文档库 最新最全的文档下载
当前位置:文档库 › 液晶物性

液晶物性

液晶物性
液晶物性

液晶物性

姓 名:何 进 学号:201211141927 指导教师:王海燕 实验日期:12月12日 摘要: 实验主要是对液晶的各向异性、旋光性、电光效应等物理性质进行研究。在实验中,测量了液晶盒的扭曲角、电光响应曲线和响应时间,观察和分析了液晶光栅。通过实验,我们了解了液晶在有无外加电场情况下光学性质的变化,并掌握对液晶电光效应测量的方法。

关键词: 液晶,双折射,旋光性,衍射,电光效应

1 引言

19世纪末奥地利植物学家莱尼兹尔在测定有机化合物熔点时发现了液晶。液晶态介于晶体和液体之间,既具有晶体的各向异性,又具有液体的流动性。因为其特殊的物理、化学、光学特性,20世纪中叶开始被广泛应用在轻薄型的显示技术上。近十年来液晶科学获得了许多重要的发展,使得液晶得到极为广泛的应用,为当代新兴的液晶工业体系奠定了基础,同时亦促进了液晶的基础理论研究。 2 实验原理

液晶态与普通物质额三态即固态、液态、气态不同,不是所有物质的都具有的。通常,只有那些具有较大的分子、分子形状是杆形或碟形的物质才更容易具有液晶态。由杆形分子形成的液晶,其液晶相可根据分子排列的平移和去向有序性分为三大类,近晶相(smectic )、向列相(nematic )和胆甾相(cholesteric )。近晶相分子排列成层,层内分子平行排列,即有去向有序性也有分子中心平移周期性;向列相液晶分子也保持平行排列状态,但分子中心混乱无序;胆甾相实际是向列相的特殊形式。分子排列成层,层内分子取向有序,不同层分子取向稍有变化,沿层的法线方向排列成螺旋结构。本实验采用的液晶是向列相液晶。

2.1 液晶的基本物理性质

2.1.1. 液晶的介电各向异性

液晶的介电各向异性是决定液晶分子在电场中行为的主要参数。电场对液晶分子的取向作用由计划各向异性决定。液晶分子没有固有的电极矩,但可以被外电场极化。由于各向异性,当外电场平行于分子长轴或垂直于分子长轴时,分子的极化率不同,分别用//α和α⊥表示。当一个任意取向的分子被外电场极化时,由于//α和α⊥的区别,造成分子感生电极矩的方向和外电场方向不同,从而使分子发生转动。对于自由分子,如果//α>α⊥,则分子将逆时针(//α方向到α⊥方向为逆时针)转动,直到长轴方向与E 重合;反之,则分子顺时针转动,直到长轴方向与E 垂直。如果考虑到液晶内各个分子之间的相互作用以及分子与基片表面的作用,上述旋转将引起类似于弹性恢复力造成的反方向力矩,使得分子在转动一个角度之后随即不再转动。总体来说,当//α>α⊥时,电场使得分子的长轴趋于沿着电场方向排列;反之,电场则是

的分子的长轴趋向于垂直电场方向排列。这就是电场对液晶分子的取向作用。

2.1.2. 液晶的光学各向异性

液晶的光学各向异性是指由于液晶分子结构的各向异性,光在液晶中传播发生双折射现象的性质。这时,入射光将分化为寻常光(o 光)和非寻常光(e 光)。由于液晶的双折射效应,可以使得入射光的偏振光状态和偏振光方向发生变化,平行光轴与垂直光轴方向产生相位差,通过液晶的光最后以其决定的偏振状态出射,可能为圆、椭圆或线偏振态。

2.2 液晶的电光效应

液晶的电光效应是指液晶在外电场作用下分子的排列状态发生变化,从而引起液晶光学性质也随之变化的一种电对光的调制现象。实际上,因为液晶具有介电各向异性,因此外加电场能使液晶分子取向发生变化,进行光调制。

2.2.1. 液晶的旋光性

通常使用的液晶材料被封装在两个镀有透明导电薄膜的玻璃基片之间,玻璃的表面经过特殊处理,液晶分子的排列将受到表面的影响,这种装置称为液晶盒。如果上下来年各个基片的取向成一定角度,两个基片间液晶分子去向将均匀扭曲。在扭曲向列相液晶盒中,从液晶盒的一个表面到另一个表面,液晶分子的排列方向刚刚旋转了90度。常用的还有所谓高扭曲向列相液晶盒(HTN )和超扭曲向列相液晶盒(STN ),对应的旋转角度分裂为110到130度和180到270度之间。

上面提到的三种液晶盒都具有很强的旋光性。在液晶分子扭曲排列的螺距0p 大大超过光的波长的情况下,若光以平行于分子轴的偏振方向入射,则随着分子轴的扭曲,将以平行于出射面分子轴的偏振方向射出,若光以垂直于分子轴的偏振方向入射,则以垂直于出射面分子轴的偏振方向射出。当以其它线偏振光的方向入射时,我们可以把这时的入射光偏振态看做平行分子轴方向入射光1和垂直分子轴方向入射光2的叠加,两成分偏振方向各自随分子轴扭曲而旋转,又由于两者在传播过程中始终保持着各自与分子轴的关系,光1始终保持e 光速度e v ,光2则始终保持o 光速度o v ,于是出射时两光不仅偏振方向分别转动到与出射面分子轴方向垂直或平行,两光还根据双折射效应产生附加相位差,最终出射光将形成椭圆、圆或直线等形式的偏振态。以线偏振白光入射液晶,透过液晶后,不同波长的光的偏振方向旋转的角度不同,这种色散现象称为旋光色散。

2.2.2. 液晶的电光效应

前面已经知道,液晶在外电场作用下分子取向将发生改变,光通过液晶盒时偏振状态也将发生变化,如果液晶盒后检偏器透光位置不变,系统透光强度将发生变化,透过率与外加电压的关系曲线称为电光响应曲线,电光曲线决定着液晶显示的特性。

以TN 液晶显示为例,工作原理如下:起偏器和检偏器的透光方向分别平行于上下基板。不加电场时,起偏器的偏振方向与上基板表面处液晶分子指向矢平行,经起偏器获得的入射线偏光射入液晶层后会随着液晶分子的逐步扭曲同步旋转(即所谓的旋光效应)。当到达下基板时,其偏振面旋转达到90度,此时其偏振方向变成与检偏器的偏振方向平行,这样的线偏振光就可以穿过检偏器而展现亮态显示。由于无电场时为白画面,所以称之为“常白方式”。当给液晶盒施加电场,并且电压大于阈值th V 时,正性向列相液晶分子的扭曲结构就会被破坏,变成沿电场方向排列,这时TN 液晶旋光性小时,正交偏振片之间的液晶盒失去透光作用,从而得到暗态显示。这种显示的电光响应曲线如图所示。对比度越高,显示的画面就更加生动亮丽,反之则会显得平淡单调。因此,对比度的大小直接影响到液晶显示器的显示质量。

由电光响应曲线,还可以定义以下在显示应用中常用的三个参量:

阈值电压th V :将透过率为90%时所对应的电压称为阈值电压。

饱和电压s V :将透过率为10%时所对应的电压称为饱和电压。

阈值锐度β:饱和电压与阈值电压之比称为阈值锐度,有β>1。

2.2.

3. 响应时间

当施加在液晶上的电压改变时,液晶改变原排列方式所需要的时间就是响应时间。形象地说,响应时间作为一个性能参数,实际上就是液晶由全亮变为全暗再变为全亮的反应时间。分别用上升沿时间和下降沿时间来衡量。

上升沿时间on T :透过率由最小值升到最大值的90%时所需的时间。

下降沿时间off T :透过率由最大值降到最小值的10%时所需的时间。

2.2.4. 液晶衍射

当施加在液晶盒上的低频电压高于一定阈值,并不是过大时,带点杂志的运动将引起液晶分子的环流,这些环流小区域导致整个液晶盒中液晶取向的有规则形变,形成呢个折射率的周期性变化,使得通过样品的光聚焦在明暗交替的带上,这种明暗条纹最早由威廉(Williams )观察到,所以称为威廉畴。威廉畴构成一个衍射光栅,此时在远场观察液晶的出射光强时会看到衍射图样。衍射强度可以用汉克尔-基尔霍夫-夫琅禾费积分计算。衍射环的数目与液晶材料的双折射有关。近似为

n

N h λ?= (1)

液晶位相光栅满足一般的光栅方程 sin d k ?λ= (2)

其中d 为光栅常数,k 为衍射级次。

3 实验内容

3.1 实验装置

实验所用仪器:半导体激光器(650nm ),示波器,液晶盒,液晶驱动电源,激光器电源,激光功率计,光电池,光电二极管探头,偏振片,分别为起偏器和检偏器,光学导轨,白屏。

光路如图1所示激光经过起偏器后成为线偏振光,偏振光经过扭曲向列相液晶后振动方向发生变化,检偏器用来鉴别液晶出射光的偏振态。激光电源盒激光功率计被集成在一个盒子中。液晶驱动电源同时具有三个功能:为液晶提供峰值12V 的交流电压;为广电二极管提供12V 直流偏置电压;以及将光电二极管接受到的信号输出到示波器上。在测试液晶响应时间时用光电二极管探头,除此之外,皆用光电池接受液晶的输出信号。白屏用于观察液晶光栅的衍射情况。

图1 实验装置示意图

3.2实验过程

3.2.1.测量液晶表面的锚泊方向,观测液晶中的旋光现象和双折射现象

3.2.1.1.如图1搭光路,调节起偏器,使入射到液晶表面的光强最大。再调节检偏器,测量无液晶时

光的线偏度。

3.2.1.2.调节检偏器,使入射光强最小,旋转液晶盒,观测最小光强随液晶转角及光的线偏度。

3.2.1.3.测量有液晶的扭曲角

3.2.2.测量响应时间

3.2.2.1.将光电池替换为光电二极管,接好12V电源,并将液晶驱动电源调为12V旋转检偏

器和液晶盒,找到系统功率最小的位置;

3.2.2.2.将示波器表笔的钩形接头挂在光电二级管探头线路板探头挂环上,另一端与电源接

地,用示波器观察液晶的驱动信号和相应信号;

3.2.2.3.将驱动电源置于“间歇”,改变间歇频率和驱动频率,观察驱动信号的液晶响应信号

的变化。测量上升沿时间和下降沿时间。

3.2.3.液晶衍射现象

3.2.3.1.将光强调至最大,取下光电二级管换上白屏,用白屏观察衍射情况;

3.2.3.2.分别调节检偏器和起偏器,观察衍射斑的变化情况。

3.2.3.3.取下检偏器,记录阈值电压(衍射斑开始出现)和最大电压(衍射斑消失)。

3.2.3.

4.测量液晶光栅常数。

3.2.

4.观测测量电光响应曲线

选择“常白”或“常黑”模式,测量此时的电光相应曲线以及对应的阀值电压,饱和电压以及阀值锐

度。

4数据处理与实验结果分析

4.1观测液晶中的旋光现象和双折射现象

4.1.1.无液晶时的线偏振度

光强最大值I max=1.79mW 光强最小值I min=0.0001mW

线偏振度L0=I max/I min=17900mW

4.1.2.放入液晶,但不加驱动电压

表1 光强随液晶旋转角的变化

光强最小值

I min(mW)

0.18030.00020.08470.00020.10580.00030.08910.0002光强最大值

I max(mW)

1.28 1.39 1.26 1.41 1.28 1.39 1.28 1.39液晶旋转角

44 90 134 177 224 270315 355

线偏振度

7.099 6950 14.876 7050 12.098 4633.3 14.366 6950

LN值 1.9599

53929 8.8464

96939

2.6997

49176

8.8607

82896

2.4930

4015

8.4410

24636

2.6648

64304

8.84649

6939

图2 光强最小值随液晶旋转角的变化

经起偏器的出射光的是线偏振光,线偏度较高;放入液晶后线偏度会降低。说明线偏振光经过液晶盒会发生双折射现象,使得偏振态发生变化,通常变为椭圆偏振光。

由图2得,经过液晶盒的最小输出光强随液晶转角成周期性变化,转动液晶盒一周,光强有8个极值点,每45度一个,交替为极大值和极小值。极大值处对应经过液晶后出射光为线偏度最小的椭圆偏振光,极小处对应经过液晶后出射光为线偏度最大的线偏振光。

分析:锚泊方向与入射偏振方向平行,起初光强处于极小值,即入射光偏振态完全平行于液晶盒前表面锚泊方向,出射光偏振态完全处于与检偏器检偏方向垂直的方向。随着液晶盒转动,锚泊方向在也空间

中转动,即相对于起偏和检偏方向转动。当锚泊方向转过45度时,前表面锚泊方向将与入射偏振态有45度的夹角;相应的,后表面锚泊方向也将与检偏方向成45度夹角。如果我们忽略双折射效应,这时透射光将是和检偏方向平行的线偏振光,即形成一光强极大值。如此继续转动,则会交替出现4个极小值和4个极大值。当然,实际上双折射效应是不能忽略的,所以在不同位置。从图5可以直接看出这种偏振性的不同,极大值处偏振度很小,出射光基本处于圆偏振态。极小值处偏振度则相比很大,几乎处于线偏振态。

4.1.3.测定液晶扭转角

不放液晶时,调整检偏器,使得系统的输出光强最小,对应检偏器刻度:332°

放入液晶时,调整检偏器,使得系统的输出光强最小,对应检偏器刻度:273°

所以,液晶扭转角θ=332-273=59°。

经过三次测量发现会有两个扭转角出现,并且这两个扭转角互补,另外一个扭转角为120°。

4.2测量响应时间

表2 响应时间记录

驱动频率(Hz)响应频率(Hz)上升沿时间(ms)下降沿时间(ms)

2322 18.44 12.4 15.6

图3 液晶响应时间

由图3和表2可以看到响应时间=12.4+15.6=28ms。

4.3液晶衍射现象观察

逐渐调大电压时,大约在7.68v时观察到衍射条纹出现,8.89v时条纹消失;逐渐调小电压时,大约在7.26v时观察到衍射条纹出现,7.16v时条纹消失;电压由大到小时衍射条纹消失的速度相对快一点。

计算光栅常数:L=57.5cm,D=6.3cm,k=1,λ=650nm;

错误!未找到引用源。≈0.1089,由光栅方程d错误!未找到引用源。=kλ得d=5.97μm。

4.4电光响应曲线

选择常黑模式,在常黑模式下测量了液晶的电光响应曲线。

图4电光响应曲线

V th V s β=V s /V th 1

6.6v

7.4v 1.12 2

6.4v

7.2v 1.125 3 6.4v 7.4v 1.156 有图像和表格可知:阈值电压V th =6.47v ,饱和电压V s =7.33v ,阈值锐度β=V s /V th =1.134

5 结论

本次实验主要是对液晶的各向异性、旋光性、电光效应等物理性质进行研究。通过实验发现液晶本身的各向异性对其双折射性、旋光性、光电效应以及其衍射现象有决定性作用。实验中得到液晶盒扭曲角的大小59°或者120°;由于双折射使得最小输出光强收到液晶旋转角度的影响;随间歇频率的减小响应时间增大,因此可通过增大间歇频率的方法来提高液晶的响应速度;观察液晶光栅的衍射现象,发现升压和降压过程形成的衍射现象并不是互逆的,降压过程的衍射现象时间更短,计算得到光栅常数的大小为d=5.97μm ;测量了液晶升压过程的电光响应曲线,并且求得阈值电压6.47v ,饱和电压7.33v ,阈值锐度

1.134。

6 参考资料

北京师范大学物理实验教学中心,近代物理实验补充讲义I

LCD1602液晶显示实验实验报告及程序.doc

实验三 LCD1602 液晶显示实验 姓名专业学号成绩 一、实验目的 1.掌握 Keil C51 软件与 proteus 软件联合仿真调试的方法; 2.掌握 LCD1602液晶模块显示西文的原理及使用方法; 3.掌握用 8 位数据模式驱动 LCM1602液晶的 C 语言编程方法; 4.掌握用 LCM1602液晶模块显示数字的 C 语言编程方法。 二、实验仪器与设备 1.微机一台 C51 集成开发环境仿真软件三、 实验内容 1.用 Proteus 设计一 LCD1602液晶显示接口电路。要求利用 P0口接 LCD1602 液晶的数据端, ~做 LCD1602液晶的控制信号输入端。 ~口扩展 3 个功能 键 K1~K3。参考电路见后面。 2.编写程序,实现字符的静态和动态显示。显示字符为 第一行:“ 1. 姓名全拼”,第二行:“ 2. 专业全拼 +学号”。 3.编写程序,利用功能键实现字符的垂直滚动和水平滚动等效果显示。显 示字符为: “1. 姓名全拼 2.专业全拼+学号EXP8DISPLAY ” 主程序静态显示“ My information!” 四、实验原理

液晶显示的原理:采用的 LCD显示屏都是由不同部分组成的分层结构,位于最后面的一层是由荧光物质组成的可以发射光线的背光层,背光层发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层,液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。当 LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 1.LCD1602采用标准的 14 引脚(无背光)或 16 引脚(带背光)接口,各 引脚接口说明如表: 编号符号引脚说明编号符号引脚说明 1VSS电源地9D2数据 2VDD电源正极10D3数据 3VL液晶显示偏压11D4数据 4RS数据/命令选择12D5数据 5R/W读/写选择13D6数据 6E使能信号14D7数据 7D0数据15BLA背光源正极 8D1数据16BLK背光源负极2. 1602 液晶模块内部的控制器共有11 条控制指令,如表所示:

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.wendangku.net/doc/9112903411.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.wendangku.net/doc/9112903411.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

地球物理测井课程实验报告

《地球物理测井》课程实验报告 院系:地球科学与工程学院 班级:地质1401 姓名:周天宇 学号: 0130 指导老师:赵军龙 2016年11月9日

1、课程实验的目的 《地球物理测井》课程安排8个学时的上机实验,使学生了解测井数据基本格式、测井曲线基本类型、学会用有关专业软件绘制测井综合曲线图;就实际资料开展岩性、物性及含油气性定性分析,从而为测井资料定量处理奠定基础。 2、课程实验主要内容 常规测井曲线类型 常规测井曲线类型包括:岩性测井系列(包括自然电位、自然伽马、井径测井),孔隙度测井系列(包括声波时差测井、密度测井、中子测井)和电阻率测井系列(包括深中浅探测的普通视电阻率测井、侧向测井以及感应测井等)。 测井资料定性分析方法 1.对于岩性分析,可以根据“表格1”来进行 表格 1 主要岩石的岩性分析测井特征 2.对于砂岩段的物性分析 ⑴声波时差测井值越大,密度测井值越小,中子测井值越大,则物性越好即砂岩的空隙度越发育;(2)如果AC、CNL、DEN变化幅度比较大,则该砂岩段物性不均匀;(3)如果下层物性比上层物性好,则该砂岩段为正韵律地层;(4)如果GR值与AC值增大,则此处为泥质夹层;如果AC值减小且AT值增大,则此处为物性夹层;如果GR值减小,AC值增大,AT 值增大,则此处含钙质夹层;(5)泥岩的声波时差约为280μs/m,泥质砂岩的声波时差约为177μs/m,渗透砂岩的声波时差为400-220μs/m。 3.含油气性分析 在已找到物性较好的砂岩段进行分析,并结合深中浅感应测井和电阻率测井曲线的变化:一般来说,含油砂岩段的电阻率值会明显增大。 测井综合曲线图模板的生成及测井数据的加载

LED灯实验报告

mcs-51单片机接口技术实验 适用:电气类专业本科学生 实验报告 实验一熟悉proteus仿真模拟器,led花样表演 一、实验目的 掌握以下方法: 1.在proteus的环境下,设计硬件原理图; 2.在keilc集成环境下设计c51语言程序; 2.在proteus的环境下,将硬件原理图与软件联接仿真运行。 二、实验环境 1.个人微机,windows操作系统 2.proteus仿真模拟器 3.keilc编程 三、实验题目 基本题:使用8051的并口带动8个led发光二极管显示一种花样表演。提高题:使用一个键切换实现3种以上花样表演。 四、实验类型: 学习、模仿与简单设计型。 五、实验步骤: 0、进入isis,先选择需要的元件,然后设计电原理图,保存文件; 1、在keilc软件集成环境下编写源程序,编译工程文件; 2、将所设计的硬件原理图与目标代码程序相联接; 4、按play键,仿真运行程序。 附,可能用到的元件名称: cpu:at89c51或任一种mcs-51家族cpu; 晶振:crystal; 电容器:capacitors,选22pf 电解电容:cap-elec或genelect10u16v 复位电阻:minres10k 限流电阻:minres330r 按键:button led:led-blue/red/yellow或diode-led (一)接线图如下: (二).基础花样 (四)程序流程图 (五)c程序 #include <> #define uint unsigned int #define uchar unsigned char const tab1[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f, /*正向流水灯*/ 0xbf,0xdf,0xef,0xf7,0xfb,0xfd,0xfe,0xff,};/*反向流水灯*/ const tab2[]={0xff,0x00,0xff,0x00,0xff,0x00,}; void delay() { uint i,j; for(i=0;i<256;i++) for(j=0;j<256;j++)

数据挖掘实验报告(一)

数据挖掘实验报告(一) 数据预处理 姓名:李圣杰 班级:计算机1304 学号:1311610602

一、实验目的 1.学习均值平滑,中值平滑,边界值平滑的基本原理 2.掌握链表的使用方法 3.掌握文件读取的方法 二、实验设备 PC一台,dev-c++5.11 三、实验内容 数据平滑 假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70。使用你所熟悉的程序设计语言进行编程,实现如下功能(要求程序具有通用性): (a) 使用按箱平均值平滑法对以上数据进行平滑,箱的深度为3。 (b) 使用按箱中值平滑法对以上数据进行平滑,箱的深度为3。 (c) 使用按箱边界值平滑法对以上数据进行平滑,箱的深度为3。 四、实验原理 使用c语言,对数据文件进行读取,存入带头节点的指针链表中,同时计数,均值求三个数的平均值,中值求中间的一个数的值,边界值将中间的数转换为离边界较近的边界值 五、实验步骤 代码 #include #include #include #define DEEP 3 #define DATAFILE "data.txt" #define VPT 10 //定义结构体 typedef struct chain{ int num; struct chain *next; }* data; //定义全局变量 data head,p,q; FILE *fp; int num,sum,count=0; int i,j; int *box; void mean(); void medain(); void boundary(); int main () { //定义头指针 head=(data)malloc(sizeof(struc t chain)); head->next=NULL; /*打开文件*/ fp=fopen(DATAFILE,"r"); if(!fp) exit(0); p=head; while(!feof(fp)){

卤族元素实验报告

卤族元素性质 复习重点 1。卤素单质在物理性质和化学性质上的主要差异及递变规律; 2。卤族元素的化合物性 质的递变性; 3。卤化银的性质、用途及碘与人体健康的关系。 4。重点考查卤素性质的变化规律。 1。 氯气 [氯气的物理性质] (1)常温下,氯气为黄绿色气体。加压或降温后液化为液氯,进一步加压或降温则变 成固态氯。(2)常温下,氯气可溶于水(1体积水溶解2体积氯气)。 (3)氯气有毒并具有强烈的刺激性,吸入少量会引起胸部疼痛和咳嗽,吸入大量则会 中毒死亡。因此,实验室闻氯气气味的正确方法为:用手在瓶口轻轻扇动,仅使少量的氯气 飘进鼻孔。 [氯气的化学性质] 氯原子在化学反应中很容易获得1个电子。所以,氯气的化学性质非常活泼,是一种强 氧化剂。(1)与金属反应:cu + c12 cucl2 ? 实验现象:铜在氯气中剧烈燃烧,集气瓶中充满了棕黄色的烟。一段时间后,集气瓶 内壁附着有棕黄色的固体粉末。向集气瓶内加入少量蒸馏水,棕黄色固体粉末溶解并形成绿 色溶液,继续加水,溶液变成蓝色。 2na + cl 2 2nacl 实验现象:有白烟产生。 说明:①在点燃或灼热的条件下,金属都能与氯气反应生成相应的金属氯化物。其中, 变价金属如(cu、fe)与氯气反应时呈现高价态(分别生成cucl2、fecl3)。 ②在常温、常压下,干燥的氯气不能与铁发生反应,故可用钢瓶储存、运输液氯。 ③“烟”是固体小颗粒分散到空气中形成的物质。如铜在氯气中燃烧,产生的棕黄色的 烟为cucl2晶体小颗粒;钠在氯气中燃烧,产生的白烟为nacl晶体小颗粒;等等。 (2)与氢气反应。h2 + cl2 2hcl 注意:①在不同的条件下,h2与c12均可发生反应,但反应条件不同,反应的现象也不 同。点燃时,纯净的h2能在c12中安静地燃烧,发出苍白色的火焰,反应产生的气体在空气 中形成白雾并有小液滴出现;在强光照射下,h2与c12的混合气体发生爆炸。 ②物质的燃烧不一定要有氧气参加。任何发光、发热的剧烈的化学反应,都属于燃烧。 如金属铜、氢气在氯气中燃烧等。 ③“雾”是小液滴悬浮在空气中形成的物质;“烟”是固体小颗粒分散到空气中形成的物 质。要注意“雾”与“烟”的区别。 ④h2与cl2反应生成的hcl气体具有刺激性气味,极易溶于水。hcl的水溶液叫氢氯酸, 俗称盐酸。(3)与水反应。 c12 + h2o =hcl + hclo 离子方程式: cl2 + h2o =h + + cl- + hclo 说明:①c12与h2o的反应是一个c12的自身氧化还原反应。其中,cl2 既是氧化剂又是还原剂,h2o只作反应物。 ②在常温下,1体积水能溶解约2体积的氯气,故新制氯水显黄绿色。同时,溶解于水 中的部分c12与h2o反应生成hcl和hclo,因此,新制氯水是一种含有三种分子(c12、hclo、 h2o)和四种离子(h+、cl-、clo-和水电离产生的少量oh-)的混合物。所以,新制氯 水具有下列性质:酸性(h+),漂白作用(含hclo),cl-的性质,c12的性质。

数据挖掘实验报告资料

大数据理论与技术读书报告 -----K最近邻分类算法 指导老师: 陈莉 学生姓名: 李阳帆 学号: 201531467 专业: 计算机技术 日期 :2016年8月31日

摘要 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地提取出有价值的知识模式,以满足人们不同应用的需要。K 近邻算法(KNN)是基于统计的分类方法,是大数据理论与分析的分类算法中比较常用的一种方法。该算法具有直观、无需先验统计知识、无师学习等特点,目前已经成为数据挖掘技术的理论和应用研究方法之一。本文主要研究了K 近邻分类算法,首先简要地介绍了数据挖掘中的各种分类算法,详细地阐述了K 近邻算法的基本原理和应用领域,最后在matlab环境里仿真实现,并对实验结果进行分析,提出了改进的方法。 关键词:K 近邻,聚类算法,权重,复杂度,准确度

1.引言 (1) 2.研究目的与意义 (1) 3.算法思想 (2) 4.算法实现 (2) 4.1 参数设置 (2) 4.2数据集 (2) 4.3实验步骤 (3) 4.4实验结果与分析 (3) 5.总结与反思 (4) 附件1 (6)

1.引言 随着数据库技术的飞速发展,人工智能领域的一个分支—— 机器学习的研究自 20 世纪 50 年代开始以来也取得了很大进展。用数据库管理系统来存储数据,用机器学习的方法来分析数据,挖掘大量数据背后的知识,这两者的结合促成了数据库中的知识发现(Knowledge Discovery in Databases,简记 KDD)的产生,也称作数据挖掘(Data Ming,简记 DM)。 数据挖掘是信息技术自然演化的结果。信息技术的发展大致可以描述为如下的过程:初期的是简单的数据收集和数据库的构造;后来发展到对数据的管理,包括:数据存储、检索以及数据库事务处理;再后来发展到对数据的分析和理解, 这时候出现了数据仓库技术和数据挖掘技术。数据挖掘是涉及数据库和人工智能等学科的一门当前相当活跃的研究领域。 数据挖掘是机器学习领域内广泛研究的知识领域,是将人工智能技术和数据库技术紧密结合,让计算机帮助人们从庞大的数据中智能地、自动地抽取出有价值的知识模式,以满足人们不同应用的需要[1]。目前,数据挖掘已经成为一个具有迫切实现需要的很有前途的热点研究课题。 2.研究目的与意义 近邻方法是在一组历史数据记录中寻找一个或者若干个与当前记录最相似的历史纪录的已知特征值来预测当前记录的未知或遗失特征值[14]。近邻方法是数据挖掘分类算法中比较常用的一种方法。K 近邻算法(简称 KNN)是基于统计的分类方法[15]。KNN 分类算法根据待识样本在特征空间中 K 个最近邻样本中的多数样本的类别来进行分类,因此具有直观、无需先验统计知识、无师学习等特点,从而成为非参数分类的一种重要方法。 大多数分类方法是基于向量空间模型的。当前在分类方法中,对任意两个向量: x= ) ,..., , ( 2 1x x x n和) ,..., , (' ' 2 ' 1 'x x x x n 存在 3 种最通用的距离度量:欧氏距离、余弦距 离[16]和内积[17]。有两种常用的分类策略:一种是计算待分类向量到所有训练集中的向量间的距离:如 K 近邻选择K个距离最小的向量然后进行综合,以决定其类别。另一种是用训练集中的向量构成类别向量,仅计算待分类向量到所有类别向量的距离,选择一个距离最小的类别向量决定类别的归属。很明显,距离计算在分类中起关键作用。由于以上 3 种距离度量不涉及向量的特征之间的关系,这使得距离的计算不精确,从而影响分类的效果。

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

液晶的电光特性实验报告含思考题

西安交通大学实验报告 第1页(共9页)课程:_______近代物理实验_______ 实验日期:年月日 专业班号______组别_______交报告日期:年月日 姓名__Bigger__学号__报告退发:(订正、重做) 同组者__________教师审批签字: 实验名称:液晶的电光特性 一、 二、实验目的 1) 2)了解液晶的特性和基本工作原理; 3) 4)掌握一些特性的常用测试方法; 5) 6)了解液晶的应用和局限。 三、 四、实验仪器 激光器,偏振片,液晶屏,光电转换器,光具座等。 五、 六、实验原理 液晶分子的形状如同火柴一样,为棍状,长度在十几埃,直径为4~6埃,液晶层厚度一般为 5-8微米。排列方式和天然胆甾相液晶的主要区别是:扭曲向列的扭曲角是人为可控的,且“螺距” 与两个基片的间距和扭曲角有关。而天然胆甾相液晶的螺距一般不足1um,不能人为控制。扭曲向

列排列的液晶对入射光会有一个重要的作用,他会使入射的线偏振光的偏振方向顺着分子的扭曲方向旋转,类似于物质的旋光效应。在一般条件下旋转的角度(扭曲角)等于两基片之间的取向夹角。 对于介电各向异性的液晶当垂直于螺旋轴的方向对胆甾相液晶施加一电场时,会发现随着电场的增大,螺距也同时增大,当电场达到某一阈值时,螺距趋于无穷大,胆甾相在电场的作用下转变成了向列相。这也称为退螺旋效应。由于液晶分子的结构特性,其极化率和电导率等都具有各向异性的特点,当大量液晶分子有规律的排列时,其总体的电学和光学特性,如介电常数、折射率也将呈现出各向异性的特点。如果我们对液晶物质施加电场,就可能改变分子排列的规律。从而使液晶材料的光学特性发生改变,1963年有人发现了这种现象。这就是液晶的的电光效应。 为了对液晶施加电场,我们在两个玻璃基片的内侧镀了一层透明电极。将这个由基片电极、取向膜、液晶和密封结构组成的结构叫做液晶盒。根据液晶分子的结构特点,假定液晶分子没有固定的电极,但可被外电场极化形成一种感生电极矩。这个感生电极矩也会有一个自己的方向,当这个方向以外电场的方向不同时,外电场就会使液晶分子发生转动,直到各种互相作用力达到平衡。液晶分子在外电场作用下的变化,也将引起液晶合中液晶分子的总体排列规律发生变化。当外电场足够强时,两电极之间的液晶分子将会变成如图1中的排列形式。这时,液晶分子对偏振光的旋光作用将会减弱或消失。通过检偏器,我们可以清晰地观察到偏振态的变化。大多数液晶器件都是这样工作的。 图1液晶分子的扭曲排列变化 若将液晶盒放在两片平行偏振片之间,其偏振方向与上表面液晶分子取向相同。不加电压时,入射光通过起偏器形成的线偏振光,经过液晶盒后偏振方向随液晶分子轴旋转90°,不能通过检偏器;施加电压后,透过检偏器的光强与施加在液晶盒上电压大小的关系见图2;其中纵坐标为透光强度,横坐标为外加电压。最大透光强度的10%所对应的外加电压值称为阈值电压(U th),标志了液晶电光效应有可观察反应的开始(或称起辉),阈值电压小,是电光效应好的一个重要指标。最大透光强度的90%对应的外加电压值称为饱和电压(U r),标志了获得最大对比度所需的外加电压数值,U 小则易获得良好的显示效果,且降低显示功耗,对显示寿命有利。对比度D r=I max/I min,其中I max r 为最大观察(接收)亮度(照度),I min为最小亮度。陡度β=U r/U th即饱和电压与阈值电压之比。 图2液晶电光效应关系图

2020年近代物理实验教程的实验报告

近代物理实验教程的实验报告 时间过得真快啊!我以为自己还有很多时间,只是当一个睁眼闭眼的瞬间,一个学期都快结束了,现在我们为一学期的大学物理实验就要画上一个圆满的句号了,本学期从第二周开设了近代物理实验课程,在三个多月的实验中我明白了近代物理实验是一门综合性和技术性很强的课程,回顾这一学期的学习,感觉十分的充实,通过亲自动手,使我进一步了解了物理实验的基本过程和基本方法,为我今后的学习和工作奠定了良好的实验基础。我们所做的实验基本上都是在物理学发展过程中起到决定性作用的著名实验,以及体现科学实验中不可缺少的现代实验技术的实验。它们是我受到了著名物理学家的物理思想和探索精神的熏陶,激发了我的探索和创新精神。同时近代物理实验也是一门包括物理、应用物理、材料科学、光电子科学与技术等系的重要专业技术基础物理实验课程也是我们物理系的专业必修 课程。 我们本来每个人要做共八个实验,后来由于时间关系做了七个实验,我做的七个实验分别是:光纤通讯,光学多道与氢氘,法拉第效应,液晶物性,非线性电路与混沌,高温超导,塞满效应,下面我对每个实验及心得体会做些简单介绍: 一、光纤通讯:本实验主要是通过对光纤的一些特性的探究(包括对光纤耦合效率的测量,光纤数值孔径的测量以及对塑料光纤光纤损耗的测量与计算),了解光纤光学的基础知识。探究相位调制型温度传感器的干涉条纹随温度的变化的移动情况,模拟语电话光通信,

了解光纤语音通信的基本原理和系统构成。老师讲的也很清楚,本试验在操作上并不是很困难,很易于实现,易于成功。 二、光学多道与氢氘:本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点,并学习光学多道仪的使用方法及基本的光谱学技术通过此次实验得出了氢原子和氘原子在巴 尔末系下的光谱波长,并利用测得的波长值计算出了氢氘的里德伯常量,得到了氢氘光谱的各光谱项及巴耳末系跃迁能级图,计算得出了质子和电子的质量之比。个人觉得这个实验有点太智能化,建议锻炼操作的部分能有所加强。对于一些仪器的原理在实验中没有体现。如果有所体现会比较容易使学生深入理解。数据处理有些麻烦。不过这也正是好好提高自己的分析数据、处理数据能力的好时候、更是理论联系实际的桥梁。 三、法拉第效应:本实验中,我们首先对磁场进行了均匀性测定,进一步测量了磁场和励磁电流之间的关系,利用磁场和励磁电流之间的线性关系,用电流表征磁场的大小;再利用磁光调制器和示波器,采用倍频法找出ZF6、MR3-2样品在不同强度的旋光角θ和磁场强度B的关系,并计算费尔德常数;最后利用MR3样品和石英晶体区分自然旋光和磁致旋光,验证磁致旋光的非互易性。 四﹑液晶物性:本实验主要是通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握

Aspen_Plus推荐使用的物性计算方法

做模拟的时候物性方法的选择是十分关键的,选择的十分正确关系着运行后的结果。是一个难点,高难点,而此内容与化工热力学关系十分紧密。 首先要明白什么是物性方法?比如我们做一个很简单的化工过程计算,一股100C,1atm的水-乙醇(1:1的摩尔比,1kmol/h)的物料经过一个换热器后冷却到了80C,0.9atm,问如分别下值是多少?1.入口物料的密度,汽相分率。2.换热器的负荷。3.出口物料的汽相分率,汽相密度,液相密,还可以问物料的粘度,逸度,活度,熵等等。以上的值怎么计算出来? 好,我们来假设进出口的物料全是理想气体,完全符合理想气体的行为,则其密度可以使用PV=nRT计算出来。并且汽相分率全为1,即该物料是完全气体。由于理想气体的焓与压力无关,则换热器的负荷可以根据水和乙醇的定压热熔计算出来。在此例当中,描述理想气体行为的若干方程,比如涉及至少如下2个方程:1.pv=nRT,2.dH=CpdT. 这就是一种物性方法(aspen plus中称为ideal property method)。简单的说,物性方法就是计算物流物理性质的一套方程,一种物性方法包含了若干的物理化学计算公式。当然这例子选这种物性方法显然运行结果是错误的,举这个例子主要是让大家对物性方法有个概念。对于水-乙醇体系在此两种温度压力下,如果当作理想气体来处理,其误差是比较大的,尤其对于液相。按照理想气体处理的话,冷却后仍然为气体,不应当有液相出现。那么应该如何计算呢?想要准确的计算这一过程需要很多复杂的方程,而这些方程如果需要我们用户去一个个选择出来,则是一件相当麻烦的工作,并且很容易出错。好在模拟软件已经帮我做了这一步,这就是物性方法。对于本例,我们对汽相用了状态方程,srk,液相用了活度系数方程(nrtl,wilson,等等),在aspen plus中将此种方法叫做活度系数法。如果你选择nrtl方程,就称为nrtl方法,wilson方程就成为wilson物性方法(wilson property method)。 在aspen plus中(或者化工热力学中)有两大类十分重要的物性方法,对于初学者而言,了解到此两类物性方法,基本上就可以开始着手模拟工作了。大体而言,根据液相混合物逸度的计算方法的不同,物性方法可以分为两大类:状态方程法和活度系数法。状态方程法使用状态方程来计算汽相及液相的逸度,而活度系数法使用状态方程计算汽相逸度,但是通过活度系

dsp实验报告 哈工大实验三 液晶显示器控制显示实验

实验三液晶显示器控制显示实验 一. 实验目的 通过实验学习使用2407ADSP 的扩展I/O 端口控制外围设备的方法,了解液晶显示器的显示控制原理及编程方法。 二. 实验设备 计算机,ICETEK-LF2407-EDU 实验箱。 三.实验原理 ICETEK-LF2407-A 是一块以TMS320LF2407ADSP 为核心的DSP 扩展评估板,它通过扩展接口与实验箱的显示/控制模块连接,可以控制其各种外围设备。 液晶显示模块的访问、控制是由2407ADSP 对扩展I/O 接口的操作完成。 控制I/O 口的寻址:命令控制I/O 接口的地址为0x8001,数据控制I/O 接口的地址为0x8003 和0x8004,辅助控制I/O 接口的地址为0x8002。 显示控制方法: ◆液晶显示模块中有两片显示缓冲存储器,分别对应屏幕显示的象素,向其中写入数 值将改变显示,写入“1”则显示一点,写入“0”则不显示。其地址与象素的对应 方式如下: ◆发送控制命令:向液晶显示模块发送控制命令的方法是通过向命令控制I/O 接口 写入命令控制字,然后再向辅助控制接口写入0。下面给出的是基本命令字、解释 和 C 语言控制语句举例。 ?显示开关:0x3f 打开显示;0x3e 关闭显示; ?设置显示起始行:0x0c0+起始行取值,其中起始行取值为0 至63; ?设置操作页:0x0b8+页号,其中页号取值为0-7; ?设置操作列:0x40+列号,其中列号为取值为0-63; ◆写显示数据:在使用命令控制字选择操作位置(页数、列数)之后,可以将待显示的 数据写入液晶显示模块的缓存。将数据发送到相应数据控制I/O 接口即可。

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告 目录 1.关联规则的基本概念和方法 (1) 1.1数据挖掘 (1) 1.1.1数据挖掘的概念 (1) 1.1.2数据挖掘的方法与技术 (2) 1.2关联规则 (5) 1.2.1关联规则的概念 (5) 1.2.2关联规则的实现——Apriori算法 (7) 2.用Matlab实现关联规则 (12) 2.1Matlab概述 (12) 2.2基于Matlab的Apriori算法 (13) 3.用java实现关联规则 (19) 3.1java界面描述 (19) 3.2java关键代码描述 (23) 4、实验总结 (29) 4.1实验的不足和改进 (29) 4.2实验心得 (30)

1.关联规则的基本概念和方法 1.1数据挖掘 1.1.1数据挖掘的概念 计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。在最近十几年里,数据库中存储的数据急剧增大。数据挖掘就是信息技术自然进化的结果。数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。 许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。知识发现过程如下: ·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据) ·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式) ·数据挖掘(基本步骤,使用智能方法提取数

据模式) ·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式) ·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。 1.1.2数据挖掘的方法与技术 数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。数据挖掘主要包括以下方法。神经网络方法:神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。典型的神经网络模型主要分3大类:以感知机、bp反向传播模型、函数型网络为代表的,用于分类、预测和模式识别的前馈式神经网络模型;以hopfield 的离散模型和连续模型为代表的,分别用于联想记忆和优化计算的反馈式神经网络模型;以art 模型、koholon模型为代表的,用于聚类的自组

液晶物性实验报告

液晶物性实验报告 摘要 本实验主要是对液晶的基本物理性质进行探究。在实验中测量了透过液晶盒的光强随入射光偏振方向与液晶分子主方向间角度的变化,了解了双折射效应的机制;观察液晶盒的旋光效应,测量出液晶盒的扭曲角为120度;分别测量了液晶在常黑模式和常白模式下响应时间;观察了液晶的衍射现象;并在常黑模式下设计测量了对应升压和降压过程的电光响应曲线。 关键词 液晶物性、电光效应、响应时间、液晶衍射 引言 19世纪末奥地利植物学家莱尼兹尔在测定有机化合物熔点时发现了液晶。到了20世纪20年代随着更多液晶材料的发现及技术的发展,人们对液晶进行了系统深入的研究,并将液晶分类。30年代到50年代人们对液晶的各向异性、液晶材料的电光效应等进行深入的研究。到了60年代液晶步入了使用研究阶段。自1968年海尔曼等人研制出世界上第一台液晶显示器以来,在四十年的时间里,液晶显示器以由最初在手表、计算器等“小、中型”显示器发展到各种办公自动化设备、高清晰的大容量平板显示器领域。 本实验通过对液晶盒的扭曲角,电光响应曲线和响应时间的测量,以及对液晶光栅的观察分析,了解液晶在外电场的作用下的变化,以及引起的液晶盒光学性质的变化,并掌握对液晶电光效应测量的方法。 实验原理 液晶态与普通的物质三态不同,不是所有的物质都具有这种性质。那些有较大的分子且分子的形状是杆状的物质容易形成液晶。对由杆状分子形成的液晶,根据分子排列的平移和取向的有序性可以分成三类:近晶相,向列相,胆缁相。 近晶相:分子排成层,层内分子平行排列,既有取向有序性又有重心平移周期性。 向列相:液晶分子保持平行排列状态,但分子重心混乱无序。 胆缁相:分子排列成层,层内分子取向有序,但不同层分子取向稍有变化,沿层的法线方向排列成螺旋结构。 1、液晶的介电各向异性 当外电场平行于或者垂直于分子长轴时,分子极化率不同表示为α、α⊥。当一个任意取向的分子被外电场极化时,由于α、α⊥的区别,造成分子感生电极矩的方向和外电场的方向不同,从而使分子发生转动。如果考虑到液晶内各个分子之间的相互作用以及分子与基片表面的作用,旋转将引起类似于弹性恢复力造成的反方向力矩,使得分子在转动一个角度后不再转动。因此产生电场对液晶分子的取向作用。

LCD液晶显示实验实验报告及程序

实验三 LCD1602液晶显示实验 姓名专业学号成绩 一、实验目的 1.掌握Keil C51软件与proteus软件联合仿真调试的方法; 2.掌握LCD1602液晶模块显示西文的原理及使用方法; 3.掌握用8位数据模式驱动LCM1602液晶的C语言编程方法; 4.掌握用LCM1602液晶模块显示数字的C语言编程方法。 二、实验仪器与设备 1.微机一台 C51集成开发环境仿真软件 三、实验内容 1.用Proteus设计一LCD1602液晶显示接口电路。要求利用P0口接LCD1602 液晶的数据端,~做LCD1602液晶的控制信号输入端。~口扩展3个功能键 K1~K3。参考电路见后面。 2.编写程序,实现字符的静态和动态显示。显示字符为 第一行:“1.姓名全拼”,第二行:“2.专业全拼+学号”。 3.编写程序,利用功能键实现字符的垂直滚动和水平滚动等效果显示。显示字 符为:

“1.姓名全拼 2.专业全拼+学号 EXP8 DISPLAY ” 主程序静态显示“My information!” 四、实验原理 液晶显示的原理:采用的LCD显示屏都是由不同部分组成的分层结构,位于最后面的一层是由荧光物质组成的可以发射光线的背光层,背光层发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层,液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。 1.LCD1602采用标准的14引脚(无背光)或16引脚(带背光)接口,各引脚 接口说明如表:

数据挖掘实验报告 超市商品销售分析及数据挖掘

通信与信息工程学院 课程设计说明书 课程名称: 数据仓库与数据挖掘课程设计题目: 超市商品销售分析及数据挖掘专业/班级: 电子商务(理) 组长: 学号: 组员/学号: 开始时间: 2011 年12 月29 日完成时间: 2012 年01 月 3 日

目录 1.绪论 (1) 1.1项目背景 (1) 1.2提出问题 (1) 2.数据仓库与数据集市的概念介绍 (1) 2.1数据仓库介绍 (1) 2.2数据集市介绍 (2) 3.数据仓库 (3) 3.1数据仓库的设计 (3) 3.1.1数据仓库的概念模型设计 (4) 3.1.2数据仓库的逻辑模型设计 (5) 3.2 数据仓库的建立 (5) 3.2.1数据仓库数据集成 (5) 3.2.2建立维表 (8) 4.OLAP操作 (10) 5.数据预处理 (12) 5.1描述性数据汇总 (12) 5.2数据清理与变换 (13) 6.数据挖掘操作 (13) 6.1关联规则挖掘 (13) 6.2 分类和预测 (17) 6.3决策树的建立 (18) 6.4聚类分析 (22) 7.总结 (25) 8.任务分配 (26)

数据挖掘实验报告 1.绪论 1.1项目背景 在商业领域中使用计算机科学与技术是当今商业的发展方向,而数据挖掘是商业领域与计算机领域的乔梁。在超市的经营中,应用数据挖掘技术分析顾客的购买习惯和不同商品之间的关联,并借由陈列的手法,和合适的促销手段将商品有魅力的展现在顾客的眼前, 可以起到方便购买、节约空间、美化购物环境、激发顾客的购买欲等各种重要作用。 1.2提出问题 那么超市应该对哪些销售信息进行挖掘?怎样挖掘?具体说,超市如何运用OLAP操作和关联规则了解顾客购买习惯和商品之间的关联,正确的摆放商品位置以及如何运用促销手段对商品进行销售呢?如何判断一个顾客的销售水平并进行推荐呢?本次实验为解决这一问题提出了解决方案。 2.数据仓库与数据集市的概念介绍 2.1数据仓库介绍 数据仓库,英文名称为Data Warehouse,可简写为DW或DWH,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它并不是所谓的“大型数据库”。........ 2.2数据集市介绍 数据集市,也叫数据市场,是一个从操作的数据和其他的为某个特殊的专业人员团体服务的数据源中收集数据的仓库。....... 3.数据仓库 3.1数据仓库的设计 3.1.1数据库的概念模型 3.1.2数据仓库的模型 数据仓库的模型主要包括数据仓库的星型模型图,我们创建了四个

液晶物性实验报告资料

液晶物性 【摘要】本实验主要观察了液晶盒的旋光现象、双折射现象、衍射现象和电光效应。先在不加电压的情况下,观测液晶盒的旋光性和双折射现象。在对液晶盒加电压观察响应时间和响应曲线,最后观察液晶盒的衍射现象并计算光栅常数。通过对液晶这些现象的观察,了解液晶在电场作用下的变化,及液晶盒的性质。 关键词:液晶、双折射、旋光性、电光效应、衍射 一、引言 1888年,奥地利布拉格德国大学的植物生理学家莱尼茨尔在测定有机化合物熔点时,观察到胆甾醇苯酸酯(简称CB )在热熔时的特殊性质。它在145.5℃(熔点)时熔化成浑浊的液体,温度升到178.5℃(清亮点)后,浑浊的液体会突然变成各向同性的清亮的液体。在熔点和清亮点之间的温度范围内,CB 处于不同于各向同性液体的中介相。莱尼茨尔将这一现象告诉德国物理学家莱曼。经过系统研究,莱曼发现物质在中介相具有强烈的各向异性物理特征,同时又具有普通流体那样的流动性。因此这种中介相被称为液晶相,可以出现液晶相的物质被称为液晶。本实验主要观察了液晶盒的旋光现象、双折射现象、衍射现象和电光效应。先在不加电压的情况下,观测液晶盒的旋光性和双折射现象。 二、实验原理 1.液晶形态与组成结构 液晶态不是所有物质都具有的,只有分子量较大、分子成杆状(轴宽比在4:1~8:1)的物质比较容易具有液晶态。液晶可根据分子排列的平移和取向分为三大类:近晶相、向列相、胆甾相。 图1 液晶分子的三种不同排列方式 2.液晶的介电各向异性 液晶的各向异性是决定液晶分子在电场中行为的主要参数。若用//ε、⊥ε分别表示液晶

平行、垂直于分子取向的介电常数,介电各向异性可用

LED点阵显示屏实验报告

16?16点阵LED电子显示屏的设计 摘要:文章介绍了基于单片机AT89C51的16?16点阵LED电子显示屏的设计。分别阐述了显示屏显示的基本原理,硬件设计、控制方法及其程序的实现。经过调试和分析,设计的结果能够实现对汉字的静态和动态显示,动态显示的内容有多种方式,同时又可通过上位机更新显示的内容。 关键字:AT89C51;16?16点阵;LED;显示屏 一绪论 LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。它具有发光效率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点。并广泛的应用于公交汽车,码头,商店,学校和银行等公共场合的信息发布和广告宣传。LED显示屏经历了从单色,双色图文显示屏到现在的全彩色视频显示屏的发展过程,自20世纪八十年代开始,LED显示屏的应用领域已经遍布交通、电信、教育、证券、广告宣传等各方面。 1 LED点阵显示屏概述 LED点阵显示屏的构成型式有多种,其中典型的有两种。一种把所需展示的广告信息烧写固化到EPROM芯片内,能进行固定内容的多幅汉字显示,称为单显示型;另一种在机内设置了字库、程序库,具有程序编制能力,能进行内容可变的多幅汉字显示,称可编程序型。 目前,国内的LED点阵显示屏大部分是单显示型,其显示的内容相对较少,显示花样较单一。一般在产品出厂时,显示内容就已写入显示屏控制系统中的EPROM芯片内,当需要更换显示内容时就非常困难,这样使该类型的显示屏使用范围受到了限制。国内的另一种LED显示屏——可编程序型LED显示屏,虽然增加了显示屏系统的编程能力,显示内容和显示花样都有所增加,但也存在着更换显示内容不便的缺点。随着社会经济的迅速发展,如今的广告牌都存在着显示内容丰富、信息量大、信息更换速度快等特点。因此传统的LED显示屏控制系统已经越来越不能满足现代广告宣传业的需要。而利用PC机通信技术控制LED显示屏,则具有显示内容丰富,信息更换灵活等优点。 2 LED显示屏控制技术状况 显示屏的控制系统包括输入接口电路、信号控制、转换和数字化处理电路及输出接口电路等,涉及的具体技术很多,其关键技术包括串行传输与并行传输技术、动态扫描与静态锁存技术、自动检测及远程控制技术等。

相关文档