样放,至少有
一个抽屉中放有 4 件物品,求最多有几个抽屉。 这个问题的条件与结论与抽屉原理 2 正好相反,所以反着用抽屉
原理 2 即可。 由 125÷4-1=412 知,125 件物品放入 41 个抽屉,至少有一个

四年级奥数抽屉原理

一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决. 二、抽屉原理的定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是组合数学中一个重要的原理。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 三、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()1 1x n -, 结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题 将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法. 四、应用抽屉原理解题的具体步骤 知识框架 抽屉原理 发现不同

第二步:构造抽屉。这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。第三步:运用抽屉原理。观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。 例题精讲 【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗? 【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业. 【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天? 【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

抽屉原理在数学中的运用

抽屉原理在初等数学中的运用 摘要:抽屉原理也称为鸽巢原理,它是组合数学中的一个最基本的原理.也是数学中的一个重要原理,抽屉原理的简单形式可以描述为:“如果把1+n 个球或者更多的球放进n 个抽屉,必有一个抽屉至少有两个球.”它的正确性十分明显,很容易被并不具备多少数学知识的人所接受,如果将其灵活地运用,则可得到一些意想不到的效果. 运用抽屉原理可以论证许多关于“存在”、“总有”、“至少有”的存在性问题。学习抽屉原理可以用来解决数学中的许多问题,也可以解决生活中的一些现象。如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。在解决数学问题时有非常重要的作用. 抽屉原理主要用于证明某些存在性问题及必然性题目,如几何问题、涂色问题等. 各种形式的抽屉原理在高等数学和初等数学中经常被采用,使用该原理的关键在于如何巧妙地构造抽屉,即如何找出合乎问题条件的分类原则,抽屉构造得好,可得出非常巧妙的结论.本文着重从抽屉的构造方法阐述抽屉原理在高等数学和初等数学(竞赛题)中的应用,同时指出了它在应用领域中的不足之处. 关键词:抽屉原理;初等数学;应用 一、 抽屉原理(鸽巢原理) 什么是抽屉原理?先举个简单的例子说明,就是将3个球放入2个篮子里,无论怎么放,必有一个篮子中至少要放入2个球,这就是抽屉原理.或者假定有五个鸽子笼,养鸽人养了6只鸽子,当鸽子飞回巢中,那么一定至少有一个鸽笼里有两只鸽子,这就是著名的鸽巢原理. 除了这种比较普遍的形式外,抽屉原理还经许多学者推广出其他的形式.比如陈景林、阎满富编著的中国铁道出版社出版的《组合数学与图论》一书中对抽屉原理给出了比较具体的定义,概括起来主要有下面几种形式: 原理1 把多于n 个的元素按任一确定的方式分成n 个集合,则一定有一个集合中含有两个或两个以上的元素.

六年级下册抽屉原理习题答案版

__________________________________________________ 抽屉原理练习题 习题精选一:------找“抽屉”,找“苹果” 1、三个小朋友同行,其中必有两个小朋友性别相同,为什么? 两种性别:2个“抽屉”三个小朋友:3个“苹果” 3÷2=1(个)···1(个) 1+1=2(个)2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。 1年有52周:52个“抽屉” 53个学生:53个“苹果” 53÷52=1(个)···1(个) 1+1=3(个)3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么? 12个属相:12个“抽屉” 13个观众:13个“苹果” 13÷12=1(个)···1(个) 1+1=2(个)4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。 五种颜色:5个“抽屉”六个面:6个“苹果” 6÷5=1(个)···1(个) 1+1=2(个)5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的? 四个班:4个“抽屉” 6个同学:6个“苹果” 6÷4=1(个)···2(个) 1+1=2(个)6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的? 四种花色:4个“抽屉”抽牌:“苹果” 4+1=5(张) 习题精选二:-------求至少数=商(苹果数÷抽屉数)+1 1、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有几次手势是相同的? 列式:17÷3=5(次)···2(次) 5+1=6(次) (分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。) 2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人? 列式:152÷3=50(人)···2(人) 50+1=51(人) (分析:把跳绳、投篮、爬杆三项活动看做3个抽

行测数学运算16种题型之抽屉原理问题

考试行测数学运算16种题型之抽屉原理问题 行测数学运算—抽屉原理问题 抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。 假设有3个苹果放入2个抽屉中,则必然有一个抽屉中有2个苹果,她的一般模型可以表述为: 第一抽屉原理:把(mn+1)个物体放入n个抽屉中,其中必有一个抽屉中至少有(m+1)个物体。 若把3个苹果放入4个抽屉中,则必然有一个抽屉空着,她的一般模型可以表述为:第二抽屉原理:把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。 制造抽屉是运用原则的一大关键 例1、一副扑克牌有四种花色,每种花色各有13张,现在从中任意抽牌。问最少抽几张牌,才能保证有4张牌是同一种花色的? A.12 B.13 C.15 D.16 【解析】根据抽屉原理,当每次取出4张牌时,则至少可以保障每种花色一样一张,按此类推,当取出12张牌时,则至少可以保障每种花色一样三张,所以当抽取第13张牌时,无论是什么花色,都可以至少保障有4张牌是同一种花色,选B。 例2、从1、2、3、4……、12这12个自然数中,至少任选几个,就可以保证其中一定包括两个数,他们的差是7? A.7 B.10 C.9 D.8 【解析】在这12个自然数中,差是7的自然树有以下5对:{12,5}{11,4}{10,3}{9,2}{8,1}。另外,还有2个不能配对的数是{6}{7}。可构造抽屉原理,共构造了7个抽屉。只要有两个数是取自同一个抽屉,那么它们的差就等于7。这7个抽屉可以表示为{12,5}{11,4}{10,3}{9,2}{8,1}{6}{7},显然从7个抽屉中取8个数,则一定可以使有两个数字来源于同一个抽屉,也即作差为7,所以选择D。

小学六年级简单的抽屉原理

一、抽屉原理定义 (1)举例 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。 (2)定义 一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。 二、抽屉原理的解题方案 (一)、利用公式进行解题 苹果÷抽屉=商……余数 余数:(1)余数=1结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11x n - ,结论:至少有(商+1)个苹果在同一个抽屉里 (3)余数=0,结论:至少有“商”个苹果在同一个抽屉里 例1.A 、3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。 B 、5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了( )块手帕。 C 、6只鸽子飞进5个鸽笼,那么一定有一个鸽笼至少飞进( )只鸽子。 例2、 三个小朋友在一起玩,请说明其中必有两个小朋友是同性别。 例 3. 三年一班有13名女生,她们的年龄都相同,请说明,至少有两个小朋友在一个相同的月份内出生。 例4. 任意三个整数中,总有两个整数的差是偶数。 例5. 有10个鸽笼,为保证每个鸽笼中最多住1只鸽子(可以不住鸽子),那么鸽子总数最多能有几只?请用抽屉原理加以说明。 例6. 某班有37个学生,最大的10岁,最小的8岁,问:是否一定有4个学生,他们是同年同月出生的? 例7、有红袜2双,白袜3双,黑袜4双,黄袜5双,(每双袜子包装在一起)若取出9双,证明其中必有黑袜或黄袜2双. 1.6只鸽子飞进了5个鸟巢,则总有一个鸟巢中至少有( )只鸽子; 2.把三本书放进两个书架,则总有一个书架上至少放着( )本书; 3.把7封信投进3个邮筒,则总有一个邮筒投进了不止( )封信。

抽屉原理优秀教案

《数学广角——抽屉原理》 实验小学 潘聪聪

《数学广角——抽屉原理》 【教学内容】: 我说讲课的内容是人教版六年级数学下册数学广角《抽屉原理》第一课时,也就是教材70-71页的例1和例2。 【教学目标】: 知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。通过猜测、验证、观察、分析等数学活动,建立数学模型,发现规律。渗透“建模”思想。 过程与方法:经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。 情感与态度:通过“抽屉原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。 【教学重点】: 1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”。 2、“总有”“至少”具体含义,以及为什么商+1而不是加余数。【教学难点】: 理解“抽屉原理”,并对一些简单实际问题加以“模型化”。 【教法和学法】: 以学生为课堂的主体,采用创设情境,提出问题,让学生动手操作、自主探究、合作交流。 【教学准备】:一定数量的笔、铅笔盒、课件。 【教学过程】: 一、游戏激趣,初步体验 师:同学们喜欢做游戏吗?学习新课之前,我们先做个游戏,老师这里准备了2张凳子,请3个同学上来,(找生)听清要求,老师说“请坐”时,每个同学必须都坐下,谁没坐下谁犯规,(师背对)听明白了吗?好“请坐!”告诉老师他们都坐下了吗?老师不用看,就知道一定有一张凳

子上至少坐了两名同学,对吗?假如请这3位同学再反复坐几次,老师还敢肯定地说:“不管怎么坐,总有一张凳子上至少坐2名同学,你们相信吗?其实这个游戏里面蕴藏着一个非常有趣的数学原理,想不想通过自己动手实践来发现它? 【设计意图:在课前进行的游戏激趣,一是激发学生的兴趣,引起探究的愿望;二为今天的探究埋下伏笔。】 二、操作探究,发现规律 1、小组合作,初步感知。 师:下面我们先从简单的情况入手,请看大屏幕(出示例1:4只铅笔放入3个盒子中),有几种不同的放法?你能得到什么结论?下面我们小组合作(出示合作要求,请生读要求),看哪组动作最快? (1)、学生动手操作,讨论交流,老师巡视,指导; (2)、全班交流。 师:哪个小组愿意汇报一下你们的研究成果?(找生展示,师板书:(3,1,0)(2,2,0)(4,0,0)(1,1,2)。 师:老师也是这样摆的,我们一起看一下(课件演示)观察这几种放法,你能得到什么结论?(课件出示:不管怎么放,总有一个文具盒中至少有2枝铅笔)。 师:刚才我们把所有情况都一一列举出来,想一想不用一一列举,我们能不能只要一种情况,也能得到这个结论?(生答“平均分”的方法时,课件演示)每个盒子先放1枝,还剩几枝?(1枝)这1枝怎么摆?(放哪个里面都行)你有什么发现?(无论怎么放,总有1个盒子至少放2枝铅笔)。师:既然是平均分,能用算式表示吗?(生答,师板书:4÷3=1……1) 师:这里的4指的是什么?3呢?商1呢?余数1呢? 师:看来解决这个问题时,用平均分的方法比较简便。

(完整版)六年级下册抽屉原理习题答案版

抽屉原理练习题 习题精选一:------找“抽屉”,找“苹果” 1、三个小朋友同行,其中必有两个小朋友性别相同,为什么? 两种性别:2个“抽屉”三个小朋友:3个“苹果” 3÷2=1(个)···1(个) 1+1=2(个) 2、六年级一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。 1年有52周:52个“抽屉” 53个学生:53个“苹果” 53÷52=1(个)···1(个) 1+1=3(个) 3、从电影院里任意找来13个观众,至少有两个人属相相同,为什么? 12个属相:12个“抽屉” 13个观众:13个“苹果” 13÷12=1(个)···1(个) 1+1=2(个) 4、用五种颜色给正方体的各面涂色(每面只涂一种颜色),请你证明至少有两个面涂色相同。 五种颜色:5个“抽屉”六个面:6个“苹果” 6÷5=1(个)···1(个) 1+1=2(个) 5、六年级四个班去春游,自由活动时,有6个同学聚在一起,那么这6个同学中至少有几人是同一班的? 四个班:4个“抽屉” 6个同学:6个“苹果” 6÷4=1(个)···2(个) 1+1=2(个) 6、一张扑克牌有四种花色,从中任意抽牌,问:至少要抽出多少张牌,才能保证有两张牌是同一花色的? 四种花色:4个“抽屉”抽牌:“苹果” 4+1=5(张) 习题精选二:-------求至少数=商(苹果数÷抽屉数)+1 1、大家玩过“剪刀、石头、布”的游戏吗?如果两个同学出17次,至少有 几次手势是相同的? 列式:17÷3=5(次)···2(次) 5+1=6(次) (分析:把剪刀、石头、布看做3个抽屉,把17次平均放入3个抽屉中,至少有一个抽屉里有5+1次,所以至少有6次手势是相同的。) 2、六年级有152人参加体育活动,安排跳绳、投篮、爬杆三项活动,每位 同学至少参加一项活动,参加相同活动种类最多的学生至少有多少人? 列式:152÷3=50(人)···2(人) 50+1=51(人) (分析:把跳绳、投篮、爬杆三项活动看做3个抽屉,把152人平均放入3个抽屉中,至少有一个抽屉里有50+1人,所以参加相同活动种类最多的学生至少有51人。)习题精选三:--------求物体数(当至少数=2时,直接判断物体数比抽屉数多1;当至少数>2时,物体数=抽屉数×(至少数--1)+1。) 1、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保 证取出的球中有2个球的颜色相同,则最少要取出多少个球? 列式:3+1=4(个) (分析:把三种颜色看作3个抽屉,为保证取出的球中有两个球的颜色是相同的,说明一个抽屉中至少要有2个物体,物体数比抽屉数多1,所以至少要取出4个球。) 2、一个盒子里有红色、蓝色、黄色、白色球若干个,为保证取出的球中有 5个球颜色相同,则最少要取出多少个球? 列式:4×(5-1)+1=17(个) (分析:把四种颜色看做4个抽屉,为保证取出的球中有5个球的颜色是相同的,说明一个抽屉中至少要有5个物体,物体数=4×(5-1)+1=17个,所以至少要取出17个球。) - 1 -

浅谈抽屉原理问题解题技巧

浅谈抽屉原理问题解题技巧 令狐采学 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放两个苹果[是“至少两个苹果”吧?]。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素[这个定义是有问题的。苹果的问题还可以认为抽屉不能空,“多于N+1个元素在n个集合中必定有两个元素的集合”无论集合空不空肯定是不对的。应该也是“至少两个元素”]。它是组合数学中一个重要的原理[这一段应该是百度百科里的内容。但是注意百科左边的图片里也是“至少有2个苹果”,下面的解析里的狄利克雷原则也是正确定义的。希望老师在引用的时候仔细分辨。]。抽屉原理看似简单,但它是近年来公考行测广大考生很容易丢分的部分。考生不能有效得分的主要原因:一是考生只是去背诵抽屉原理相关定理与公式;二是考生不能透彻理解应用“最不利原则”的思维角度。 目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。下面利用几道例题对抽屉原理问题的解法进行一下探讨。

一.基础题型 【例1】从一副完整的扑克牌中至少抽出()张牌才能保证至少6张牌的花色相同? A.21 B.22 C.23 D.24 解析:题目要求保证:6张牌的花色相同.考虑最不利情形:每种花色取5张,一共20张,然后抽出大小王共2张,总共22张,再抽取任意一张都能保证6张花色相同,共23张.因此,答案选C. 【例2】一副无“王”的扑克牌,至少抽取几张,方能使其中至少有两张牌具有相同的点数?() A.10 B.11 C.13 D.14 解析:题目要求:两张牌具有相同的点数.考虑最不利情形:从中任取一种花色的牌13张,每张牌点数都不同,再抽取任何一张点数都会重复,总共抽取14张。因此,答案选D. 【例3】调研人员在一次市场调查活动中收回了435份调查试卷,其中80%的调查问卷上填写了被调查者的手机号码.那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?() A.101 B.175 C.188 D.200

抽屉原理典型习题

抽屉原理 规律:用苹果数除以抽屉数,若除数不为零,则“答案”为商加1; 若除数为零,则“答案”为商 抽屉原则一:把n个以上的苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有两个苹果。 抽屉原则二:把多于m x n 个苹果放到n个抽屉中,无论怎么放,一定能找到一个抽屉,它里面至少有(m+1)个苹果。 一、基础训练。 1、把98个苹果放到10个抽屉里,无论怎么放,我们一定能找到一个含苹果最多的抽屉, 它里面至少有______个苹果。 2、1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面 至少有_______只鸽子。 3、从8个抽屉里拿出17个苹果,无论怎么拿,我们一定能拿到苹果最多的那个抽屉,从 它里面至少拿出______个苹果。 4、从______个抽屉中(填最大数)拿出25个苹果,才能保证一定能找出一个抽屉,从它 当中至少拿出7个苹果。 二、拓展训练。 1、六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86 分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么2、从1、2、3……,100这100个数中任意挑出51个数来,证明这51个数中,一定有(1)2个数互质(2)有两个数的差是50 3、圆周上有2000个点,在其上任意地标上0、1、2……、1999(每一点只标一个数,不同 的点标上不同的数),求证:必然存在一点,与它紧相邻的两个数和这点上所标的三个数之和不小于2999. 4、有一批四种颜色的小旗,任意取出三面排成一行,表示各种信号,证明:在200个信号 中至少有四个信号完全相同。 5、在圆周上放着100个筹码,其中有41个红的和59个蓝的,那么总可以找到两个红筹码, 在他们之间刚好有19个筹码,为什么?

国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲

2015国考行测暑期每日一练数学运算:容斥原理和抽屉原理精讲 容斥原理和抽屉原理是国家公务员测试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。中公教育专家在此进行详细解读。 一、容斥原理 在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 1.容斥原理1——两个集合的容斥原理 如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示: 公式:A∪B=A+B-A∩B 总数=两个圆内的-重合部分的 【例1】一次期末测试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人? 数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。 2.容斥原理2——三个集合的容斥原理 如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。 如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C -A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

小学数学思维训练——抽屉原理练习题及答案

小学数学思维训练——抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 = 5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)

抽屉原理公式及例题精编版

抽屉原理公式及例题“至少……才能保证(一定)…最不利原则 抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体。例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有: ①k=[n/m ]+1个物体:当n不能被m整除时。 ②k=n/m个物体:当n能被m整除时。 例1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 例2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数?解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。15+1=16 例3:从一副完整的扑克牌中,至少抽出()张牌,才能保证至少6张牌的花色相同?A.21 B.22 C.23 D.24 解:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1 个“抽屉”里有6张花色一样。答案选C. 例4:2013年国考:某单位组织4项培训A、B、C、D,要求每人参加且只参加两项,无论如何安排,都有5人参加培训完全相同,问该单位有多少人? 每人一共有6种参加方法(4个里面选2个)相当于6个抽屉,最差情况6种情况都有4个人选了,所以4*6=1=25 例5:有300名求职者参加高端人才专场招聘会,其中软件设计类、市场营销类、财务管理类和人力资源管理类分别有100、80、70和50人。问至少有多少人找到工作,才能保证一定有70名找到工作的人专业相同? 用最不利原则解题。四个专业相当于4个抽屉,该题要有70名找到工作的人专业相同,那最倒霉的情况是每个专业只有69个人找到工作,值得注意的是人力专业一共才50个人,因此软件、市场、财务各有69个人找到工作,人力50个人找到工作才是本题中最不利的情形,最后再加1,就必定使得某专业有70个人找到工作。即答案为69×3+50+1=258。 例6:调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员需要从这些调查问卷中随机抽多少份,才能保证一定能找到两个手机号码后两位相同的被调查者? 答:在435份调查问卷中,没有填写手机号码的为435×(1-80%)=87份。要找到两个手机号码后两位相同的被调查者,首先要确定手机号码后两位有几种不同的排列方式。因为每一位

相关文档
相关文档 最新文档