文档库 最新最全的文档下载
当前位置:文档库 › 模具高速铣削加工技术及其数控编程

模具高速铣削加工技术及其数控编程

模具高速铣削加工技术及其数控编程
高速加工不但可以成倍地提高生产效率,还可进一步改善零件的加工精度和表面质量,解决一些常规加工中难以解决的某些特殊材料的高效加工问题,因此,高速加工技术在世界上引起了高度重视。本文从机床、刀具、材料及CAM数控编程等方面对高速加工的关键技术进行了阐述,文章最后还给出了两个高速加工的实例。

一、前言
模具作为模压产品生产的关键工装,其设计与生产周期日益成为决定新产品开发周期的决定因素。目前工业发达国家的航空航天、汽车、机械、模具、机床等行业首先得益于该项新技术,使上述行业的产品质量明显提高,成本大幅度降低,获得了市场竞争优势。在汽车工业中,过去新车型的开发周期一般为10年,现在缩短为2~3年。福特、通用、丰田等公司的新车型开发周期仅为1年半,这一切都得益于企业模具设计与制造手段的现代化水平的提高。高速切削技术逐渐应用于加工铸铁和硬铝合金,尤其是加工大型覆盖件冲压模、锻模、压铸模和注射模,目的是在减少加工时间和研制时间的同时提高尺寸公差和表面一致性。目前国际上高速切削加工技术主要应用于汽车工业、模具行业、航空航天行业,尤其是在加工复杂曲面的领域,工件本身或刀具系统刚性要求较高的加工领域,显示了强大的功能。国内高速切削加工技术的研究与应用始于20世纪90年代,也是主要应用于模具、航空、航天和汽车工业,但采用的高速切削CNC机床、高速切削刀具和CAD/CAM软件等以进口为主。
二、高速切削加工应用的关键技术
数控高速切削加工作为模具制造中最为重要的一项先进制造技术,是集高效、优质、低耗于一身的先进制造技术。在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用得到了解决。其切削速度、进给速度相对于传统的切削加工,以级数级提高,切削机理也发生了根本的变化。与传统切削加工相比,切削加工发生了本质性的飞跃,其单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了70%,留于工件的切削热大幅度降低,低阶切削振动几乎消失。随着切削速度的提高,单位时间毛坯材料的去除率增加,切削时间减少,加工效率提高,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速加工的小量快进使切削力减少,切屑的高速排除,减少了工件的切削力和热应力变形,提高了刚性差和薄壁零件切削加工的可能性。由于切削力的降低,转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的表

面粗糙度对低阶频率最为敏感,由此降低了表面粗糙度。在模具的高淬硬钢件(HRC45~65)的加工过程中,采用高速切削可以取代电加工和磨削抛光的工序,避免了电极的制造和费时的电加工时间,大幅度减少了钳工的打磨与抛光量。一些市场上越来越需要的薄壁模具工件,高速铣削可顺利完成。而且在高速铣削CNC加工中心上,模具一次装夹可完成多工步加工。这些优点在资金回转要求快、交货时间紧急、产品竞争激烈的模具等行业是非常适宜的。
1.高速切削加工
高速加工切削系统主要由可满足高速切削的高速加工中心、高性能的刀具夹持系统、高速切削刀具、安全可靠的高速切削CAM软件系统等构成,因此,高速加工实质上是一项大的系统工程。随着切削刀具技术的进步,高速加工已可以应用于加工合金钢(HRC>30),广泛地应用于汽车和电子元件产品中的冲压模、注塑模具等零件的加工。高速加工的定义依赖于被加工的工件材料的类型。图1是采用高速加工时对不同材料普遍采用的切削速度。例如,高速加工合金钢采用的切削速度为500m/min,而这一速度在加工铝合金时为常规采用的顺铣速度。
随着高速加工的应用范围扩大,对新型刀具材料的研究、刀具设计结构的改进、数控刀具路径新策略的产生和切削条件的改善等也有所提高。而且,切削过程的计算机辅助模拟技术也出现了,这项技术对预测刀具温度、应力、延长刀具使用寿命很有意义。铸造、冲模、热压模和注塑模加工的应用代表了铸铁、铸钢和合金钢的高速切削应用范围的扩大。工业领先的国家在冲模和铸模制造方面,研制时间大部分耗费在机械加工和抛光加工工序上,如图1所示。冲模或铸模的机械加工和抛光加工约占整个加工费用的2/3,而高速铣可正好用来缩短研制周期,降低加工费用。
2.高速铣削加工机床
超高速切削技术是切削加工的发展方向,也是时代发展的产物。高速切削技术是切削加工技术的主要发展方向之一,它随着CNC技术、微电子技术、新材料和新结构等基础技术的发展而迈上更高的台阶。然而,高速切削技术自身也存在着一些急待解决的问题,如高硬度材料的切削机理、刀具在载荷变化过程中的破损、建立高速切削数据库、开发适用于高速切削加工状态的监控技术和绿色制造技术等。高速切削所用的CNC机床、刀具和CAD/CAM软件等,技术含量高,价格昂贵,使得高速切削投资很大,这在一定程度上制约了高速切削技术的推广应用。高速切削的高效应用要求机床系统中的部件都必须先进,主要表现在以下几个方面:
(1)机床结构的刚性

求提供高速进给的驱动器(快进速度约40m/min,3D轮廓加工速度为10m/min),能够提供0.4m/s2到10m/s2的加速度和减速度。
(2)主轴和刀柄的刚性
要求满足10000r/min到50000r/min的转速,通过主轴压缩空气或冷却系统控制刀柄和主轴间的轴向间隙不大于0.0002英寸。
(3)控制单元
要求32或64位并行处理器,具有高的数据传输率,能够自动加减速。
(4)可靠性与加工工艺
能够提高机床的利用率(6000h/y)和无人操作的可靠性,工艺模型有助于对切削条件和刀具寿命之间关系的理解。
常见国内外高速加工中心的代表如表1所示。与传统普通数控机床相比,其机床结构、加工速度和性能表现更加优秀,如德国的DMC85高速加工中心,采用直线电机和电主轴,其主轴转速达到30000r/min,进给速度达到120m/min,加速度超过1g(重力加速度)。高速机床要求高性能的主轴单元和冷却系统、高刚性的机床结构、安全装置和监控系统以及优良的静动力特性等,具有技术含量高、机床制造难度大等特点。目前国内的高速机床,其性能与国外相比还存在一定的差距。
3.高速切削加工的刀柄和刀具

由于高速切削加工时离心力和振动的影响,要求刀具具有很高的几何精度和装夹重复定位精度,很高的刚度和高速动平衡的安全可靠性。由于高速切削加工时较大的离心力和振动等特点,传统的7:24锥度刀柄系统在进行高速切削时表现出明显的刚性不足、重复定位精度不高、轴向尺寸不稳定等,主轴的膨胀引起刀具及夹紧机构质心的偏离,影响刀具的动平衡能力。目前应用较多的是HSK高速刀柄和国外现今流行的热胀冷缩紧固式刀柄。热胀冷缩紧固式刀柄的加热系统,其刚性较好,但是刀具可换性较差,一个刀柄只能安装一种连接直径的刀具。由于此类加热系统比较昂贵,在初期时采用HSK类的刀柄系统即可。当企业的高速机床数量超过3台以上时,采用热胀冷缩紧固式刀柄比较合适。

刀具是高速切削加工中最活跃重要的因素之一,它直接影响着加工效率、制造成本和产品的加工精度。刀具在高速加工过程中要承受高温、高压、摩擦、冲击和振动等载荷,因此其硬度和耐磨性、强度和韧性、耐热性、工艺性能和经济性等基本性能是实现高速加工的关键因素之一。同时不同的材料的工件高速切削在刀具的选用上要注意其与工件材料的匹配性,表2为常用高速刀具对不同工件材料切削加工的适应性能力。高速切削加工的刀具技术发展速度很快,应用较多的如金刚石(PCD)、立方氮化硼(CBN)、陶瓷刀具、涂层硬质合金、(碳)氮化钛硬质合金TIC(N)等。目前由于高

速机床和刀具材料价格比较昂贵是影响高速加工在国内普及的重要原因之一。其中涂层硬质合金在高速加工中应用最为广泛,可用于耐热合金、钛合金、高温合金、铸铁、纯钢、铝合金及复合材料的高速切削。

在加工铸铁和合金钢的切削刀具中,硬质合金是最常用的刀具材料。硬质合金刀具耐磨性好,但硬度比立方氮化硼和陶瓷低。为提高硬度和表面光洁度,硬质合金刀具采用硬的涂层材料进行涂层,如氮化钛、氮化钛铝和碳氮化钛等。直径在10~40mm范围内,且有碳氮化钛涂层的硬质合金刀片能够加工洛氏硬度小于42的材料;而氮化钛铝涂层的刀具能够加工洛氏硬度为42甚至更高的材料。可根据使用要求,选用不同的刀具材料和涂层材料。表3给出了硬质合金刀具加工铝合金材料的切削参数。
应用于高速切削的刀具和涂层材料可分为:加工铸铁的立方氮化硼和氮化硅刀具,加工洛氏硬度达42的合金钢的氮化钛和碳氮化钛涂层的合金刀具,加工洛氏硬度为42甚至更高的合金钢的氮化钛铝和铝氮化钛涂层合金刀具等。经过实践验证,在复合材料的铣削加工过程中由于切屑呈现粉末状,因此要求切削刃比较锋利耐磨,采用金刚石材料的刀具其效率和精度比普通硬质合金要好。钛合金的切削采用涂层硬质合金和YG8的普通硬质合金比较理想。

相关文档