文档库 最新最全的文档下载
当前位置:文档库 › 全国大学生智能车大赛作品-智能循迹小车技术文档

全国大学生智能车大赛作品-智能循迹小车技术文档

全国大学生智能车大赛作品-智能循迹小车技术文档
全国大学生智能车大赛作品-智能循迹小车技术文档

MC9S12DG128B MMA1260D CCD 摘要

本文是为参加第二届全国大学生智能小车竞赛而撰写的的技术报告,本文详细介绍了智能寻迹小车的路径检测、转向控制、电机驱动、车速检测、坡度检测、电源管理等功能模块硬件电路及软件控制算法的设计。智能小车以“飞思卡尔”16位微控制MC9S12DG128B为主控制器,采用CMOS摄像头和红外传感器相结合的方法(红外传感器主要用来检测起跑线和“十”字路线)来检测路面信息,运用反射式红外传感器检测小车速度,MMA1260D传感器检测路面坡度信息。同时,采用PWM技术控制舵机的转向和电机转速。系统还扩展了LCD液晶显示屏和键盘模块作为人机操作界面,以便于智能小车的相关参数调整。用串口将采集的路面黑线信息传送到PC进行分析,结合BangBang速度闭环控制等算法,控制小车沿着预设的轨道黑线及时调整车身姿态,准确、快速地跑完全程。

第一章概述

1.1智能车系统概述及框图

本文详细介绍了智能寻迹小车的路径检测、转向控制、电机驱动、车速检测、坡度检测、电源管理等功能模块硬件电路及软件控制算法的设计。智能小车以“飞思卡尔”16位微控制MC9S12DG128B为主控制器,采用CCD摄像头和红外传感器相结合的方法(红外传感器主要用来检测起跑线和“十”字路线)来检测路面信息,运用反射式红外传感器检测小车速度,MMA1260D传感器检测路面坡度信息。同时,采用PWM 技术,控制舵机的转向和电机转速。系统还扩展了LCD液晶显示屏和键盘模块作为人机操作界面,以便于智能小车的相关参数调整。用串口将采集的路面黑线信息传送到PC进行分析,结合PID等算法,控制小车沿着预设的轨道黑线及时调整车身姿态,准确、快速地跑完全程。根据摄像头和红外传感器结合的方案设计,赛车共包括八大模块:控制处理芯片MC9S12DG128,图像采样模块,车尾红外传感器模块,速度检测模块,坡度检测模块、舵机驱动模块,电机驱动模块和辅助调试模块。以下是赛车硬件系统的框图1.1:

其中S12单片机是系统的核心部分。它负责接收赛道图像数据、赛车速度等反馈信息,并对这些信息进行恰当的处理,形成合适的控制量来对舵机与驱动电机进行控制。图像采样模块由S12 的AD 模块,外围芯片(LM1881)和电路,与摄像头组成。其功能是获取前方赛道的图像数据,以供S12作进一步分析处理。车尾红外传感器模块由2个TCRT5000红外传感器以及比较器LM324N组成,该模块的功用是检测检测起跑线和“十”字路线,主要目的是为了使小车第一圈以一个较为稳定的速度跑动,检测到第二圈的起跑线时,小车自动切换到一个比较快的速度进行跑动,这样既可以采用“保守”方式获得成绩,又可以尝试其他比较“冒险”的速度或者算法。速度传感器模块由黑白相间的编码盘和反射型红外传感器组成,靠定时检测反射型红外传感器电脉冲脉冲累积数来间接求得赛车的速度值。坡度检测模块主要由MMA1260D芯片组成,通过AD转换感应坡度变化。舵机模块和电机驱动模块分别用于实现赛车转向和前进。辅助调试模块主要由键盘模块和LCD显示模块组成,该模块主要为方便调整赛车系统参数和运行策略等方面而设计。

1.2智能车主要技术参数

智能车的设计主要体现在电路板和机械结构上面,对于机械结构主要调整了主销后倾角和前轮内倾角,另外增加了四块控制电路:第一块是COMOS摄像头电路,其通过支架固定于车头的上方。第二块是主控制电路,固定于车身正上方,其包含了智能车的各功能模块的硬件电路,以及一些辅助电路的接口,包括CMOS摄像头及其它一些辅助调试电路接口。第三块是车尾红外传感器检测模块,其安装在车尾已有的两个螺孔上。第四块是测速模块,主要由反射式红外传感器和编码盘组成,其安装在后轮附近。智能车改造后的主要技术参数如表1.1所示,各部分的安装如下图1.1~1.6所示。1.3本文结构安排

本文是该参赛队伍成员在指导老师指导下合作完成,是对参赛的智能小车制作技术方案、设计思路、

制作调试过程以及相关技术研究内容形成的总结性报告。本文共分为十三章,第一章为概述部分,主要说明小车的总体情况和全文的安排;第二章讲述系统方案的论证,以及给出本组方案选择的原因;第三章对小车的机械结构的调整做了详细的说明;第四章至第十章分别详细的阐述了电源模块、舵机模块、红外检测模块、电机驱动模块、速度检测模块、坡度检测模块、摄像头采样模块的电路实现和控制算法;第十一章说明了小车系统的整体控制策略和算法实现;第十二章介绍了一些调试模块对小车系统调试的功用以及他们的具体实现,包括键盘模块、LCD显示模块以及MC9S12DG128通过串口与PC实现通讯。最后一章是结论和创新点,同时指出需要进一步努力的地方。

系统整体设计

CCD PWM ADC CMOS 为了使小车沿着规定的赛道自动寻找黑色引导线并尽可能地高速前进,汽车必须具备一套集导引线检测并实时控制汽车速度、姿态的智能处理单元。设计者应首先考虑设计的主控电路,检测电路和控制算法。由于单片机及控制电路部分已经确定,所以本章将重点讨论探测电路的方案设计。

2.1 系统设计要求

小车按照黑线寻迹,比赛最终成绩由时间成绩、报告分数和冲出跑道次数三者决定,具体计算由下面公式给出:比赛最终成绩(秒)=Ts*(1-0.01R)*(1+0.05N)式中Ts为赛车最快单圈时间(秒);R 为技术报告评分(分值范围0-10);N 为赛车在最快单圈比赛过程中冲出跑道的次数,且N不大于3。

电路及控制驱动电路的限制:

(1)采用限定的飞思卡尔16位微控制器MC9S12DG128作为唯一控制处理器;

(2)伺服电机数量不超过3个;

(3)传感器数量不超过16个(红外传感器的每对发射与接受单元共计为1个传感器,CCD传感器计为1个传感器);

(4)直流电源采用大赛统一提供的电池,不得使用DC-DC升压电路为驱动电机和舵机提供动力;

(5)全部电容容量不得超过2000微法;电容最高充电电压不得超过25伏。

赛道基本参数(不包括弯点数目、位置以及整体布局):

(1)赛道路面用纸制作,跑道面积不大于5000mm*7000mm,跑道宽度不小于600mm;

(2)跑道表面为白色,中心有连续黑线作为引导线,黑线宽25mm;

(3)跑道最小曲率半径不小于500mm;

(4)跑道可以交叉,交叉角为90度;

(5)赛道为二维水平面;

(6)赛道有一个长为1000mm的出发区,计时起点两边分别有一个长度100mm 黑色计时起始线,赛车的前端通过起始线作为比赛计时开始或者结束的时刻。

2.2 硬件系统基本方案论证

2.2.1探测电路总体方案

★方案一:采用红外传感器

优点:结构简明,实现方便,成本低廉,反应灵敏,便于近距离路面情况的检测,抗干扰能力强,不会因为周围环境的差别而产生不同的结果。缺点:只能对路面情况做简单的黑白判别,检测距离和精度有限,传感器高度位置的差异可能会对其检测造成干扰。另外,由于车模的总长不得大于

40CM,所以前瞻距离受到很大的限制。

★方案二:采用摄像头

优点:作用距离远,不易出现由于黑线检测不及时而冲出赛道的情况,摄像头对道路的检测精细,视角范围大不易出现黑线漏检的情况。

缺点:容易被干扰,受周围光线的影响大;数据量大,处理复杂,需要占有MCU的大量资源。

★方案三:采用红外传感器与摄像头相结合

优点:它兼顾了红外传感器抗干扰能力强,处理简单以及摄像头作用距离远、视角范围大的优点。

缺点:设计难度大,红外传感器和摄像头需要配合寻迹,它们对舵机和电机在方向和速度上的控制需要巧妙的算法进行分配,运算量也较大,需要占有很多的MCU资源。

由于第一种方案存在物理性能的限制,所以综合考虑后采用第二种或者三种方案。经仔细推敲,本设计采用摄像头为主要探测电路指挥小车运动,用红外传感器检测起跑线,进而指挥小车在第二圈采用其他的算法或参数进行运动。

2.2.2 传感器检测模块

传感器可以分为:可见光传感器、红外传感器、紫外线传感器等。

★方案一:可见光传感器是基于可见光源的传感器,它结构简单、设计成熟,但是它工作在可见光波段,容易被外界干扰。

★方案二:红外光传感器。红外线是波长为830nm~950nm的电磁波,自然环境物理在该波段的辐射量是很微弱的,所以红外反射式传感器受外界干扰较小,可靠性高。设计技术成熟,应用广泛。

★方案三:紫外线传感器。在自然环境下该类传感器很难受干扰,可靠性高,但是它价格昂贵。所以我们最终选择方案二,即红外光传感器作为传感器检测模块的基本器件。

2.2.3 摄像头模块

市场上的摄像头常分为CCD摄像头和CMOS摄像头。

★方案一:采用CCD摄像头

优点:成像质量高。

缺点:12V供电,功耗相对较大,价格较高。

★方案二:采用CMOS摄像头

优点:9V供电,功耗较小,价格较低。

缺点:成像质量不及CCD摄像头。

综合供电,成像效果、稳定性等方面的因素,采用了方案二,即CMOS摄像头。

2.2.4 速度传感器模块

★方案一:采用霍尔传感器

要使用这种方法需要在车轮上嵌入若干的永磁铁,这样采用霍尔传感器进行检测。其优点是检测速度快且不会受光、温度、湿度等因素的影响,但是在车轮狭窄的空间上嵌入永磁铁是相当困难的,即机械改装难度大。另外,霍尔传感器价格昂贵。★方案二:基于光电传感器的编码盘检测

采用这种方法需要在车轮轴上安装黑白相间的编码盘,然后采用红外对管的传感器来记录脉冲的数目,进而通过脉冲数求得小车在一段时间内转的圈数,从而算出速度。

★方案三:采用编码器

另外购买光电编码器安装在主驱动齿轮上,通过齿轮传过来的转动信息,获取后轮转角。

优点:获取信息准确,精度高,搭建容易。

缺点:增加后轮负载;光电编码器体积较大,导致车重增加。

经比较最终选择方案二,即基于反射式的光电传感器的编码盘测速方案。

2.3 硬件系统的最终方案

通过上面的分析比较,系统各个模块采用的方案分别如下:

(1)采用红外线传感器与摄像头相结合的总体设计;

(2)红外检测模块采用收发一体的对管传感器;

(3)采用CMOS摄像头做为摄像头模块的基础;

(4)基于编码盘的红外对管传感器测速;

舵机、电机驱动芯片、坡度检测芯片采用组委会统一提供的物品,这里就不做论证分析了。电源管理模块将在第四章中详细讲到。

2.4 软件系统的设计

如果说系统硬件对于赛车来说是它的骨架和躯体,那么软件算法就是它的思想。有了健壮、灵敏的躯体还需要有聪明、智慧的大脑。所以软件系统对于赛车来说至关重要。首先,赛车系统通过图像采样模块获取前方赛道的图像数据,同时通过速度传感器模块实时获取赛车的速度。然后S12利用边缘检测方法从图像数据中提取赛道黑线,求得赛车于黑线位置的偏差,接着采用bangbang控制方法对电机进行反馈控制。最终赛车根据检测到的速度,结合我们的速度控制策略,对赛车速度不断进行恰当的控制调整,使

赛车在符合比赛规则情况下沿赛道快速前进。赛车系统的软件结构如图所示2.1。

只有将上述硬件、软件部分进行有效的融合,进行充分的实验、测试和标定工作,才能使赛车具有一个相对良好的整体驾驶性能。这也就是在接下来的各个分模块中需要做的工作

第3章机械结构调整

经过半年的制作发现,本次智能车比赛中,检测黑线的方法和对车模的控制算法是取胜的关键,然而,车模本身的机械性能也是不容忽视的。机械结构是车模的基本性能,当车速提高到一定程度后,这将严重影响车模的行走路线。车架调试的好坏决定了车子转弯的最小半径、转向的灵活性和稳定性。如果车模调试得当,可大大增强智能车的竞争力。

3.1 车模机械参数的调整

本次大赛采用的模型车基本尺寸参数如下:现代汽车在正常行驶过程中,为了使汽车直线行驶稳定,转向轻便,转向后能够自动回正,并减小轮胎和转向系零件的磨损等,在转向轮、转向节和前轴之间形成了一定的相对安装位置,叫前轮定位,其主要定位参数包括:主销后倾、主销内倾、前轮外倾和前束,模型车前轮的四项定位参数均可调。以下是车模的调校内容、参数与选用理由:主销后倾角:2° 主销后倾角,如图3.1,是指主销在汽车的纵向平面内(汽车的侧面)有一个向后的倾角,即主销轴线与地面垂直线在汽车纵向平面内的夹角。由于主销后倾后,小车在车轮偏转后会产生一回力矩,纠正车轮的偏转。后倾角越大,车速越高,车轮偏转后自动回正能力越强。但回正力矩过大,将会引起前轮回正过猛,加速前轮摆振,并导致转向沉重。所以将Caster设为2°。主销内倾角:0°

由于车模行驶速度小、重心低,转向时侧倾极少,所以为了提高转向的灵敏性,车的主销内倾角都设为0°。

前轮外倾角:0°

通过车轮中心的汽车横向平面与车轮平面的交线与地面垂线之间的夹角称为“前轮外倾角”。轮胎呈现“八”字形张开时称为“负外倾”,而轮胎呈现“V”字形张开时称为“正外倾”。前轮外倾角一方面可以在汽车重载时减小或消除主销与衬套、轮毂与轴承登出的装载间隙,使车轮接近垂直路面滚动而滑动,同时减小转向阻力,使汽车转向轻便;另一方面还可以防止由于路面对车轮垂直反作用力的轴向分力压向轮毂外段的轴承,减小轴承及其锁紧螺母的载荷,从个人增加这些零件的使用寿命,提高汽车的安全性。一般前轮外倾角为1°左右。由于本模型车主要用于竞速,在设计中必然要尽可能减轻重量,所以其底盘承重不大,且前轮外倾角仅有两档可调,故设为0°即可,关键是前束角要与之匹配。

前轮束角:前束1.5°

由于我们的比赛车模的车速并不快(20km/h以内),并且跑道平整,所以选用前束1.5°,以便提高车模的转向反应速度。前轮束角,如图3.2,是描述从车的正上方看,车轮的前端和车辆纵线的夹角。车轮前端向内倾(内八字),称为Toe-in;车轮前端向外倾(外八字),称为Toe- out。Toe-in可以帮助车在加速时保持稳定,同时也会减少车子在进入弯角时的转向反应。但高速转向时,如果车体侧倾严重,重心明显向外测车轮移动时,也会增加转向。Toe-out可以使车在进入弯角时获得更多的转向。由于转弯时靠近内侧的车轮行驶圆弧的半径较短,所以使内侧车轮比外侧车轮转角稍大一些可以使车的转向更灵活。并且少量的Toe-out可以使车更容易行驶直线。但过大的Toe-out会使车子在加速时、或者通过起伏路面时,变得不稳定,偏离直线。越大角度Toe-in或Toe-out,越会减低车辆在直线行走的速度。

3.2 摄像头安装

3.2.1 摄像头安装示意图

摄像头的安装方式如图3.3所示。

3.2.2 摄像头安装原则

摄像头的安装位置对小车的性能有很大的影响,主要体现在图像采样效果和对小车重心的影响两个方面。安装的低了,易导致视野不够广阔,影响寻线的有效范围;安装得高了,指引线在图像坐标上会变得过窄而无法被检测到。若安装的太高,系统会因重心抬高而稳定性变差。若安装太靠前,则小车的重心会前移,进而在前行的过程中容易出现“点头”的不稳定情况,重心前移也易导致驱动轮即后轮对地的压力减小,容易出现驱动力不足或者打滑的现象。安装位置合适的一个原则就是:摄像头的安装,首先必须满足头像采样效果的需要。控制策略简单,则所需的拍摄范围就可较小;反之策略复杂,需获得的赛道信息较多,则拍摄范围应大一些。其次,摄像头的安装对小车重心的影响不能导致小车出现运动不稳定的现象。综合考虑后,我们选择如图3.3所示的安装方式。

3.3 电路板及电池的安装

在中避震器前端固定架的左侧固定了一根立柱,它与原先用于固定车壳的两根立柱一同将我们的主电路板固定与车模的上方。我们充分利用了安装防撞板的孔,制作的后排红外检测电路板刚好适合安装,固定方便可靠。电池放在模型车专门设计的电池架上,并用束带拉紧。安装图片如3.4、3.5所示。

3.4 本章小结

小车的机械性能是个不容忽视的问题,尤其是小车重心问题。电路板的安装和摄像头的安装在满足功能前提下一定要定要考虑小车的机械稳定性和可靠性。另外,经过半年的制作发现,电机的安装(齿轮啮合松紧)和轮胎的摩擦系数对小车的性能也有非常大的影响,制作过程不应忽视该问题。

第四章电源模块

小车供电采用组委会提供的7.2V 2000mAh Ni-cd电池,本系统很多模块还需要其它的电压,电源系统结构如图4.1所示:

4.1 5V电压的获取

(1)LM2576-5V 该芯片为单片降压式开关电压调整器,输出电压5.0V;最大输出电流3A;具有热关闭和限流保护功能。因此,开关稳压电源的功耗极低,其平均工作效率可达70%~90%。该芯片最大允许电流为3A,完全满足需要,而且该芯片热损耗小。该芯片典型应用电路图如4.2所示。

(2)LM2940-5该芯片较LM2576-5而言,能够在低压差的情况下稳定的工作,故该芯片给MCU供电是个不错的选择。从图4.2可以看出,LM2576-5工作电压在7.0~40V之间,而组委会提供的电池标称电压为7.2V,所以该芯片易出现输出电压低于5V的情况。该芯片的典型应用电路如图 4.4所示。

4.2 6V电压的获取

舵机工作电压为6V,而且一定要固定该电压,不然舵机的中心位置对应的PWM 脉宽会变动,致使小车工作不稳定。6V电压的获取是通过LM1085-ADJ得到的。输入电压为7.2V电池电压,输出电压通过调节电位器得到。该芯片的典型应用电路如图4.5所示。

4.3 9V电压的获取

市场上购买的CMOS摄像头额定工作电压在9V,而市场上一般没有从7.2V或者5V直接升压至9V 的电源芯片,所以9V电压的获取本设计考虑了以下几种方案。

(1)利用升压斩波电路自己制作虽然这样成本低,但是制作周期长,精度差,稳定性也不是很好,所以放弃该方案。

(2)利用MAX632将5V(电池电压通过LM2940-5降压而得)升压到12V,然后利用LM7809或者LM2940-9降压得到9V。该方法可以达到效果,但是这样“绕来绕去”会增加电路的功耗,使电池使用时间减少。所以放弃该方案。

(3)市场上可以订做升压模块,而且为开关式,具有保护功能,输出电压稳定,价格也可以接受(30元左右)。所以,综合考虑后选择该升压模块,其输入为+5V,输出为+9V。该模块外形如图4.6所示:

4.4 本章小结

电源是系统稳定工作的必要条件,也是尤为重要的前提。电源管理的原则是:当电池电压逐渐下降时,依然能提供稳定的电压输出,自身热消耗小,使用效率高。

第五章舵机转向控制

转向机构采用S3010 型舵机进行驱动,其外观图和各项参数如图 5.1和表 5.1所示。

在硬件连接上共有三根线,使用方便:

(1)红线:电源线,接+6V供电;

(2)黑线:地线

(3)白线:控制信号线,接单片机一路PWM输出。

舵机电流变化大,是个很大的干扰源,其供电最好与其他模块分开,本设计采用LM1085-ADJ输出的+6V电压供电,地线通过一个0欧姆电阻与主电路板共地。

5.2 软件控制

舵机的控制即是在控制线输入一个周期性的正向脉冲PWM信号,这个周期性脉冲信号的高电平时间通常在0.5ms~2.5ms之间,而舵机的控制频率在50Hz~200Hz之间,其控制要求如图5.2所示。图5.3表示了一个典型的20ms周期性脉冲的正脉冲宽度与舵机的输出臂位置的关系。

由于车模在转向的时候不仅受到舵机转向极限位置的影响,而且还受到车模前轮转向硬件条件的影响,通过测试得出,舵机不能转向到其自由的极限位置,系统中其左右极限位置为36度。而其每个转角对应的脉冲宽度近似地成一线性关系,约为45°/μs,其极限转角对应脉宽约为1.18ms~1.82ms,如图5.4所示。因此可以通过软件来限定舵机的左右转向极限位置,防止舵机因堵转而烧坏。舵机的控制线即白线线接到MC9S12DG128B 的PWM5口,由MC9S12DG128B的PWM 通道4和通道5联合成16位的PWM控制,提高舵机控制的精度,控制频率采用200Hz以提高舵机的反应速度。

理论依据:舵机脉宽与转角在-45度到+45度范围内大致成线性变化的规律。单片机通过PLL将总线频率倍频到36M,有ClockSA=ClockA/(2*PWMSCLA)=BusClock/192 20ms时间需要计数22500。由舵机的线性关系可以知道,

PWMDTY01=3450+K*angle(正转的时候)

PWMDTY01=3450-K*angle(反转的时候)

舵机有2~5ms的延迟,5%左右的误差,所以精确到1~1.5度是合适的,可以将angle定义为现实角度的1~1.5倍。

创新点:通过倍频后,可以提高角度控制的精度,能够满足要求。

第六章红外检测模块

6.1 该模块的功用

该模块主要用于检测跑道的起跑线,CMOS摄像头通过软件算法也可以找出起跑线,但计算起来要麻烦一些,相比而言,通过在车尾安装两个红外传感器更容易达到目的。检测起跑线的目的是:小车进入第二圈后采用另一种速度方案或算法,通常第一圈采用“保守”的方案前行,确保小车能跑完全程而获得成绩,第二圈可以“冒险性”的尝试新的算法和更快的速度。检测起跑线另一个用处是:当小车跑完全程后能自动停止下来,而不用人为的去“追赶”。

6.2 硬件电路

由于比赛中存在坡道,所以传感器的安装和选型很重要。安装在前排很容易在上下坡道的时候“搁地”,安装在底盘容易在上坡道后进入平道的转折处搁地,经考虑,本设计选择安装在车尾处,选择检测距离为1~2cm左右的TCRT5000红外传感器。

该传感器的工作原理和一般红外传感器一样,具有一个红外发射管和一个红外接收管,当发射管的红外线经反射被接收管接收后,接收管的电阻会引起变化,在电路上常体现为电压的变化,进而通过AD 转换或者经LM324N等电路整形后得到处理后的结果。电阻的变化取决于接收管所接收的红外线强度,常表现在反射面的颜色和反射面离接收管的距离两个方面。硬件电路原理如图5.1所示:

实际硬件电路及安装位置如图 5.2所示:

说明:上述电路板中,我们仅用到最左边与最右边两个传感器来检测起跑线,两者之间的间隔为:12.3CM。该电路板早期制作的目的是与一个单排9个的红外传感器电路板一起用来检测跑道信息的,但是后来改成了摄像头方案,所以该电路板就搁置没用了。

6.3 算法实现

由于传感器安装的特殊位置,小车在直道,弯道,S道运动时,两个传感器不会同时检测到黑线,而仅当通过起跑线,“十”子路时才会出现。当红外传感器检测到黑线后会传给单片机一个逻辑“1”电平(通常为逻辑“0”电平),通过计数就可以判断第二圈是否到来。由于初赛和决赛的赛道有所不同,进而出现两个传感器同时检测到黑线的次数N也不相同,我们通过键盘设定N的值,比如预赛时为4,决赛时为6。小车跑完全程自动停止时的计数,预赛为7,决赛为11,在程序上可以用N+3,N+5表示。

第七章电机驱动模块

7.1 硬件电路

电机是小车前行的直接动力源,电机的控制效果直接影响小车的速度以及前行的稳定性。本设计最终选用了Freescale公司的MC33886作为直流电机的驱动芯片,该芯片内部具有过流保护电路,刹车效果好,驱动能力强,接口简单易用等特点。驱动电路由两片MC33886组成,目的是为了得到更大的驱动能力,试验也证明了这一点。驱动电路如图7.1所示,只要通过程序改变IN1与IN2的PWM波形占空比,就能实现电机的调速与正反转。

7.2 PWM初始化设置

单片机通过PWM1、PWM3来控制电机的调速与正反转控制,初始化代码代码如下:

第八章摄像头采样模块

摄像头采集赛道黑线信息是本系统赛道信息获取的主要途径,本章将从摄像头工作原理、图像采样电路设计、和采样程序流程图三个方面进行介绍。

8.1 摄像头工作原理

摄像头常分为彩色和黑白两种摄像头,主要工作原理是:按一定的分辨率,以隔行扫描的方式采样图像上的点,当扫描到某点时,就通过图像传感芯片将该点处图像的灰度转换成与灰度成一一对应关系的电压值,然后将此电压值通过视频信号端输出。

在示波器上观察可知摄像头信号如图8.1所示。摄像头连续地扫描图像上的一行,就输出一段连续的电压视频信号,该电压信号的高低起伏正反映了该行图像的灰度变化情况。当扫描完一行,视频信号端就输出一低于最低视频信号电压的电平(如0.3V),并保持一段时间。这样相当于,紧接着每行图像对应的电压信号之后会有一个电压“凹槽”,此“凹槽”叫做行同步脉冲,它是扫描换行的标志。然后,跳过一行后(因为摄像头是隔行扫描的方式),开始扫描新的一行,如此下去,直到扫描完该场的视频信号,接着就会出现一段场消隐区。此区中有若干个复合消隐脉冲(简称消隐脉冲),在这些消隐脉冲中,有个脉冲,它远宽于(即持续时间长于)其他的消隐脉冲,该消隐脉冲又称为场同步脉冲,它是扫描换场的标志。场同步脉冲标志着新的一场的到来,不过,场消隐区恰好跨在上一场的结尾部分和下一场的开始部分,得等场消隐区过去,下一场的视频信号才真正到来。摄像头每秒扫描25 幅图像,每幅又分奇、偶两场,先奇场后偶场,故每秒扫描50 场图像。奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。

8.2 图像采样电路设计

在本次比赛中赛道仅由黑白两色组成,为了获得赛道特征,只需提取探测画面的灰度信息,而不必提取其色彩信息,所以本设计中采用黑白摄像头。型号为:XB-2001B,分辨率为320*240。为了有效地获取摄像头的视频信号,我们采用LM1881提取行同步脉冲,消隐脉冲和场同步脉冲,电路原理图8.2所示。将视频信号通过一个电容接至LM1881的2脚,即可得到控制单片机进行A/D采样的控制信号行同步HS与奇偶场同步号 ODD/EVEN。

摄像头视频信号端接LM1881 的视频信号输入端VIDEO_IN,同时也接入S12 的一个AD转换器口PAD0。LM1881的行同步信号端(引脚1)接入S12的中断口PT2。之所以选用带中断的I/O口是因为,行同步信号(即对应摄像头信号的行同步脉冲)持续时间较短,为了不漏检到行同步信号,若使用普通I/O 口,则只能使用等待查询的方式来检测到行同步信号,这会浪费不少S12 的CPU 资源。LM1881的奇-偶

场同步信号输出端接S12中断口PT1由此作为奇-偶场同步信号的换场的标志信号,也可作为场信号到来的标志。上述摄像头、LM1881电路构成了本智能车定位系统的图像采样模块。

8.3 采样程序流程图

摄像头每秒25帧图像,每帧分为奇、偶两场,每秒供50场,奇场时只扫描图像中的奇数行,偶场时则只扫描偶数行。由于奇偶场所得的图像差别很小,故没有对奇场偶场的图像分开分析,即没有区分奇偶场。为了减轻S12的负担,我们没有必要对所有行都进行采样,只需对每场采样

30行即满足要求。由于每场开始的前22行为场消隐信号,故开始采样行需从22行以后开始,我们选择从31行开始,并且每间隔8行采一次。结合图8.2,当PT1有变化时,说明新的一场开始了,并且此时开始对行同步信号重新计数。当PT2口每检测到一个上升沿,表明一个行同步信号刚过去,让

计数变量加一。当计数变量增为30时,表明第31行视频信号开始了,并对此行信号进行采样。然后根据计数变量的值来控制每隔8行采一行视频信号。由于采用中断的方式,单片机不会因为处理其他程序而漏掉赛道的采样。ECT中断初始化设置如下:

程序流程图如图8.3所示。

8.4 AD采样设置

由于行同步脉冲出现的间隔时间是一定的,约为62us,因此为了保证每行采集的点数达到有效指导小车前行的数目(取每行40个点),AD采样的周期不应大于62/40=1.43us。每行采样点数的确定原则是:不会出现漏检黑线的情况,保证每行采集的点中至少有1~2个是黑线信息。选取每行检测40个点是满足要求的。这里需要注意的是,由于行消隐信号出现每行开始的4.2us内,因此采集的前几个点要去掉,不然可能会误认为是黑线信息。由此可以看出,AD采样的频率设置是尤为重要的,下面是关于的AD的初始化设置:

第九章车速检测模块

在第二章的方案论证中提到,测速模块的设计欲采用基于反射式的光电编码盘测速模式。在主驱动齿轮的轴上安装一张黑白相间的码盘,将反射型光电传感器安装车尾的架子上,当黑白码盘交替通过时,产生一系列电脉冲,由此获取转动角度。

9.1 传感器的设计与安装

反射型光电传感器检测速度的原理和检测赛道黑白线时的原理是一样的,不同的是这里只要采用连续工作方式就可以了。经过长时间的测试,收发管选用适合近距离检测的G-105光电传感器,另外发射管的限流电阻为470欧姆,接受管的分压电阻为10K欧,这样选择电阻的好处是发射管电流适中,接受管信号可以不经比较器直接输入S12单片机的引脚,而且得到的信号即为逻辑高低电平。编码盘的制作很方便,在电脑上用AutoCAD软件绘制直径为15CM的圆,然后等分为32份,间隔涂上黑色后打印出来。取一张废旧的电话卡,用双面胶把打印出来的纸质码盘粘上,然后沿边缘剪下。用小刀在码盘中心打孔,然后安装在轮轴上,安装后轮的螺丝会将码盘牢牢的固定住,制作方便可靠。编码盘及传感器的安装如图9.1,图9.2所示:

当圆盘随着齿轮转动时,光电管接收到的反射光将强弱交替变化,由此可以得到一系列高低电脉冲。设置S12的ECT模块,同时捕捉光电管输出的电脉冲的上升沿和下降沿。通过累计一定时间内的脉冲数,或者记录相邻脉冲的间隔时间,可以得到和速度等价的参数值。

我们已知:轮胎一圈直径为52mm,编码盘共有32个黑白边缘,即轮胎转动一圈将引起64个脉冲数累积。假设对脉冲数累积的时间为t,在这段时间内共获取了n个脉冲数累积。则赛车速度为9.2 硬件电路设计

检测电路和制作的电路板如图9.3、图9.4所示:

9.3 ECT 模块初始化设置

本设计采用PT3口作为脉冲信号输入。首先通过设置寄存器TIOS,设置PT3 针脚为输入;然后设置TCTL4 寄存器,选择既获取上升沿又获取下降沿。之后,设置ICOVW_NOVW,保护脉冲累加器的数据。通过ICPAR,对脉冲累加器进行使能,使其开始工作。设置此寄存器之后,脉冲累加器开始计数。之后通过读取PACN3 这个寄存器,获取当前的脉冲累加值。

第十章坡度检测模块

本届智能车竞赛赛道与第一届相比,主要的变化是增加了坡道,由此可以看出比赛的难度将逐年加大。坡道处理的好坏将影响小车最终成绩,因此本参赛队对坡道进行了单独的处理。本章将从方案论证、硬件电路和算法处理三个方面对小车过坡道的情况进行分析。

10.1 方案论证

坡道检测有很多方法,方案确定初期本队伍考虑了三个方案。

★方案一:安装不同角度的水银开关管

水银开关是由玻璃管,水银滴和引脚线组成的一个开关元件,主要利用水银的导电性和可流动性原理。如图10.1所示。

为了检测坡道倾斜程度,我们可以安装两个不同倾斜角度的水银开关在车上,电路处理上只需要接一个电阻形成上拉或下拉,然后引到单片机I/O口即可,非常方便。因为比赛的坡度在12°至15°之间,故可以将水银开关安装在+12°和-12°上。

当小车所处的赛道平面与水平面所成的角度大于+12°或者小于-12°时,水银开关便会将开关打开或者关闭,单片机I/O口的电平也就会跟着变化,进而可以检测处坡道。这里需要注意的是,水银开关的玻璃管长度有所要求,如果过短,那么在小车急加速或者急减速的时候,由于惯性的作用,水银滴可能出现不希望看见的打开或关闭现象,即出现误判。本方案的优缺点:该方案实现方便,电路以及算法都很容易实现,而且成本低廉。经验证,该方案可以实现+12°以上和-12°以下的坡度检测。本方案对水银开

智能车实验报告

宁波大学 创新性开放实验报告题目基于光电传感器的自动寻迹小车 学号: 姓名: 专业: 指导教师: 目录 光电感应智能车............................................................................................. 错误!未定义书签。

一、硬件系统…………………………………………………………………………………错误!未定义书签。 (一)硬件框图 (3) 1、电源模块 (4) 2、寻迹模块 (4) 3、驱动模块 (5) 4、测速模块 (6) 二、软件系统 (7) (一)主程序流程图 (7) 1、电机驱动 (8) 2、舵机驱动 (10) 参考文献 (13)

光电感应自动寻迹智能车 【摘要】如果把自动寻迹小车成比例的扩大数倍,就成为真正有意义上的智能车,可以运用于军事、民用领域,对未来汽车行业的发展有一定的借鉴意义。通过光电传感器来寻找轨迹,以所编写的程序为软件支持,通过单片机计算生成相应的控制参数,驱动电机来使小车按照轨迹运动。其中小车在直线行驶过程控制参数保持不变,匀速行驶,而在小车要转弯之前则要先减速以防止小车过弯时冲出赛道,弯道过去之后在加速行驶以减少行驶时间。 【关键词】红外传感器;PID控制;自动寻迹 一、硬件系统 (一)智能小车的整体结构图 智能车通过单片机来接受和发出参数状态信号,电源模块是给智能车各个模块提供电压以使模块可以正常运作,寻迹模块则是包含着参数输送给单片机的作用,驱动模块是小车动起来的根源,测速模块是为了控制车速以使智能车平稳的沿着车道运行。

电子实习报告智能循迹小车

电子实习报告智能循迹 小车 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

电子实习报告 学院:电气学院 专业班级: 学生姓名: 指导教师: 完成时间: 2014/8/29 成绩:

目录 一、设计要求及注意事项 (2) 二、设计的作用、目的 (2) 三、设计的具体实现 (2) 1.系统概述 (2) 2.单元电路设计(或仿真)与分析 (3) (1)电源模 块 (3) (2)电机驱动模块 (4) (3)简易控制模 块 (6) (4)红外循迹模 块 (7) 3.电路的安装与调试 (8) (1)安装 (8)

(2)调 试 (10) 四、心得体会,存在的问题和进一步改进的意见 (11) 五、附录 (11) 1.元件说明 (11) (1)电 阻 (11) (2)电解电 容 (11) (3)LED................................................. ..12 (4)芯 片 (12)

电子实习报告 一、设计要求及注意事项 1.能独立完成设计内容并完全掌握其内部结构、工作原理和安装调试过程。 2.要求在设计过程中能熟练掌握其元器件的计算、焊接技术和电路故障的判别方法。 3.焊接顺序,先贴片后插件。 4.要求焊接的电路板调试时正常且安装好小车后能正常运行。 5.进入实习基地后按指定的实验台就位,未经许可,不得擅自挪换仪器设备。 6.要爱护仪器设备及其它公物,凡违反操作规程,不听从教师指导而损坏者,按规定赔偿。 7.未经指导教师许可,不得做规定以外的实验项目。 8.要保持实习室的整洁和安静,不准大声喧哗,不准随地吐痰,不准乱丢纸屑及杂物。 9. 必须严格按设备操作书的要求去使用设备,注意人身及设备安全,不要盲目操作。 二、设计的作用、目的 1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力; 2.巩固本课程所学的理论知识和实验技能;

(完整word版)智能车发展历史

智能小车是一个集环境感知、规划决策、自动驾驶等功能于一体的综合系统。它集中的运用了计算机、传感器、信息。通信、导航、人工智能及自动控制等技术,是典型的高新技术综合体。 一.国外智能车设计竞赛 (1)美国的智能车大赛 美国国防部与院校、企业和发明家联合开展,全球领先的智能汽车竞赛。 2007年11月,美国第三届智能汽车大赛在加州维克托维尔举行。本届智能汽车比赛的目标是对未来科学家的激励。大学、企业和发明家们期望制造出通过洛杉矶和拉斯维加斯间荒地、行程160km的自主控制汽车。 参赛汽车的车顶上有旋转的激光器,两边有转动的照相机,完全由电脑控制,利用卫星导航、摄像、雷达和激光,人工智能系统可判断出汽车的位置和去向,随后将指令传输到负责驾驶车辆的系统,丝毫不受人的干涉,用传感器策划和选择路线。参赛的无人驾驶智能汽车沿着附近公路飞奔。 (2)韩国大学生智能车大赛 韩国汉阳大学汽车控制实验室在飞思卡尔半导体公司资助下举办,以HCS12单片机为核心的大学生智能模型汽车竞赛。 组委会提供一个标准的汽车模型、直流电机和可充电式电池,参赛队伍要制作一个能够自主识别路线的智能车,在专门设计的跑道上自动识别道路行驶,谁最快跑完全程而没有冲出跑道并且技术报告评分较高,谁就是获胜者。 二.国内智能车辆竞赛现状研究 (1)竞赛的起源 2005年11月,中国教育部高等学校自动化专业指导分委员会与飞思卡尔半导体公司签署了双方长期合作协议书。协议书规定从2006年起,飞思卡尔将至少连续5年协办“飞思卡尔”杯全国大学生智能汽车邀请赛,提供参赛队的标准硬、软件技术平台和竞赛优胜者奖金,并为主办单位提供一定的竞赛组织经费,我国智能车竞赛由此开始. (2)智能车竞赛的地位 教育部:与老牌的数学建模、电子设计、机械设计、结构设计等四大竞赛并列,被认定为国家教育部正式承认的五大大学生竞赛项目. 各高校:清华、交大、科大等名校均参加,最投入为北京科大,每年均举行校内赛(09年规模为79支队伍). 校内:综合类竞赛(A类)仅3种,分别为智能汽车、机器人、挑战杯。 (3)竞赛历史——第一届邀请赛 2006年8月20日至21日在清华大学进行,共有来自全国57所高校的112支参赛队参加。赛道中只有直道和弯道,没有上下坡。从赛车寻迹技术方案来看,赛道检测方式也大体分为红外发射/接受管检测方式和CCD/CMOS摄像头检测方式两类。摄像头方案的成绩普遍好于红外传感器方案。 (4)竞赛历史——第二届,赛区+总决赛 扩大到全国具有以自动化专业为主的理工类高等本科学校约300余所。采取赛区和全国总决赛结合的形式。全国分为5个赛区,总决赛在上海交大举行。总决赛中出现上下坡的限制,比赛变得复杂了。小车的平均速度较比上年有了显著的提高,采用摄像头方案的成绩更加明显(决赛前十名的队伍全为摄像头队伍)。同比韩国的智能车大赛,我们的竞赛成绩已经超过了韩国。 (5)竞赛历史——第三届,赛区+总决赛 第三届智能车大赛在东北大学举行,有551支代表队伍参加了分区赛,104支队伍参加了总

智能循迹小车实验报告

简单电子系统设计报告 ---------智能循迹小车 学号201009130102 年级10 学院理学院 专业电子信息科学与技术 姓名马洪岳 指导教师刘怀强

摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。 本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。 关键词:STC89C51单片机;L298N;红外传感器;寻迹 一、设计目的 通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计要求 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。 三、软硬件设计 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。其中各个部分的功能如下: (1)、电源电路:给单片机提供5V电源。 (2)、复位电路:在电压达到正常值时给单片机一个复位信号。

图1 单片机最小系统原理图 2、电源电路设计: 模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。 3、传感器电路: 光电寻线方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。原理图由红外对管和电压比较器两部分组成,红外对管输出的模拟电压通过电压比 较器转换成数字电平输出到单片机。

基于STM32 智能抓物小车的设计 电子设计II课程报告

摘要 本实验主要分析把握对象的智能车基于STM32F103的设计。智能系统的组成主要包括STM32F103控制器、伺服驱动电路、红外检测电路、超声波避障电路。本试验采用STM32F103微处理器作为核心芯片,速度和转向的控制采用PWM技术,跟踪模块、检测、障碍物检测和避免功能避障模块等外围电路,实现系统的整体功能。 小车行驶时,避障程序跟踪程序,具有红外线跟踪功能的汽车检测电路。然后用颜色传感器识别物体的颜色和抓取。在硬件设计的基础上提出了实现伺服控制功能,简单的智能车跟踪和避障功能的软件设计和控制程序,在STM32集成开发环境IAR编译,并使用JLINK下载程序。 关键词:stm32;红外探测;超声波避障;颜色传感;舵机控制

ABSTRACT This experiment mainly analyzed the grasping object intelligent car based on STM32F103 design. The composition of the intelligent system mainly includes STM32F103 controller, servo drive circuit, infrared detection circuit, ultrasonic obstacle avoidance circuit. This test uses the STM32F103 microprocessor as the core chip, the speed and steering control using PWM technology, tracking module and detection, obstacle avoidance module for obstacle detection and avoidance function, other peripheral circuit to achieve the overall function of the system. The car is moving, obstacle avoidance procedures prior to tracking program, car tracking function with infrared detection circuit. Then use color sensor to recognize object color and grab. On the basis of the hardware design is proposed to realize the servo control function, simple intelligent car tracking and obstacle avoidance function of the software design, and the control program is compiled in the STM32 integrated development environment IAR, and download the program using Jlink. Key words: STM32; infrared detection; ultrasonic obstacle avoidance; color sensing; steering control

基于STC89C52单片机-红外智能循迹小车 (1)

基于STC89C52单片机红外智能循迹小车 实验报告册 学院:电气工程学院 协会:电子科技协会 班级:电气1206 班 姓名:蔡申申 学号:201223910625 联系方式:151 **** ****

摘要 本报告论述了自己参加第八届河南工业大学科技创新大赛——基于STC89C52RC单片机红外智能循迹小车的方案论证、制作过程、调试过程。设计采用STC89C52RC单片机为核心控制器件,采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号,单片机获取路面信息后,进行分析、处理,最后控制减速电机转动实现转向。实验表明:该系统抗干扰能力强、电路结构简单、制作成本低,运行平稳、可靠性好。 关键词:STC89C52单片机、反射式光电对管、PWM调速 减速电机

目录 摘要 (2) 1 绪论 (4) 1.1 智能循迹小车概述 (4) 1.1.1 循迹小车的发展历程回顾 (4) 1.1.2 智能循迹分类 (4) 1.1.3 智能循迹小车的应用 (5) 2 智能循迹小车总体设计方案 (5) 2.1 整体设计方案 (5) 2.1.1 系统设计步骤 (5) 2.1.2 系统基本组成 (5) 2.2 整体控制方案确定 (6) 3 系统的硬件设计 (6) 3.1 单片机电路的设计 (6) 3.1.1 单片机的功能特性描述 (6) 3.1.2 晶振电路 (7) 3.1.3 复位电路 (7) 3.2 光电传感器模块 (8) 3.2.1 传感器分布 (8) 3.3 电机驱动电路 (9) 3.3.1 L298N引脚结构 (9) 3.3.2 电机驱动原理 (9) 4 系统的软件设计 (10) 4.1 软件设计的流程 (10) 4.2 本系统的编译器 (10) 5 系统的总体调试 (11) 5.1 硬件的测试 (11) 5.2 系统的软件调试 (11) 结论 (11) 致谢 (11) 参考文献 (12) 附录A 原理图与模块电路图 (12) 附录B 程序代码 (13) 附录C 硬件实物图 (15)

小车组装实验报告doc

小车组装实验报告 篇一:智能小车实验报告 北京邮电大学实习报告 附1 实习总结 为期两周的电子工艺实习,我过得十分忙碌和充实。从茫然地走进实验室,到学习最基本的焊接,到组装小车,再到无数次地调试程序,最后获得全院比赛的二等奖,有很多的辛苦,但是有更多的收获。 焊接是电子工艺实习最基本的部分,也是我们小学期的第一课。最开始是焊接基本的元件,包括电阻、电容、二极管、三极管等,虽然看起来是很简单的工作,但总是掌握不好电烙铁和焊锡,于是焊点有大有小,还有一些虚焊和漏焊的点。直到按照老师的要求一点一点把整块板子焊满,才逐渐掌握了标准、规范的焊接方法,最后烙铁往上一提很重要。到后来焊连着的四十个点时,焊点已经比较整齐划一了。对于焊接这种基本功来说,反复练习真的十分重要,这也考验了我们的耐心和细心。 焊接部分的小测试,是焊一个发光二级管交替亮的功能电路,老师要求正面用硬线布线,背面用软线连接。由于一开始设计布线的时候,元件之间距离比较近,导致在背面焊接连线时必须把线剪得特别短,我们两个人一个扶着线,一

个焊,位置十分不好把握,一不小心就会碰到旁边的焊点,又需要吸掉重焊,浪费了很多时间。所以我们的工作进行得十分慢,到中午很晚才焊完。虽然焊完后通电顺利地亮了,但以后再布线的时候一定要考虑到背面连线的问题,把原件之间的距离排得大一些。 基本焊接技术后就正式进入小车的组装了。小车的零件有很多都不认识,电路板也很复杂,刚拿到手里有些摸不着头脑,还好说明书上对焊接步骤有详细的说明。在焊芯片和散热片的时候,我们把顺序搞反了,应该先焊散热片,再根据螺丝孔的位置焊芯片,才能把两个元件固定在一起。但我们先焊了芯片,把散热片插在板子上后,发现两个孔怎么也对不上,可是芯片已经焊死了,即使用吸锡器也拆不下来。最后我们只好在散热片上又钻了一个孔,才勉强把螺丝拧上去。所以焊接的顺序是极其重要的,不光要考虑元件的高低,还要考虑元件之间的关系,才能少做无用功。还好其他步骤我们没有再出问题,小车焊出来后把测试程序烧进去,也能够正常的跑。 进入程序编写阶段,我们两个人先一起在测试程序的基础上编写了一个逻辑,预想了小车在行进过程中可能遇到的各种状况,主要使用了if??else if??else的多层嵌套。这个逻辑我们梳理了好长时间,在纸上画了逻辑图,想办法把

智能小车设计

2016—2017学年第二学期期末考试《单片机原理及应用*》实践考核 项目设计说明书 专业:电子科学与技术 学号: 20160060156

姓名:张一鸣 2017年6 月14日 考核项目及要求 项目一:电机驱动模块的设计与制作 1.考核要点 (1) 掌握驱动电路的工作原理; (2) 掌握电机驱动的制作方法; (3) 掌握焊接技术; 2.作品要求 学生自行运用工具进行作品的设计制作,作品达到电路连接正确、布局合理、美观整洁。 项目二:单片机最小系统板的设计制作 1.考核要点 (1) 掌握单片机在实际操作中的基本知识; (2) 实验板包括单片机最小系统、蓝牙遥控模块、温度检测模块、液晶模块、 报警模块电路等的设计; (3) 使用Proteus仿真软件绘制实验板所包含的所有模块电路; (4) 熟练使用keil编程软件编写各模块电路的演示程序。 2.作品要求 学生自行运用工具进行作品的设计、仿真及演示,达到正确实现、布局合理、美观整洁。 项目三:智能小车底盘设计 1.考核要点 (1) 理解电机的工作原理; (2) 了解部分机械机构的设计方法; (3) 掌握智能小车的整体安装方法。

2.作品要求 学生独立设计安装,车身结构美观,布局合理,功能实现。 目录 1.功能说明 (1) 1-1.蓝牙无线遥控 (1) 1-2.实时温度显示 (1) 2.硬件设计 (2) 2-1.元器件选择 (2) 2-2.硬件设计原理说明 (4) 3.软件设计 (5) 3-1.程序总体设计 (5) 3-2.程序详细设计 (5) 4.测试与总结 (6) 4-1驱动电路板测试 (6) 4-2控制电路板测试 (6) 4-3最终整体效果 (7) 4-4总结 (7)

创新性实验 循迹小车实验报告

时间:周三上午 组号:5 创新性实验报告 题目寻迹小车 学院电子信息学院 专业xxx 班级xxx 学号xxx 学生姓名xxx 指导教师xxx 完成日期2014年5月

目录 1 摘要 (3) 2 引言 (3) 3系统总体设计 (3) 4硬件电路设计 (5) 5 制作与调试 (6) 5.1 硬件电路的布线与焊接 (6) 第一步:电路部分基本焊接 (6) 第二步:机械组装 (6) 第三步:安装光电回路 (7) 5.2 调试 (7) 整车调试: (7) 6 结论及建议 (7) 7 附录 (8)

1 摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进。LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一 个闭环控制,因此能快速灵敏地控制。 关键词:红外反射式传感器,自寻迹小车,闭环控制 2 引言 随着素质教育的越来越被重视,很多学校都把制作智能小车作为首选课题,智能小车生动有趣还牵涉到机械结构、电子基础、传感器原理、自动控制甚至单片机编程等诸多学科知识,学生通过动手实践能大大提高解决实际问题的能力,而且智能小车还是一个很好的硬件平台,只要增加一些控制电路就能完成循迹小车、救火机器人、足球机器人、避障机器人、遥控汽车等课题。 我们制作的是一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。 3 系统总体设计 本系统的整体框图如图1所示。它包括传感器电路、电压比较电路、电 机驱动电路、电源电路。

智能循迹小车实训报告

实训报告课程名称:单片机实训 完成日期:2014 年 7 月 10 日

任务书 实训(习)题目: 智能小车的功能设计与实现 实训(习)目的: (1)、巩固、加深和扩大单片机应用的知识面,提高综合及灵活运用所学知识解决工业控制的能力; (2)培养针对课程需要。锻炼学生查阅有关手册、图标及文献资料的自学能力,提高组成系统、编程、调试的动手能力; (3)对课程的方案分析、选择、比较、熟悉单片机系统开发、研制的过程,软硬件设计的方法、内容及步骤。 实训(习)内容: 安装智能小车及相关功能设计、调试 实训(习)要求: 1. 本实训要求由一个团队完成,团队人员不超过8个人。 2. 通过所学知识并利用智能小车、计算机、 keil软件、烧写软件等完成实训项目,并拟定实训报告。 3. 能正确组装和调试智能小车。 4. 实训完成后,根据实训内容撰写实训报告书一份。 实训报告应包括的主要内容(参考) 1 系统硬件组成与工作原理 1.1 控制器与最小系统 1.2 显示模块与按键模块 1.3 报警模块 1.4 电机与驱动模块的工作原理与接口 1.5循迹模块的工作原理与接口 1.6 避障模块的工作原理与接口 2 功能方案及软件设计 2.1 功能设计 2.2 软件设计 (结合某一赛道、障碍设置说明程序设计思路,给出流程图、程序代码) 3功能调试与总结 3.1 功能调试 排版要求:正文小4宋体;段首缩进2字,行间距固定值18磅。内容展开可以

按3级标题形式,如:按1 ……、1.1 ……、1.1.1 形式(如果需要)。每个1级标题另起一页,1级标题三号黑体居中,题序和标题之间空两个空格,不加标点,段前、段后均为1行,固定值22磅。2级标题:四号黑体左起,四号黑体,段前、段后均为12磅。三级标题:小四号黑体左起,段前、段后均为6磅。 图名、表名五号黑体,英文、数字字体为Times New Roman 页边距:上、下、左3厘米,右2厘米,A4纸打印。 1系统硬件组成与工作原理 1.1.1控制器与最小系统 最小系统:要使一块单片机芯片工作起来最简陋的接线方式就是单片机的

智能寻迹小车实验报告

DIY 达人赛 基于STC89C52 单片机智能寻迹小车 实 验 报 告 参赛队伍: 队员: 2014 年 4 月

一、引言 我们所处的这个时代是信息革命的时代,各种新技术、新思想层出不穷,纵观世界范围内智能汽车技术的发展,每一次新的进步无不是受新技术新思想的推动。随着汽车工业的迅速发展,传统的汽车的发展逐渐趋于饱和。伴随着电子技术和嵌入式技术的迅猛发展,这使得汽车日渐走向智能化。智能汽车由原先的驾驶更加简单更加安全更加舒适,逐渐的向智能驾驶系统方向发展。智能驾驶系统相当于智能机器人,能代替人驾驶汽车。它主要是通过安装在前后保险杠及两侧的红外线摄像机,对汽车前后左右一定区域进行不停地扫描和监视。计算机、电子地图和光化学传感器等对红外线摄像机传来的信号进行分析计算,并根据道路交通信息管理系统传来的交通信息,代替人的大脑发出指令,指挥执行系统操作汽车。 1、来源汽车的智能化是21 世纪汽车产业的核心竞争力之一。汽车的智能化是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技。 2、智能汽车国外发展情况 从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,目前在可行性和实用化方面都取得了突破性的进展。目前日本、欧美已有企业取得实用化成果。与国外相比,国内在智能车辆方面的研究起步较晚,规模较小,开展这方面研究工作的单位主要是一些大学和研究所,如国防科技大学、清华大学、吉林大学、北京理工大学、长安大学、沈阳自动化所等。我国从20 世纪80 年代开始进行无人驾驶汽车的研究,国防科技大学在1992 年成功研制出我国第一辆真正意义上的无人驾驶汽车。先后研制出四代无人驾驶汽车。第四代全自主无人驾驶汽车于2000 年 6 月在长沙市绕城高速公路上进行了全自主无人驾驶试验,试验最高时速达到75.6Km/h。 3、我们的小车 我们做的是基于STC 8 9 C52单片机开发,主要是研究3轮小车的路径识别及其遥 控运动。

智能小车的结构与设计

智能小车俯视图结构说明: 本产品是由一个语音模块、一个+5V的辅助电源(LM7805数字压控电路)、一个电机驱动模块、四个电机、一块IAP单片机,一对无线发送接收模块。 功能与使用: 这辆语音控制智能小车通过语音识别来判断我们人所说的指令来行走的,给不同的指令就会按不同的指令来行走。可以根据我们说的去执行,更加人性化,同时也能起到人车交流的效果,操作简单,易于使用。 图2:智能小车全景图 平台选型说明 单片机开发板(以STC15F2K61S2芯片为控制核心) 设计说明 设计原理图如下:

3 设计原理图 设计方案: 语音控制智能小车,主控电路是由单片机开发板(以IAP15F2K61S2芯片为控制核心)来控制小车,主要是由语音控制模块通过无线模块发送信号来控制小车的前进、后退、左右转等功能。 语音模块主要是由LD3320 ASR非特定语音识别芯片组成的,通过识别人的语言,从从而实现轻松的语控制。我们采用锂电池通过7085稳压输出5V的直流电,方便携带,轻巧灵活,设计合理。通过对单片机开发板编写系统程序,调试出合适的程序,才能很好地处理信号和控制小车,以及各种电器。 作品特色 先进性: 传统玩具的市场比重正在逐步缩水,高科技含量的电子玩具则蒸蒸日上。高科技含量的电子互动式玩具已经成为玩具行业发展的主流。本文设计一个具有语音识别功能的智能遥控小车。本文还在小车的控制系统中采用语音识别系统,使控制者可以用语音对小车进行控制,产生相应的动作,而且小车和控制者还具有一定的交互功能,体现出了现代科技想智能化发展的潮流。 实用性: 当我们的技术成熟的时候我们可以向机动车改装,这样的话手脚残疾人也能开车了,还有就是该技术可以应用到智能家居中,让我们能够更加轻松地控制家里面的用电设备,使我们的住所更加人性化。

电子实习报告智能循迹小车

电子实习报告智能循迹小车

电子实习报告 学院:电气学院专业班级: 学生姓名: 指导教师: 完成时间:2014/8/29 成绩:

目录 一、设计要求及注意事项 (2) 二、设计的作用、目的 (2) 三、设计的具体实现 (2) 1.系统概述 (2) 2.单元电路设计(或仿真)与分析 (3) (1)电源模块..................................... (3) (2)电机驱动模块........................................ (4) (3)简易控制模块 (6) (4)红外循迹模块..................................... (7) 3.电路的安装与调试........................................ .. (8) (1)安装 (8) (2)调试 (10) 四、心得体会,存在的问题和进一步改进的意见 (11)

五、附录 (11) 1.元件说明 (11) (1)电 阻 (11) (2)电解电容 (11) (3)LED (1) 2 (4)芯片 (12)

电子实习报告 一、设计要求及注意事项 1.能独立完成设计内容并完全掌握其内部结构、工作原理和安装调试过程。 2.要求在设计过程中能熟练掌握其元器件的计算、焊接技术和电路故障的判别方法。 3.焊接顺序,先贴片后插件。 4.要求焊接的电路板调试时正常且安装好小车后能正常运行。 5.进入实习基地后按指定的实验台就位,未经许可,不得擅自挪换仪器设备。 6.要爱护仪器设备及其它公物,凡违反操作规程,不听从教师指导而损坏者,按规定赔偿。 7.未经指导教师许可,不得做规定以外的实验项目。 8.要保持实习室的整洁和安静,不准大声喧哗,不准随地吐痰,不准乱丢纸屑及杂物。 9. 必须严格按设备操作书的要求去使用设备,注意人身及设备安全,不要盲目操作。 二、设计的作用、目的 1.利用所学过的基础知识,通过本次电子实习培养独立解决实际问题的能力;2.巩固本课程所学的理论知识和实验技能; 3.掌握常用电子电路的一般设计方法,提高设计能力和实验、动手能力,为今后从事电子电路的设计、研制电子产品打下基础。 4.熟练掌握焊接机能、电子元器件的识别。 5.了解智能循迹小车构成的设计方法。 6.培养团队的协作和沟通能力。 三、设计的具体实现 1.系统概述 智能移动机器人平台以双电机轮式小车为底层移动平台,单片机为控制核心,通过红外探测模块实现对行车路线的感知,电机驱动模块实现对直流电机的驱动控制,从而完成自动行驶的功能。 如图:

循迹小车制作报告

综合电子设计与实践 课程实验报告 课题名称:循迹小车的制作 班级:XXXXXX 实验者:XXXXXX 实验时间:XXXXX

摘要 本设计主要有三个模块包括信号检测模块、主控模块、电机驱动模块。信号检测模块采用红外光对管,用以对黑线进行检测。主控电路采用宏晶公司的8051核心的STC89C52单片机为控制芯片。电机驱动模块采用意法半导体的L298N专用电机驱动芯片,单片控制与传统分立元件电路相比,使整个系统有很好的稳定性。信号检测模块将采集到的路况信号传入STC89C52单片机,经单片机处理过后对L298N发出指令尽心相应的调整。小车速度由单片机输出的PWM波控制。控制电动小车的速度及转向,从而实现自动循迹的功能。 关键词:智能小车STC89C52单片机L298N 红外光对管 一.绪论 (一)智能小车的作用和意义 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。随着科学技术的发展,机器人的感系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航一种实用有效的方法。机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。避障控制系统是基于自动导引小车(A VG—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。使用传感器感知路线和障碍并作出判断和相应的执行动作。该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、CPU、执行部分。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现 (二)智能小车的现状 现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系

智能寻迹小车以及程序

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单,如图2所示:

图2 ST168检测电路 ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。 传感器的安装 正确选择检测方法和传感器件是决定循迹效果的重要因素,而且正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,同时在底盘装设4个红外探测头,进行两级方向纠正控制,将大大提高其循迹的可靠性,具体位置分布如图3所示。

智能循迹小车报告

. ... .. . 电子信息专业实验报告 课程电子信息系统综合设计实验MCU部分 实验题目智能机器小车设计实验总分 学生学号 学生学号 学生学号 实验时间地点分组 电子信息学院专业实验中心 . .

目录 一、摘要 二、题目要求 三、软硬件设计方案 四、各部分电路的作用及电路工作原理分析 五、系统调试与实验结果 六、实验结果 七、拓展功能 八、参考资料 九、附录 一、摘要 摘要:智能循迹小车主要由单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。本次设计我们采用STC89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够识别黑白两色路面,电机模块由L293D芯片和两个减速直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。 关键词智能小车STC89C52单片机L293D芯片红外光对管 二、题目要求 “智能寻迹机器小车设计”,要求采用MCS-51单片机为控制芯片,设计出一个能够识别并沿着以白底为道路色,宽度5mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹行进的智能寻迹机器小车。 三、软硬件设计方案 1、硬件部分 可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。 1.1、单片机模块 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。本次小车的设计我们小组采用的是ATMEL公司的STC89C52RC单片机。STC89C52RC是一种低损耗、高性能、CMOS八位微处理器,片有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。其程序和数据存储是分开的。 STC89C52RC单片机介绍:

全国大学生飞思卡尔杯智能汽车竞赛

第七届全国大学生“飞思卡尔”杯智能汽车竞赛 竞速比赛规则与赛场纪律 参赛选手须使用竞赛秘书处统一指定的竞赛车模套件,采用飞思卡尔半导体公司的8位、16位、32位微控制器作为核心控制单元,自主构思控制方案进行系统设计,包括传感器信号采集处理、电机驱动、转向舵机控制以及控制算法软件开发等,完成智能车工程制作及调试,于指定日期与地点参加各分(省)赛区的场地比赛,在获得决赛资格后,参加全国决赛区的场地比赛。参赛队伍的名次(成绩)由赛车现场成功完成赛道比赛时间来决定,参加全国总决赛的队伍同时必须提交车膜技术报告。大赛根据车模检测路径方案不同分为电磁、光电与摄像头三个赛题组。车模通过感应由赛道中心电线产生的交变磁场进行路经检测的属于电磁组;车模通过采集赛道图像(一维、二维)或者连续扫描赛道反射点的方式进行进行路经检测的属于摄像头组;车模通过采集赛道上少数孤立点反射亮度进行路经检测的属于光电组。 竞赛秘书处制定如下比赛规则适用于各分(省)赛区预赛以及全国总决赛,在实际可操作性基础上力求公正与公平。 一、器材限制规定 编 号 车模外观和规格赛题组供应厂商A 型 车 模 车模:G768 电机:RS380-ST/3545,摄像头 组 东莞市博 思电子数 码科技有 限公司

舵机:FUTABA3010 B 型 车 模 车模型号 电机:540,伺服器:S-D6光电组 北京科宇 通博科技 有限公司 C 型 车 模 车模型号:N286 电机:RN260-CN 38-18130 伺服器:FUTABA3010电磁组 东莞市博 思电子数 码科技有 限公司 各赛题组车模运行规则: a)光电组,摄像头组:车模正常运行。 车模使用A型车模(摄像头组)、B型车模(光电组)。车模运行方向为,转向轮在前,动力轮在后。如图1所示:

智能小车原理

一、前言 设计背景: 在科学探索和紧急抢险中经常会遇到对与一些危险或人类不能直接到达的地域的探测,这些就需要用机器人来完成。而在机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。因此,自动避障系统的研发就应运而生。我们的自动避障小车就是基于这一系统开发而成的。意义随着科技的发展,对于未知空间和人类所不能直接到达的地域的探索逐步成为热门,这就使机器人的自动避障有了重大的意义。我们的自动避障小车就是自动避障机器人中的一类。自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。成员情况本组三位成员均为2005级基地班学生,都选修过数字电路课程。二、总体方案设计 1、设计要求 小车从无障碍地区启动前进,感应前进路线上的障碍物后,根据障碍物的位置选择下一步行进方向。并可通过两个独立按键对小车进行控速。 2、小车自动避障的原理 小车车头处装有三个光电开关,中间一个光电开关对向正前方,两侧的光电开关向两边各分开30度,(如右图所示)。小车在行进过程中由光电开关向前方发射出红外线,当红外线遇到障碍物时发生漫反射,反射光被光电开关接收。小车根据三个光电开关接受信号的情况来判断前方障碍物的分布并做出相应的动作。光电开关的平均探测距离为30cm。 3、模块方案比较及论证 根据设计要求,我们的自动避障小车主要由六个模块构成:车体框架、电源

及稳压模块、主控模块、逻辑模块、探测模块、电机驱动模块组成。各模块分述如下: 3.1车体框架 在设计车体框架时,我们有两套起始方案,自己制作和直接购买玩具电动车。方案一:自己设计制作车架自己制作小车底盘,用两个直流减速电机作为主动轮,利用两电机的转速差完成直行、左转、右转、左后转、右后转、倒车等动作。减速电机扭矩大,转速较慢,易于控制和调速,符合避障小车的要求。而且自己制作小车框架,可以根据电路板及传感器安装需求设计空间,使得车体美观紧凑。但自己制作小车设计制作周期较长,且费用较高,因而我们放弃这一方案。方案二:购买玩具电动车 玩具电动车价格低廉,有完整的驱动、传动和控制单元,其中传动装置是我们所需的,缩短了开发周期。但玩具电动车采用普通直流电机驱动,带负载能力差,调速方面对程序要求较高。同时,玩具电动车转向 依靠前轮电机带动前轮转向完成,精度低。 考虑到利用玩具电动小车做车架开发周期短,可留够充分的时间用于系统调试,且硬件上的不足我们有信心用优良的算法来弥补,故我们选择方案二。

哈理工版本电子实习报告智能循迹小车制作

哈理工版本电子实习报告智能循迹小车制作 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电子实习报告学院:计算机科学与技术 专业班级:计算机11-5 学生姓名:陈秀秀 学号: 指导教师:沈永滨 完成时间: 成绩: 一. (1 (2 (3 二. 给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。 1)行驶直线的控制:利用红外传感器的左右最外端俩个探头检测黑线,全白说明在道中间,没有偏离轨道,走直线;一旦右侧探管检测到黑线,说明小车外侧探

头已跑出轨道,让车左拐;同理一旦左侧检测到黑线,说明左测探头已经出线,执行右拐命令。 2)拐直角弯的控制:当车前探头检测到黑线,执行直走,让车中心探头去检测,一旦车中心探头检测到黑线开始左拐,直到车位探头检测到跳出左拐命令,继续开始执行循迹,通过设置车中间探头与车尾探头的间距,便可以实现拐弯的角度,进而顺利入弯。 注意事项: 焊接顺序,先贴片后插件。 芯片及其它元件正方向: 芯片:有小圆点的一端为正方向标志; 电解电容:引脚较长的一端为正,带白色阴影的一端为负,在PCB上表现为有阴影的一端为负,空白的一端为正; LED:有绿线或绿点的一端为反向端,在PCB板上表现为有尖的一端; 二极管:有黑线的一端为反向端; 三.实习的具体实现 1.系统概述 小车的硬件主要包括51单片机最小系统以及3大模块:即电源模块、电机驱动模块、红外循迹模块。 系统工作框图如下: 2.单元电路设计与分析(原理图及器件安装图附后) 1)电源模块 供电系统的原理图如下

作为动力电源。7805与7806要公地。 2)电机驱动模块 驱动芯片比较常见的是15脚Multiwatt封装的L298N,内部包含4通道逻辑驱动电路。可以方便的驱动两个直流电机,或一个两相步进电机。 L298内部的原理图如下: OUT1与OUT2与小车的一个电机的正负极相连,OUT3与OUT4与小车的另一个电机的正负极相连,单片机通过控制IN1与IN2,IN3与IN4分别控制电机的正反转。ENA与ENB分别控制两个电机的使能。 L298控制表 注意:X表示状态不定L298有两路电源分别为逻辑电源和动力电源, 6V为逻辑电源, 12V为动力电源。J4接入逻辑电源,J6接入动力电源,J1与J2分别为单片机控制两个电机的输入端,J3与J5分别与两个电机的正负极相连。ENA与ENB直接接入6V逻辑电源也就是说两个电机时刻都工作在使能状态,控制电机的运行状态只有通过J1与J2两个接口。由于我们使用的电机是线圈式的,在从运行状态突然转换到停止状态和从

相关文档
相关文档 最新文档