文档库 最新最全的文档下载
当前位置:文档库 › 利用麦克斯韦方程组推导电场强度和磁场强度的波动方程

利用麦克斯韦方程组推导电场强度和磁场强度的波动方程

利用麦克斯韦方程组推导电场强度和磁场强度的波动方程
利用麦克斯韦方程组推导电场强度和磁场强度的波动方程

利用麦克斯韦方程组推导电场强度和磁场强度的波动方程:

对麦克斯韦方程组的理解

对麦克斯韦方程组的理解 摘要:理解麦克斯韦方程组的内在含义。并且麦克斯韦方程组有优美的对称性和协 变性,因此用洛伦兹变换及电磁场量验证麦克斯韦方程组在洛伦兹变换下为不变式。 关键词:麦克斯韦方程组 对称性 协变性 1、引言:数学是研究物理的有力工具,数学描述的概括性和抽象性令人敬畏,也 令人敬佩,物理是一门定量的科学,必然大量的使用数学;物理上出现的数学公式反映自然现象的规律和本质,学习物理时,既要弄清楚数学公式的数学意义,更要弄清楚物理内涵,这样才能对数学公式由敬畏变成敬佩,并产生学习的愉悦,以下谈谈自己对麦克斯韦方程组的一点浅浅的体会。 麦克斯韦于1865年完成了他的论文“电磁场的一个动力学理论”。在这篇论文中提出了电磁场的八个基本方程,全面概括了电磁场运动的特征。并非常敏锐的引入了位移电流。指出了电磁场的存在及传播规律。这些光辉的预言,在1888年被德国的科学家赫兹在实验上证实了。 麦克斯韦方程组充分表现了电场和磁场的对称性和协变性,从而体现了自然世界优美的对称性和协变性。 麦克斯韦方程组因为其的优美,被认为是上帝书写的。 2、麦克斯韦方程组的的对称性 麦克斯韦方程组可以概括整个电磁学规律,它具有优美的对称性; t B E ??- =?? (1) t E J u B ??+=??000εμ (2) ερ = ??E (3) 0=??B (4) 麦克斯韦方程组反映普遍情况下电荷电流激发电磁阀以及电磁场内部矛盾运动的规律。它的主要特点是揭示了变化电磁场可以相互激发的运动规律,从而在理论上预言了电磁场的存在,并指出光就是一种电磁波,麦克斯韦方程组不仅揭示了电磁场的运动规律,更揭示了电磁场可以独立于电荷之外单独存在,这就更加深了我们对电磁场物质性的认识。 麦克斯韦方程组是宏观电磁现象的理论基础,它的应用范围极其广泛,利用它原则上可以解决各种宏观电磁现象。因此电磁场的计算都可以归结为对这组方程的求解过程。比如,稳恒磁场就是 0=??t B ,0=??t E 的特殊情况下 的麦克斯韦方程;在讨论电磁波及在真空中 的传播问题时,就是令0,0==J ρ,就可以得到关于E 和B 的完全对称的波动方程: 012222 =??-?t E c E ;012222 =??=-?t B c B

电场与磁场在实际中的应用.

电场与磁场在实际中的应用 要点一 速度选择器 即学即用 1.如图所示,一束质量、速度和电荷量不同的正离子垂直地射入匀强磁场和 匀强电场正交的区域里,结果发现有些离子保持原来的运动方向,有些未发生任何偏转.如果让这些不偏转的离子进入另一匀强磁场中,发现这些离子又分裂成几束,对这些进入另一磁场的离子,可得出结论 ( ) A .它们的动能一定各不相同 B .它们的电荷量一定各不相同 C .它们的质量一定各不相同 D .它们的电荷量与质量之比一定各不相同 答案 D 要点二 质谱仪 即学即用 2.质谱仪是一种测定带电粒子质量和分析同位素的重要仪器,它的构造如图所 示.设从离子源S 产生出来的正离子初速度为零,经过加速电场加速后,进入一平行板电容器C 中,电场强度为E 的电场和磁感应强度为B 1的磁场相互垂直,具有某一速度的离子将沿图中所示的直线穿过两板间的空间而不发生偏转,再 进入磁感应强度为B 2的匀强磁场,最后打在记录它的照相底片上的P 点.若测得P 点到入口处S 1的距离为s ,证明离子的质量为m = E s B qB 221. 答案 离子被加速后进入平行板电容器,受到的水平的电场力和洛伦兹力平衡才能够竖直向上进入上面的匀强磁 场,由qvB 1=qE 得v =E/B 1,在匀强磁场中2 2 qB m s v ,将v 代入,可得m =E s B qB 221. 要点三 回旋加速器 即学即用 3.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属盒,两盒分别和一高频交流电源两极相接,以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速,两盒放在匀强磁场中,磁场 方向垂直于盒底面,离子源置于盒的圆心附近.若离子源射出的离子电荷量为q ,质量为m ,粒子

电场与电磁场的区别

电场与电磁场 电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电 场具有能量)。 静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。 电场是一个矢量场,其方向为正电荷的受力方向。电场的力的性质用电场强度来描述。 对放入其中的小磁针有磁力的作用的物质叫做磁场。磁场是一种看不见,而又摸不着的特殊物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。

电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,

电场与磁场的对比

电场与磁场的对比 电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。 为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。现选择性对比如下: 一、研究对象、思路和方法对比:表1

二、 概念对比:表2 注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关; ⒉磁感应强度三种定义的条件。 表3 降低;电场线与等势面处处正交。 三、 对比规律、公式 Ⅰ、电场力 ⑴、F qE = (0q >时F 与E 同向),此式具有一般性,可计算点电荷在任何电场中的受到的电 场力。在n 个点电荷形成的静电场中1n i i E E == ∑(矢量式) 。在真空中,点电荷场强2 i i i Q E k r = ;在匀强电场中4U kQ E d S πε= = (Q 为电容器的电量,ε为介电常数)。 ⑵、库仑定律122Q Q F k r =(1Q 与2Q 同号相斥,异号相吸),可计算真空中两个点电荷间的静电力。 n 个点电荷之一q 所受库仑力大小1 2 1 n i i i qQ F k r -== ∑(矢量式) 注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别。 Ⅱ、磁场力 ⑴、洛伦兹力 sin L f q B υθ =( L f 、υ、B 三者方向关系遵从左手定则, L f 垂直于υ和B 所决定

对麦克斯韦方程组的几点新认识

对麦克斯韦方程组的几点新认识 水悦 (安徽大学物理与材料科学学院,安徽合肥 230039) 摘要:经过上学期对《电动力学》和这学期《电磁场与电磁波》课程的学习,使我们认识到麦克斯韦方程组的重要性,麦克斯韦方程组是电磁理论的核心方程组,它是深刻理解好整个电磁理论的基础。在原有学习的基础上,查阅大量资料,现从麦克斯韦方程组所蕴涵的物理简单美、对称美与统一美角度重新审视麦克斯韦方程组,并从审美的角度加深对它的理解。最后,再结合上述分析简单探讨一下麦克斯韦方程组中所透露出的哲学思想,从学科相互渗透的角度进一步加深理解。 关键词:麦克斯韦方程组;简单美;对称美;统一美;哲学 1865年,麦克斯韦在英国皇家学会上宣读了其举世瞩目的论文——《电磁场的动力学理论》,在这篇论文中,他提出了伟大的麦克斯韦方程组。这个方程的伟大之处体现在三个方面,首先,它对电磁理论做出了正确地描述,体现了科学的“真”。其次,利用它可以造福人类,又有“善”的一面;同时,它被誉为“19世纪最美的方程”,有人甚至称之为“像诗一样美的方程组”,可见它还是“美”的。因此,它是“真”、“善”、“美”的统一。同时,将物理学与哲学相结合,我们还可以看到麦克斯韦方程组所蕴含着的哲学规律,这正是学科间的相互渗透,作为一名理科学生,也同样很值得我们仔细去思考、去品味。 1 麦克斯韦方程组的美 1.1 简单美 麦克斯韦方程组在历史上的建立过程非常复杂,但它的逻辑基础却很简单。它是由麦克斯韦在3个基本电磁实验定律(库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律)的基础上,引出涡旋电场与位移电流的2个假设,并将这些定律与假设加以整合与推广而得到。由库仑定律与毕奥一萨伐尔定律可以导出静态场的麦克斯韦方程组,而动态场的麦克斯韦方程组是在此基础上作了两个重大改进。第一个改进是从法拉第电磁感应定律出发,可以得出处于变化磁场中的导体会产生感应电场,麦克斯韦进一步将它推广,认为只要有变化的磁场就会产生感应电场,并将它称为涡旋电场,涡旋电场的产生与是否存在导体无关,只不过有导体存在时,在涡旋电场的作用下会产生涡旋电流。引入涡旋电场的概念后就可以得到动态场电场的旋度方程。因此,从逻辑上看,涡旋电场既是法拉第电磁感应定律的一个引申和推广,它并不是一个独立的逻辑基础。第二个改进是由麦克斯韦一个人完成的,他为了协调当时的磁场旋度方程与电荷守恒定律间的矛盾,天才地提出了位移电流的假设,认为位移电流也是产生磁场的源,于是就得到了动态场磁场的旋度方程。因此,位移电流假设相当于一个定律,是与三大实验定律并列的一个定律。综上所述,从麦克斯韦方程组建立过程来看,库仑定律、毕奥一萨伐尔定律、法拉第电磁感应定律、位移电流假设构成了麦克斯韦方程组简单的逻辑基础。 麦克斯韦方程组的数学形式也具有简单性,而且从麦克斯韦方程组的发展历史来看,它是逐渐变得简单的。麦克斯韦方程最初给出的是20个方程与20个变量,如下式所示:

高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步 卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2 )(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

麦克斯韦方程组的几种推导方法的比较

麦克斯韦方程组的几种推导方法及其比较 摘要:介绍麦克斯韦方程组的几种推导方法。从经典、能量守恒、拉格朗日方程的 方面推导得出现有的麦克思维方程组,从侧面说明了麦克斯韦的普遍适用性和有其他一些普遍存在的定理定律的等价性。通过分析三种方法的优缺点,从而加深对麦克斯韦方程组的物理意义的理解,培养科学求真的探索精神。 关键词:拉格朗日方程、麦克思维方程组、能量守恒定律

目录 引言: (4) 1_用经典方法推导麦克斯韦方程组的方法 (4) 1.1 第一方程式的推导 (4) 1.2第二方程式的推导 (5) 1.3第三方程式的推导 (6) 1.4第四方程式的推导 (7) 2_从电磁场能量和能流形式推导麦克斯韦方程组 (8) 3_用拉格朗日方程推导麦克斯韦方程组的方法。 (10) 4_三种方法的比较 (14) 4.1经典方法的优势 (14) 4.2能量方法推导的优缺点 (14) 4.3拉格朗日方程推导的特点 (15) 结束语: (15) 参考文献: (15)

引言: 麦克斯韦方程组是电磁理论的基本方程,在电磁学中有很重要的地位,在与很多工业领域有很多应用。关于它的推导建立,有我们熟知的经典方法,还有后来的根据拉格朗日方程等分析力学方法推导,以及由能量守恒的方法推导等诸多方法。下面我们来一一推导证明 1_用经典方法推导麦克斯韦方程组的方法 1.1 第一方程式的推导 电荷的库仑定律: F =0ε41πr r q q 3 ' 此电荷的场强为: E =0ε41πr r q 3 对电荷的场强沿着球面求面积分,得到: ? S dS E =∑0εi Q =? V 1 dV ρε 电场强度通过面元d S 的通量为: dS E ? =Ecos θds= 2 04r Q πεcos θds 。 θ是d S 与E 的夹角,cos θds/2r 位球面的立体角元。所以包裹电荷的闭合曲面和球面的积分是相同的。由于对电荷的场强求面积分只与包裹着的电荷有关系,所以积分的面没有关系。 又因为电荷的体密度的定义: ρ=V q 根据斯托克斯公式可以把面积分化成散度的体积分:

关于麦克斯韦方程组

麦克斯韦方程组▽-----乐天10518 关于热力学的方程,详见“麦克斯韦关系式”。麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组。它含有四个方程,不仅分别描述了电场和磁场的行为,也描述了它们之间的关系。 麦克斯韦方程组Maxwell's equations 麦克斯韦方程组是英国物理学家麦克斯韦在19世纪建立的描述电场与的四个基 本方程。 方程组的微分形式,通常称为麦克斯韦方程。在方程组中,电场和磁场已经成 为一个不可分割的整体。该方程组系统而完整地概括了电磁场的基本规律,并预言了 电磁波的存在。 麦克斯韦提出的涡旋电场和假说的核心思想是:变化的磁场可以激发涡旋电场, 变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激 发组成一个统一的电磁场。麦克斯韦进一步将电场和磁场的所有规律综合起来,建立 了完整的体系。这个电磁场理论体系的核心就是麦克斯韦方程组。 麦克斯韦方程组在中的地位,如同牛顿运动定律在力学中的地位一样。以麦克斯韦方 程组为核心的电磁理论,是经典物理学最引以自豪的成就之一。它所揭示出的的完美 统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统 一的。另外,这个理论被广泛地应用到技术领域。 [] 历史背景

1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。 概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。 1855年至1865年,麦克斯韦在全面地审视了、—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。 [] 积分形式 麦克斯韦方程组的积分形式: 麦克斯韦方程组的积分形式: 这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。 (1)描述了电场的性质。在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。 (2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。 (3)描述了变化的磁场激发电场的规律。 (4)描述了变化的电场激发磁场的规律。 变化场与稳恒场的关系: 当 时, 方程组就还原为静电场和稳恒磁场的方程:

电磁场与电磁波第四版课后思考题答案

点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r的平方成反比;电偶极子的电场强度与距离r的立方成反比。 简述和所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无关,即在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 简述和所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P与极化电荷密度的关系为极化强度P与极化电荷面的密度 电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为其单位是库伦/平方米(C/m2) 简述磁场与磁介质相互作用的物理现象?在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质

真空中的麦克斯韦方程组的推导

真空中的麦克斯韦方程组的推导 一、电磁学的基本定律与定理 电荷:正负电荷同性相斥,异性相吸 1、库仑定律:真空点电荷之间相互作用力 122014r q q F e r πε= 电场:我们假定电荷与电荷之间的相互作用是通过场来传递的。 电场是一种物质 电场强度:反应了电场力的性质 F E q = (定义式,任何情况下都成立) 对于真空中的点电荷Q 产生的电场有 2 014r Q E e r πε= (只适合于真空中的点电荷) 电场线:世上本来没有电场线,有好事者发明它,它是一种形象描述电场而引进的假想的曲线,它的密度代表电场强度的大小,它的切线方向代表电场的方向。 电场强度:等于垂直于电场方向单位面积的电场线的条数,代表着电场线的密度 dN E dS ⊥ = 电场强度E ??? 大小:电场线密度方向:正电荷受力的方向 2、高斯定理:电通量与电荷的关系的定理 电通量:S =E dS Φ? ,通过某一曲面S 的电场线的条数 如果该曲面为闭合的曲面,则有 q E dS εΦ==? 由库仑定律可以推导高斯定理,

法拉弟电磁感应定律:变化的磁场产生电场 d d B dS dt dt ξΦ=-=-? 电荷守恒定律 q j dS t ?=-?? 下面我们来总结一下得到的定理定律 1、库仑定律可推出与高斯定理和安培环路定理:因此库仑定律可以由高斯定理 和安培环路定理取代 000 ()()q E dS E dV dV E ρρεεε=??=??=??? 2、静电场环路定理:0()00E dl E dS E =???=???=?? 由于毕奥萨伐尔定律可以推导出磁场的安培环路定理和高斯定理,因此毕奥萨伐尔定律的内容可以由安培环路定理和高斯定理取代 3、磁场的安培环路定理00B dl I B j μμ=???=? 4、磁场高斯定理0=0B dS B =??? 5、法拉弟电磁感应定律 d d B B dS E dl B dS E dt dt t ξ?=-?=-???=-???? 6、电荷守恒定律 q j dS j t t ρ??=-??=-???

麦克斯韦方程组浅析

麦克斯韦方程 摘要:本文对麦克斯韦方程组作了全面的分析和阐述,主要包括:麦克斯韦方程组的建立与推导,麦克斯韦方程组的表现形式及其意义,麦克斯韦方程组的应用等三个方面的内容。 关键词:麦克斯韦方程组 库仑定律 毕奥—萨伐尔定律 法拉第定律 引言:麦克斯韦方程组是英国物理学家詹姆斯·麦克斯韦在1865年英国皇家学会上发表的《电磁场的动力学理论》中提出来的。麦克斯韦在全面深入的审视了库仑定律、毕奥—萨伐尔定律和法拉第定律的基础上,经过长达十年的研究后才得到的成果。可以说,麦克斯韦方程组概括了电磁场的基本性质和规律,构成完整的经典电磁场理论体系。它与洛伦磁力方程共同组成经典电磁学的基础方程,其重要性不言而喻。 一 、麦克斯韦方程组的建立与推导 1、麦克斯韦方程组的建立 麦克斯韦方程组是经典电磁学理论的核心,因此麦克斯韦方程组的建立过程实际上就是经典电磁学理论的建立过程。 到1845年,关于电磁现象的三个基本实验定律:库仑定律、毕奥—萨伐尔定律和法拉第定律已经被总结出来,这为麦克斯韦方程组的建立提供了理论基础。此外,19世纪30年代,法拉第创造性的提出了场和场线的概念,结束了长期以来科学历史上关于超距作用与近距作用的争论。随后,场的思想逐渐完善,科学家们建立了较为成熟的电磁场概念,这对麦克斯韦的工作具有极大的帮助。 1855年,麦克斯韦开始了电磁学基础理论方面的研究。在随后的十年里,他相继发表了《论法拉第力线》、《论物理力线》、《电磁场的动力学理论》等三篇论文。麦克斯韦建立电磁理论的过程大致可分为三步:第一步,麦克斯韦分析总结了电磁学已有的成果,提出感生电场的概念;第二步,他设计了电磁作用的力学模型,对已经确立的电学量和磁学量之间的关系给以物理解释。第三步,他把近距作用理论引向深入,明确地提出了电磁场的概念,并且全面阐述了电磁场的含义,建立了电磁场的普遍方程即麦克斯韦方程组。【1】 2、麦克斯韦方程组的推导 我们先来考察一下库仑定律: r e F 2 00 14r q q πε= 因为q F E =,所以E = r e 2 004r q πε。 (1)电场高斯定律推导 (a) 对于真空中静止的单个点电荷,作任意的高斯面,电荷位于面内。则有:

深入浅出讲解麦克斯韦方程组

深入浅出讲解麦克斯韦方程组 前一段时间给大家发过一篇《世界上最伟大的十个公式》,排在第一位的是麦克斯韦方程,它是电磁学理论的基础,也是相对论假定光速不变的依据,可见排在十大公式之首,理所应当!为了让大家更好地理解该方程,我们找到了一篇由孙研发表在知乎上的关于麦克斯韦方程的非常完美的讲解,呈现个大家。在文章的最后,我们还为大家附上了一段讲解麦克斯韦方程的英文动画视频,如果你英文比较好,不妨看一下。以下是正文: 有人要求不讲微积分来讲解一下麦克斯韦方程组?感觉到基本不太可能啊,你不知道麦克斯韦方程组里面每个方程都是一个积分或者微分么??那既然这样,我只能躲躲闪闪,不细谈任何具体的推导和数学关系,纯粹挥挥手扯扯淡地说一说电磁学里的概念和思想。 1. 力、能、场、势 经典物理研究的一个重要对象就是力force。比如牛顿力学的核心就是F=m a这个公式,剩下的什么平抛圆周简谐运动都可以用这货加上微积分推出来。但是力有一点不好,它是个向量vector(既有大小又有方向),所以即便是简单的受力分析,想解出运动方程却难得要死。很多时候,从能量的角度出发反而问题会变得简单很多。能量energy说到底就是力在空间上的积分(能量=功=力×距离),所以和力是有紧密联系的,而且能量是个标量scalar,加减乘除十分方便。分析力学中的拉格朗日力学和哈密顿力学就绕开了力,从能量出发,算运动方程比牛顿力学要简便得多。 在电磁学里,我们通过力定义出了场field的概念。我们注意到洛仑兹力总有着F=q(E+v×B) 的形式,具体不谈,单看这个公式就会发现力和电荷(或电荷×速度)程正比。那么我们便可以刨去电荷(或电荷×速度)的部分,仅仅看剩下的这个“系数”有着怎样的动力学性质。也就是说,场是某种遍布在空间中的东西,当电荷置于场中时便会受力。具体到两个电荷间的库仑力的例子,就可以理解为一个电荷制造了电场,而另一个电荷在这个电场中受到了力,反之亦然。类似地我们也可以对能量做相同的事情,刨去能量中的电荷(或电荷×速度),剩下的部分便是势potential。 一张图表明关系: 积分 力--->能 || 场<---势 微分

麦克斯韦方程组的推导及说明

13-6麦克斯韦方程组 关于静电场和稳恒磁场的基本规律,可总结归纳成以下四条基本定理: 静电场的高斯定理: 静电场的环路定理: 稳恒磁场的高斯定理: 磁场的安培环路定理: 上述这些定理都是孤立地给出了静电场和稳恒磁场的规律,对变化电场和变化磁场并不适用。 麦克斯韦在稳恒场理论的基础上,提出了涡旋电场和位移电流的概念: 1.麦克斯韦提出的涡旋电场的概念,揭示出变化的磁场可以在空间激发电场,并通过法拉第电磁感应定律得出了二者的关系,即 上式表明,任何随时间而变化的磁场,都是和涡旋电场联系在一起的。 2.麦克斯韦提出的位移电流的概念,揭示出变化的电场可以在空间激发磁场,并通过全电流概念的引入,得到了一般形式下的安培环 路定理在真空或介质中的表示形式,即 上式表明,任何随时间而变化的电场,都是和磁场联系在一起的。综合上述两点可知,变化的电场和变化的磁场彼此不是孤立的,它们永远密切地联系在一起,相互激发,组成一个统一的电磁场的整体。这就是麦克斯韦电磁场理论的基本概念。 在麦克斯韦电磁场理论中,自由电荷可激发电场,变化磁场也可激发电场,则在一般情况下,空间任一点的电场强度应该表示为 又由于,稳恒电流可激发磁场,变化电场也可激发磁场,则 一般情况下,空间任一点的磁感强度应该表示为 因此,在一般情况下,电磁场的基本规律中,应该既包含稳恒电、磁场的规律,如方程组(1),也包含变化电磁场的规律,

根据麦克斯韦提出的涡旋电场和位移电流的概念,变化的磁场可以在空间激发变化的涡旋电场,而变化的电场也可以在空间激发变化的涡旋磁场。因此,电磁场可以在没有自由电荷和传导电流的空间单独存在。变化电磁场的规律是: 1.电场的高斯定理在没有自由电荷的空间,由变化磁场激发的涡旋电场的电场线是一系列的闭合曲线。通过场中任何封闭曲面的电位 移通量等于零,故有: 2.电场的环路定理由本节公式(2)已知,涡旋电场是非保守场,满足的环路定理是 3.磁场的高斯定理变化的电场产生的磁场和传导电流产生的磁场相同,都是涡旋状的场,磁感线是闭合线。因此,磁场的高斯定理仍适用,即 4.磁场的安培环路定理由本节公式(3)已知,变化的电场和它所激发的磁场满足的环路定理为 在变化电磁场的上述规律中,电场和磁场成为不可分割的一个整体。 将两种电、磁场的规律合并在一起,就得到电磁场的基本规律,称之为麦克斯韦方程组,表示如下 上述四个方程式称为麦克斯韦方程组的积分形式。 将麦克斯韦方程组的积分形式用高等数学中的方法可变换为微分形式。微分形式的方程组如下

麦克斯韦方程组讨论

对麦克斯韦方程组的理解 学生姓名:吴汉 学号:20093380 指导教师:黄维 课程名称:电磁波原理 二0一一年十二月

摘要 麦克斯韦(Maxwell)的电磁场理论是继牛顿之后又一次划时代的伟大成就,它的建立标志着电磁学的研究发展到了一个新阶段,并开拓了广泛的研究领域。麦克斯韦在总结了电磁现象的实验规律和提出位移电流假设之后,把电磁理论总结为麦克斯韦方程组。它既有实验基础,又是经科学分析和实验检验过的方程。麦克斯韦方程组是研究电磁问题的基石,对于不同方向的研究所采用方程组的形式也不同。同时,麦克斯韦方程组中蕴含着深刻的哲学思想。 关键词:电磁场理论,麦克斯韦方程组,积分,微分,复数,哲学思想

目录 摘要 ................................................................................................................................................ II 1麦克斯韦方程组的提出过程 . (4) 1.1 力线与恒定流速场类比的提出 (4) 1.2 电磁以太力学模型的提出 (1) 1.3 电磁场动力学理论的提出 (1) 2 麦克斯韦方程组的三种形式 (6) 2.1 麦克斯韦方程组的微分形式.......................................................... 错误!未定义书签。 2.1.1 麦克斯韦方程组的非限定形式 (3) 2.1.2 麦克斯韦方程组的完备性 (3) 2.2 麦克斯韦方程组的积分形式.......................................................... 错误!未定义书签。 2.3 麦克斯韦方程组的复数形式.......................................................... 错误!未定义书签。 3 麦克斯韦方程组中蕴含的哲学思想 (5) 3.1 麦克斯韦方程组中的演绎与归纳 (5) 3.2 麦克斯韦方程组建立在客观实在的物质基础上 (5) 3.3 麦克斯韦方程组真理性的实践检验 (5) 致谢 (6) 参考文献 (7)

我总结(电场能量守恒与磁场)

电场 1.电荷周围存在电场.:库仑定律。 2.电场的大小:单位电量的电荷在电场中受到的电场力。检验电荷受到的力越大那 。电场线越密集电场越大。 3.场强是描述电场性质的物质的物理量,只由电场决定,与检验电荷无关.例如在 A q的大小无关, .不能理解为 ,. 4. 场强是矢量., 其方向为正电荷的受力方向为该点场强方向. 5.电场强度和电场力是两个不同的物理量,就像速度和位移是完全不同的两个 概念.最 根本不同的是:场强是表示电场的性质的物理量 ,电场力是电荷在电场中受的电场的作用力. 注意 .而 . 6.场强可以合成分解,并遵守平行四边形法则,如图示2 所示.Q A与Q B在C处的场强分别为E A、E B,E即是E A与 E B的合成场强.若在C处放一个-q点电荷,所受电场力方 向应与E反方向. 7.电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 8. 三.电场线 1.电场线是描述电场强度分布的一族曲线.描述方法:用曲线的疏密描述电场的强弱,用曲线某点的切线方向表示该点场强方向. 2.电场的特点: (1).在静电场中,电场线从正电荷起,终于负电荷,不闭合曲线. (2).电场线不能相交,否则一点将有两个场强方向. (3).电场线不是电场里实际存在的线,是为使电场形象化的假想线.

3. 点电荷的电场线. 图3、图4为正、负点电荷电场线的分布,应熟悉. 从图5可看出,E 1为+Q 在A 处的场强,E 2为-Q 在A 处的场强,E 为E 1与E 2的 合场强,正好为电场线在A 的切线。两个点电荷形成的电场中,每条电场线上 每个点符合上述的关系。 4.匀强电场 (1) .定义:在电场的某一区域里,如果各点场强大小和方向都相同,这个区域的 电场叫匀强电场. (2) .电场线如图6所示.电场线互相平行的直线,线间距离相等. (3) .两块靠近、正对且等大平行的金属板,分别带等量 正负电荷时,它们之间的电场是匀强电场.边缘附近除 外. 5、公式 四.电场中的导体. 1. 导体的特征:导体内部有大量可以自由移动的电荷.金属导体可自由移动是自由电子. 2. 静电感应:导体内的自由电荷是电场的作用而重新分布的现象. 认真分析如图所示的物理过程:把金属导体置于匀强电 场中.金 属导体中自由电子在电场力作用向左运动,达到左外表面,而 右外表面带正电.金属导体外表面带的等量正负电荷称为感 应电荷,感应电荷形成电场E '的方向与电场E 方向相反向 左,E '随着感应电荷增加而变大,当E '=E 时,导体内场强为零, 自由电子不受电场力作用,停止定向运动.达到静电平衡. 静电平衡:导体中(包括表面)没有电荷走向移动的状态叫静电平衡. 3. 在导体处于静电平衡状态时有 (1) .在导体内部的场强处处为零 (2) .导体表面任何一点场强方向与该点表面垂直. (3) .电荷只能分布在外表面上. 4. 利用处于静电平衡状态时,导体内部场强处处为零的特点,利用金属网罩(金 属包皮)把外 电场遮住,使内部不受电场影响即静电屏数. 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。

电磁场的远场和近场划分

电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(感应场)和近区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。近区场通常具有如下特点: 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E 377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。 2、远区场的测量 在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。 在数值上,E=377H,S=EH=E2/377。其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。 由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。 一般情况,关于远场和近场的测量问题可以简化为: 国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。 300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。如按3λ的划分界限,距辐射源3米之外可认为是远场区。

电场和磁场的基本性质

电荷和电荷守恒定律 电场 电场力的性质 电场场强:E=F/q 矢量 电场线 真空中点电荷电场的场强:2 /r KQ E = 匀强电场场强E=U/d 电场能的性质 电势:q E p /=? 标量 电势差:B A AB U ??-= 等势面 电场力 qE F =(任何电场) 2 21r q q K F =(真空中点电荷) 电场能:?q E p = 电场力的功:PAB AB E qU W ?== 磁场 运动电荷 性质 对通电导体的作用:BIL F = 对运动电荷的作用 磁感应强度:S B IL F B Φ= =、 磁感线:引入磁通量 BS =Φ 0//=F B v , 直线运动 qvB F B v =⊥, 匀速圆周运动 向心力:r v m F 2 = 半径:qB mv r = 周期:qB m T π2=

一.电场的性质 1.库仑定律 例1.2009(江苏卷)两个分别带有电荷量-Q 和+3Q 的相同金属小球(均可视为点电荷),固定在相距为r 的两处,它们间库仑力的大小为F ,两小球相互接触后将其固定距离变为r 2, 则两球间库仑力的大小为( ) A.112F B.34F C.4 3F D .12F 答案:C 解析:两电荷间的作用力F =k 3Q2 r2 ,两电荷接触电量先中和再平均分配,每个小球带电量为Q ,F ′=2 22?? ? ??r Q k , F ′F =4 3 ,C 正确. 2.电场力 例2.(2009-广东卷)如图6,一带负电粒子以某速度进入水平向右的匀强 电场中,在电场力作用下形成图中所示的运动轨迹。M 和N 是轨迹上的两点,其中M 点在轨迹的最右点。不计重力,下列表述正确的是 A .粒子在M 点的速率最大 B .粒子所受电场力沿电场方向 C .粒子在电场中的加速度不变 D .粒子在电场中的电势能始终在增加 答案.C 【解析】根据做曲线运动物体的受力特点合力指向轨迹的凹一侧,再结合电场力的特点可知粒子带负电,即受到的电场力方向与电场线方向相反,B 错。从N 到M 电场力做负功,减速,电势能在增加,当达到M 点后电场力做正功加速电势能在减小则在M 点的速度最小A 错,D 错。在整个过程中只受电场力根据牛顿第二定律加速度不变。 3.对电场强度的三个公式的理解 例3.2010(安徽卷)如图所示,在xOy 平面内有一个以O 为圆心、半径R=0.1m 的圆,P 为圆周上的一点,O 、P 两点连线与x 轴正方向的夹角为θ。若空间存在沿y 轴负方向的匀强电场,场强大小E=100V/m ,则O 、P 两点的电势差可表示为( ) A .10sin (V )op U θ=- B .10sin (V )op U θ= C . 10cos (V ) op U θ=- D . 10cos (V ) op U θ= 【答案】A 【解析】在匀强电场中,两点间的电势差U=Ed ,而d 是沿场强方向上的距 x/m y/m O P θ ·

工程电磁场基本知识点

第一章矢量分析与场论 1 源点是指。 2 场点是指。 3 距离矢量是,表示其方向的单位矢量用表示。 4 标量场的等值面方程表示为,矢量线方程可表示成坐标形式,也可表示成矢量形式。 5 梯度是研究标量场的工具,梯度的模表示,梯度的方向表示。 6 方向导数与梯度的关系为。 7 梯度在直角坐标系中的表示为u ?=。 8 矢量A在曲面S上的通量表示为Φ=。 9 散度的物理含义是。 10 散度在直角坐标系中的表示为??= A。 11 高斯散度定理。

12 矢量A 沿一闭合路径l 的环量表示为 。 13 旋度的物理含义是 。 14 旋度在直角坐标系中的表示为??=A 。 15 矢量场A 在一点沿l e 方向的环量面密度与该点处的旋度之间 的关系为 。 16 斯托克斯定理 。 17 柱坐标系中沿三坐标方向,,r z αe e e 的线元分别 为 , , 。 18 柱坐标系中沿三坐标方向,,r θαe e e 的线元分别 为 , , 。 19 221111''R R R R R R ?=-?=-=e e 20 0(0)11''4()(0)R R R R R πδ≠???????=??=? ? ?-=?????

第二章 静电场 1 点电荷q 在空间产生的电场强度计算公式为 。 2 点电荷q 在空间产生的电位计算公式为 。 3 已知空间电位分布?,则空间电场强度E= 。 4 已知空间电场强度分布E ,电位参考点取在无穷远处,则空间一点P 处的电位P ?= 。 5 一球面半径为R ,球心在坐标原点处,电量Q 均匀分布在球面上,则点,,222R R R ?? ???处的电位等于 。 6 处于静电平衡状态的导体,导体表面电场强度的方向沿 。 7 处于静电平衡状态的导体,导体内部电场强度等于 。 8处于静电平衡状态的导体,其内部电位和外部电位关系为 。 9 处于静电平衡状态的导体,其内部电荷体密度为 。 10处于静电平衡状态的导体,电荷分布在导体的 。 11 无限长直导线,电荷线密度为τ,则空间电场E=

相关文档
相关文档 最新文档