文档库 最新最全的文档下载
当前位置:文档库 › 前置放大器在微弱信号检测中的应用进展

前置放大器在微弱信号检测中的应用进展

前置放大器在微弱信号检测中的应用进展
前置放大器在微弱信号检测中的应用进展

2010年光电电子技术结课作业前置放大器在微弱光电信号检测中的应用进展

前置放大器在微弱光电信号检测中的应用进展

摘要

光电检测系统中光电器件紧密连接一个低噪声前置放大器,它的任务是:放大光电探测器件所输出的微弱电信号;匹配后置处理电路与探测器件之间的阻抗。对前置放大器的要求是:低噪声、高增益、低输出阻抗、足够的信号带宽和负载能力,以及良好的线性和抗干扰能力。针对不同类型的光电检测系统的相应的前置放大电路的种类不同有T型网络前置放大电路、差分式前置放大电路、双运放前置放大电路、高阻型前置放大电路,低阻型前置放大电路等等。

关键词:前置放大电路,微弱光信号检测,光电转换

引言

微弱信号的检测和处理技术主要运用迅速发展起来的电子学、信息论以及物理方法等加以分析噪声,对信号进行检测、采集有用信号。微弱信号不仅信号本身的幅度较小,而且往往都是淹没在背景噪声之中。而其中的光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。它主要利用电子技术对光学

信号进行检测, 并进一步传递、储存、控制、计算和显示[2]。光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息, 然后用光电探测器件将光学信息量变换成电量, 并进一步经过电路放大、处理, 以达到电信号输出的目的[3]。由于光电探测器所接收到的信号一般都非常微弱而且光探测器输出的信号往往被深埋在噪声之中的特点, 要对这样的微弱信号进行处理, 一般都要先进行预处理, 以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。这样, 就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。

1 光电检测电路模块[4]

上图为光电检测电路模块示意图

前置放大电路位于光电转换器后级放大电路之间对整个光电检测系统性能的影响很大,为得到有用的信号设计低噪声,高精度的前置放大电路就变得非常重要。

2 前置放大电路设计:

一般的前置放大电路

有上图可得如下关系

可见输出电压V o呈线性比例关系,其比例系数为R f/R1改变R f可方便的改变前置放大电路的斜率。但是要保证其线性变换精度,必须要求r so很大,否则会产生变换误差。光信号的灵敏度与所接的反馈电阻R f有关,灵敏度越高反馈电阻越大,对电阻、量程转换开关的绝缘要求就越高,稳定性就越难保证。而反馈电阻增大,会带来电阻的热噪声电流,这在实验中是难于接受的。

2.1 T型网络前置放大电路[5]

在理想状态下电路放大率为

当时,运算放大器开环增益A>>1时

可见放大器增益仅与外部T型电阻网络有关,选用不同网络电阻比值得到电阻比值精度较高、稳定性较好,闭环增益精度和稳定性也会提高,由于反馈电阻扩展了(1+R x/R2)倍,既减少了热噪声影响,又减少了对运放输入偏置电流的影响。但是,单通道输入的情况下,当输入为不稳定误差信号时,输出端必然也为不稳定误差信号,这使得电路的稳定性很难保证。必

须想办法克服这个缺点。

2.2 差分式前置放大电路

在所挑选的两个光电器件的特性参数尽量一致的情况下,差分式光电检测电路不但能减小暗电流的影响,也能减小温度变化引起的测量误差;另外,由于检测光路与参考光路为一个光源,光源的漂移和波动不会对检测结果带来太大的误差。

计算可得:

电容C为超前校正电容,用于防止运放发生自激,同时还可以减少输直流电平的纹波,其值一般为0.1~0.22μF。由于此电路对电阻匹配要求较高,在电阻不匹配的情况下,会引入不要的动态误差。

2.3 改进型差动输入前置放大电路

由上述三种前置放大电路比较分析,我们综合各种电路优点设计出了一种双运放前置放大电路。

双运放差动输入前置放大电路的使用效果,结构、性能等都优越于面所提的单运放前置放大电路[6]。并且通过对反馈电阻的扩展,减小电阻所带来的热噪声电流。输入端采用的双通道差分式输入,使得输入号中的不稳定误差信号通过差值抵消掉,增强了系的稳定性。

经计算可得[7]:

当时,

当电阻不匹配时会产生不匹配误差。

设电阻不匹配误差为,

当电阻误差为±5%时,可得:

电阻不匹配误差:

最大动态误差:

最大相对动态误差:

动态共模抑制比:

电路特点:

(1)电路可获得较高的增益,却不会使电阻热噪声有所增加,减少了运放对偏置电流的影响。

(2)电阻不匹配产生的误差只与V(—)和V r有关,而与

V(+)无关,而且对动态误差的影响并不十分大。

(3)运放的输入失调电压也会导致误差,并且它是与放大倍数有关的,这种误差仍然属于静态误差,通过调节V r就可以抵消掉。

(4)电路只需使用两个运放单元,而且电路十分简单,但它却可以实现V(+)和V(-)高阻差动输入、可调放大倍数,还附带一个基准电压或偏置输入V r,这些为电路的构成、调节以及输出偏置、静态误差补偿等提供了极大的方便。

有源器件的选取:

对于信号源电阻较小的情况(如热电偶、光电池等),一般选用晶体管构成低噪声前置放大器,因为晶体管的电流噪声I n较大,具有较小的最佳源电阻

(100Ω~10MΩ)。对于源电阻较大酌情况(如热电阻),则多采用场效应管,因为它有较小的电流噪声I n和较

大的最佳源电阻(1KΩ~10MΩ)。运算放大器有和晶体管大致相同的最佳源电阻值,而CMOS场效应管的最佳源电阻可达1M Ω~10GΩ。

有源器件的最佳源电阻只R sopt是频率的函数,上

述给出的器件最佳源电阻范围是指较低频率时的情况,随着频率的升高,场效应管的R sopt迅速减小,一般在

几十兆赫兹时,结型场效应管的最佳源电阻仅几千欧,

所以也仅适于源电阻较小的情况。PNP晶体管,基极

电阻小,电压噪声小,最佳源电阻较小,适于源电阻较小的情况,而NPN晶体管R sopt较大,因此适于源电阻较大的情况。

无源器件的选取:

组装低噪声放大器除了放大管自身噪声低以外,还需要电阻、电容的噪声也很低,因电阻自身都存在固有的热噪声,热噪声电压的均方值为:

式中r为玻耳兹曼常数(1.38 ×10-23J /K);R为电阻阻值,T为电阻的绝对温度,Δf为测量系统的通频带宽度。除此以外,电阻还产生与电阻品质有关的电流噪声(也称过剩噪声)。电流噪声的均方电压为

K是与材料工艺有关的常数;i dc是流过电阻的直流电流;f是频率;R是电阻阻值。这种噪声有与频率成反比,

与所加直流电流i dc平方成正比的特性。这种噪声的大

小与生产过程有密切关系。低噪声电路中,一般都选用金属膜电阻器和绕线电阻器,而不使用碳质与碳膜电阻,因为碳质或碳膜电阻的噪声指数(电阻两端每伏直流压降在10倍频程内产生的均方根噪声微伏值)

一般为十几到几十微伏/伏以上,而金属膜电阻器则可做到小于0.2~1μV /V左右[8]。电容器的选择,主要是选用损耗角小的云母电容和瓷介电容来降低噪声,在大容量的电容中,则选用漏电流很小的钽电解电容。耦合变压器的构成,主要考虑在外加磁场作用下,由于磁化的不连续性而表现出的磁起伏噪声和外界干扰引入的噪声,因此要有好的磁屏蔽和静电屏蔽。采用晶体管或结型场效应管组成的低噪声集成运算放大器其体积小、使用方便。在噪声要求不很高的情况下,用它组装的前置放大器是方便易得的。

3 双运放前置放大电路的设计

光电探测器前级放大电路的设计通常从两方面着手:一是设计合适的电路形式;二是选择合适的运放。前置放大电路可采用两个运放来组成复合放大电路,下图,所示是其电路图,它由一个内反馈电路与外反馈电路组成,具有降低噪声带宽而不影响信号频带的特点[9]。

在外反馈电路基础上附加的内反馈电路,可用R3、R4、C3来控制U2A的增益响应特性。在直流情况下,该反馈可由C3断开,此时放大器的开环增益是两个放大器开环增益的乘积。合理地设置R4/R3的比值具有减小噪声带宽的功效。上图中,R2是为了补偿因R1过大所造成的直流误差,R2上的并联电容C2用于去除它上面的杂散噪声。外反馈电阻R1上并联的电容C1为消振电容,其作用是减小电路的通频带。选择放大器时,除了考虑选用低噪声和低漂移的运放外,还要选用高输入阻抗和低偏流的运放。本设计选择AD795KN作为前置放大器,AD795KN的主要性能如下:

◇失调电压为25℃,最大为250μV(K级);

◇失调电压漂移最大为3 V/℃(K级);

◇输入偏置电流在25℃时,最大为1 pA(K级);

◇0.1-10 Hz电压噪声为2.5 uVp-p;

◇1/f转折频率为12 Hz;

◇电压噪声在100 Hz处为10 nV/Hz1/2;

◇电流噪声在100 Hz处为0.6fA/Hz1/2;

◇在±15 V时的功耗为40 mW

◇增益带宽乘积为1 MHz;

4 微变光信号检测前置放大电路的设计与分析

4.1 微变光信号检测前置放大电路的设计之一

微变光信号检测前置放大电路如下图所示。光电二极管一般有两种模式工作:零偏置工作和反偏置工作。针对光信号是微变特点,选用光电二极管光伏工作模式,此时光电二极管暗电流近似为零,二极管噪声基本上是分路电阻的热噪声,线性好,被放大的信号只与入射光强成正比。光电二极管将接收的光信号转换为电流信号,通过选取合适的电阻R1、R2将入射光电流信号转换为较大的电压信号,作为后续电压跟随器的输

入信号。电路中引入R3、R4电阻来提高输入阻抗,降低对光电二极管的影响。电压跟随器的输出信号经过差分放大电路进一步放大,以便驱动后续电路进行工作。电路采取对称结构, R1和R2、R3和R4、R5和R6、R7和R8选用相同阻值,使得电路的漂移和失调互相抵消,提高探测精确度[10]。

上图为为相应的前置放大电路图

4.2 微变光信号检测前置放大电路的设计之二

光电转换及放大电路输出的信号只有mV量级,因此需要工作稳定的低噪声前置放大电路将信号进一步放大,以便与后续的控制和运算系统对接。由于对数比率放大电路相对于线性放大电路具有控制简单、动态范围大和线性度好的优点,且对数放大电路能够实现数据压缩的功能,方便与A/D转换器连接,采用对数比率放大电路作为前置放大电路,如下图[11]所示,

为了克服温度的影响,电路中采用了2只对称匹配的晶体三极管来消除晶体管集电极电流的温度漂移。同时,由于u0还与U T(温度电压当量,约为26mV)有关,而UT受温度影响较大,本实验中利用具有正温度系数的电阻R5来补偿UT的温度影响。IC1和IC2均采用低噪声高精度集成运放OP07[6],C F1和C F2用于相位补偿,保证闭环工作的稳定性由图知,

u=[(R3+R4+R5)/R5]U T ln[(R2u1)/(R1u2)],取R1=R2则

u0=[(R3+R4+R5)/R5]U T ln(u1/u2)将光电转换电路的输出接在前置放大电路的u1端调整u2的值便可得到不同的增益

4.3 微变光信号检测前置放大电路的设计之三

PIN光伏探测器的输出电流很小易受干扰及噪声的影响,需要设计良好的低噪声前置放大电路对弱电流进行放大,以驱动后级电路工作。

上图[12]是光电转换前置放大电路。图中外反馈为

工作于短路方式下的基本放大电路。这种外反馈电路可使探测器对输入的光功率具有高的分辨率和

大的测量范围,并能减小电路噪声。其电压输出为

式中f h=1/(2πRC)R1为反馈电阻f为信号频率在信号频率f<

因为PIN工作于短路方式,此电路大大降低,PN 结正向电流(即暗电流)带来的影响并使光电二极管得最佳的信噪比,被放大的信号只与光强成正比。上图中虚框1内是在基本反馈电路基础上附加的内反馈电路,可用R3,R4控制A2增益响应特性。在直流情况

下,该反馈由C2断开,此时放大器的开环增益是两个放大器开环增益的乘积。合理的设置R4/R3的比值有减小噪声带宽的功效。图中R2是为了补尝因R1过大所造成的直流误差,R2上的并联电容C p用以去除它上面的

杂散噪声。图中外反馈电阻上并联的电容C:为消振电

容图中反馈电路上并联的电容C1为消阵电容(因二极

管的结电容较大),C1的加入减小噪声带宽。C1值的确定,要根据信号频率的要求来计算f c(-3dB)=1/(2π

R1C1)

5 根据电阻划分的前置放大电路的设计

在给定的光电器件和电路结构条件下,前置放大

器第一级输入电容的数值基本上是固定的,因此在依

照系统要求,选择适当电路时,前置放大器第一级输入

电阻和偏置电阻的大小是考虑的主要对象。前置放大器第一级一般采用场效应晶体管(FET)或双极型晶体管(BJT)。不论选用场效应晶体管还是双极型晶体管,前置放大器的噪声中都含有并联源电阻Rs=Rf//Rin产生的

热噪声。因此,为了减小前置放大器的噪声,应该使光电检测器的偏置电阻Rb及放大器的输入电阻Rf越大越好。但是,输入电阻加大,势必要使输人端的时间常数RC加大,从而导致放大器的高频特性变坏,使带宽变窄。因此,应该根据系统的具体要求,适当地选择前置放大器的

电路形式,使之能够兼顾噪声和带宽两方面要求。前置放大器的电路类型包括:低阻型前置放大器、高阻型前置放大器和跨阻型前置放大器[13]。

5.1低阻型前置放大器

低输入阻抗前置放大器(如图1.4所示)采用变压器耦合、晶体管共基极电路、并联负反馈及多个晶体管并联等作为放大器的输入级。光探测器直接与放大器连接,具有宽带和动态范围大等优点,但因放大器的等效输入阻抗低,使载噪比受到影响。低输入阻抗前置放大器如下图:

5.2 高阻型前置放大器

如图1.5所示,对于阻抗特别高的光电探测器,必须

采用场效应管作为第一级输入电路。由于放大器的等效输入阻抗高,具有载噪比高,灵敏度高等优点,但其宽带和动态范围受到影响,需要附加均衡电路以改善频

率响应。高阻型前置放大器如下图:

5.3 跨阻型前置放大器

对于具有恒流源特性的光电探测器,采用高阻负载将有利于获得大的信号电压,故希望采用高阻放大器。但高负载电阻与探测器分布电容和放大器输入电容将增加RC时间常量,影响系统的高频响应,并使其动态范围减小,通常采用跨阻放大器或并联反馈放大器克服

这一缺点,它是光纤系统中常采用的前级放大电路。这种连接方式具有载噪比高,灵敏度高和频带较宽等优点,但放大器设计较复杂,且负反馈阻值限制了放大器的增益。跨阻放大器的结构框图可以用下图表示。由

基本放大器和一个跨接在输入输出端之间的电阻构成。这种放大器利用电阻Rf提供电压并联负反馈,减小了

放大器的输入阻抗,增加了带宽。跨阻型前置放大器如下图

综合分析:

由于各种连接方式的都各自有其优缺点,因此,在选择光探测器与前置放大器的连接方式时,要视具体应用要求而定。光电探测系统中,探测器输出的电信号通常很微弱,一般为μV数量级,只有经过充分放大和

处理后才能记录下来。因此前置放大的设计是整个信号处理电路的一个重要环节。检测系统前级放大器的设计对整个系统性能起决定性作用。在微弱信号探测研究中不仅要进行后级放大和滤波环节的设计与改善,而且前级信号的精确设计也非常重要。因为在后级电

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

微弱信号检测技术 练习思考题

《微弱信号检测技术》练习题 1、证明下列式子: (1)R xx(τ)=R xx(-τ) (2)∣ R xx(τ)∣≤R xx(0) (3)R xy(-τ)=R yx(τ) (4)| R xy(τ)|≤[R xx(0)R yy(0)] 2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α?1,τo是信号返回的时间。但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。 (1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ); (2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。 3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少? 4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。 5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5?10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。 6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。 8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。 9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。请设法进行噪声匹配。(有多种答案) 10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

微弱信号相关检测

微弱信号相关检测 前言 随着现代科学研究和技术的发展,人们越来越需要从强噪声中检测出有用的微弱信号,于是逐渐形成了微弱信号检测这门新兴的科学技术学科,其应用范围遍及光学、电学、磁学、声学、力学、医学、材料等领域。微弱信号检测技术是利用电子学、信息论、计算机及物理学的方法,分析噪声产生的原电子学、信息论、计算机及物理学的方法,分析噪声产生的原因和规律,研究被测信号的特点与相关性,检测被噪声淹没的微弱有用信号,或用一些新技术和新方法来提高检测系统输出信号的信噪比,从而提取有用信号。微弱信号检测所针对的检测对象,是用常规和传统方法不能检测到的微弱量。对它的研究是发展高新技术,探索及发现新的自然规则的重要手段,对推动相关领域的发展具有重要的应用价值。 目前,微弱信号检测的原理、方法和设备已经成为很多领域中进行现代科学技术研究不可缺少的手段。显然,对微弱信号检测理论的研究,探索新的微弱信号检测方法,研制新的微弱信号检测设备是目前检测技术领域的一大热点。 1.概述 微弱信号是测量技术中的一个综合性技术分支,它利用电子学,信息论和物理论的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检测并恢复被背景噪声所掩盖的微弱信号,微弱信号的检测重点是如何从强噪声中提取有用信号,探测运用新技术和新方法来提高检测系统中的信噪比。 在检测淹没在背景噪声中的微弱信号时,必须对信号进行放大,然而由于微弱信号本身的涨落,背景和放大器噪声的影响,测量灵敏度会受到限制。因此,微弱信号的检测有以下三个特点:(1)需要噪声系数尽量小的前置放大器,并根据源阻抗与工作频率设计最佳匹配(2)需要研制适合微弱信号检测原理并能满

微弱信号检测装置(实验报告)

微弱信号检测装置 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图 1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。

方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。 方案二:采用TI公司提供的MSP430G2553作为控制芯片。由于MSP430G2553资源配置丰富,内部集成了10位AD,可以直接使用,简化电路,程序实现简单。此外还有低功耗,以及性价比高等优点,所以采用该方案。 5 显示电路的方案设计 方案一:采用液晶显示器作为显示电路,液晶显示器显示内容较丰富,可以显示字母数

海洋激光遥感技术综述

海洋激光遥感技术综述 随着国内确立了由海洋经济大国向海洋经济强国转变的发展战略,海洋参数遥感、海洋资源测绘、水下目标探测等领域的新原理及关键技术研究日益受到关注。利用上述研究成果获得海洋水体特征参数(如声速、温度、盐度、折射率、体粘滞系数等),可为研究全球气候和生态环境体系,改善海洋环境、海洋灾害预警与海洋气象预报准确度,研究全球气候变暖对策等基础科学领域提供可靠的数据支持;也为我国在民生经济领域对海洋信息的探索与研究,以及对海洋资源的全方位、高效益和可持续地开发与利用具有重要的研究价值和显著的社会效益;特别对我国海军新的战略需求、海上利益保障和积极探索全球全域作战的战略战术提供技术保障。目前,声学探测手段在海洋探测领域一直占据着统治地位。然而,声波在海水中的传播速度不仅受海水的盐度、温度和水压等环境因素的影响较大,而且还受到海洋的边界条件和时空变化等的制约。声纳水下成像技术虽然探测距离较远,但图像分辨率较低,不易辨识小目标。此外,传统的接触式光学与电学海洋探测手段存在覆盖面小、测量速度慢、同步测量困难等缺点;而非接触式的星载微波辐射和红外辐

射遥感探测技术虽然可实现快速、大范围探测,但由于水体对微波和红外极高的吸收性,只能获得海水表层信息。因此,急需发展激光遥感新原理及关键技术来弥补海洋探测中的不足,实现高速、高精度、低成本和大面积的海洋探测。 近年来,随着光谱探测、干涉测量、微弱信号检测等技术和水体布里渊散射、拉曼散射理论的迅猛发展,以及相关高性能器件的相继出现,使海洋激光遥感的实时、多参量、高精度探测成为可能。目前,国内研究包括基于光散射理论的频率探测和基于成像的幅度探测的海洋激光遥感新原理及关键技术。众多科研院所在布里渊散射基础理论、布里渊散射谱信息获取技术、布里渊激光雷达探测水温、海洋水体特征参量获取、水体气泡、海洋地形地貌等领域开展了大量的基础理论与工程技术方面的研究工作,取得了多项原创性的研究成果。

微弱信号检测放大的原理及应用

《微弱信号检测与放大》 摘要:微弱信号常常被混杂在大量的噪音中 ,改善信噪比就是对其检测的目的,从而恢复信号的幅度。因为信号具备周期性、相关性,而噪声具有随机性,所以采用相关检测技术时可以把信号中的噪声给排除掉。在微弱信号检测程中,一般是通过一定的传感器将许多非电量的微小变化变换成电信号来进行放大再显示和记录的。由于这些微小变化通过传感器转变成的电信号也十分微弱,可能是VV甚至V或更少。对于这些弱信号的检测时,噪声是其主要干扰,它无处不在。微弱信号检测的目的是利用电子学的、信息论的和物理学的方法分析噪声的原因及其统计规律研究被检测量信号的特点及其相干性利用现代电子技术实现理论方法过程,从而将混杂在背景噪音中的信号检测出来。 关键词:微弱信号;检测;放大;噪声 1前言 测量技术中的一个综合性的技术分支就是微弱信号检测放大,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。这门技术研究的重点是如何从强噪声中提取有用信号,从而探索采用新技术和新方法来提高检测输出信号的信噪比。 微弱信号检测放大目前在理论方面重点研究的内容有: a.噪声理论和模型及噪声的克服途径; b.应用功率谱方法解决单次信号的捕获; c.少量积累平均,极大改善信噪比的方法; d.快速瞬变的处理; e.对低占空比信号的再现; f.测量时间减少及随机信号的平均; g.改善传感器的噪声特性; h.模拟锁相量化与数字平均技术结合。 2.微弱信号检测放大的原理 微弱信号检测技术就是研究噪声与信号的不同特性,根据噪声与信号的这些特性来拟定检测方法,达到从噪声中检测信号的目的。微弱信号检测放大的关键在于抑制噪声恢复、增强和提取有用信号即提高其信噪改善比SNIR 。根据下式信噪改善比(SNIR)定义

微弱信号检测装置(国科大电子电路大作业)要点

目录 摘要 (1) Abstract (1) 第一章绪论 (2) 1.1 微弱信号检测技术概述 (2) 1.2 信号检测的方法及微弱信号的特点 (2) 1.2.1 常规小信号的检测方法 (2) 1.2.2 微弱信号的检测方法 (4) 1.2.3 微弱信号的特点 (4) 1.3 本文的主要工作 (5) 第二章微弱信号检测装置设计方案选择与论证 (6) 2.1 方案选择与论证 (6) 2.1.1 系统方案的确定 (6) 2.1.2移相网络设计 (9) 2.2总体方案论述 (9) 第三章基于锁相放大的微弱信号检测装置设计 (10) 3.1 锁相放大器原理 (10) 3.2 移相网络 (10) 3.3 相敏检波器原理分析 (11) 3.4 电路设计 (12) 3.4.1加法器 (12) 3.4.2纯电阻分压网络 (12) 3.4.3前级放大电路模块 (13) 3.4.4带通滤波器 (13) 3.4.5相敏检波器 (13) 第四章仿真分析与程序设计 (16) 4.1 仿真分析 (16) 4.1.1 输入信号波形(前置两级放大电路输入波形) (16) 4.1.2 经过前置放大电路和带通滤波器后输出波形 (16) 4.1.3 参考信号输入输出波形 (17) 4.1.4 LM311过零比较器输出波形 (18) 4.1.5 开关乘法器输出波形 (18) 4.1.6 低通滤波输出波形 (19) 4.2 程序设计 (20) 第五章实物展示与测试方案及结果 (21) 5.1 实物展示 (21) 5.2 测试方案与测试结果 (21) 5.2.1 测试仪器 (21) 5.2.2 测试方案 (21) 5.3测试结果及分析 (23) 5.4 总结 (23)

微弱信号检测技术概述

1213225 王聪 微弱信号检测技术概述 在自然现象和规律的科学研究和工程实践中, 经常会遇到需要检测毫微伏量级信号的问题, 比如测定地震的波形和波速、材料分析时测量荧光光强、卫星信号的接收、红外探测以及电信号测量等, 这些问题都归结为噪声中微弱信号的检测。在物理、化学、生物医学、遥感和材料学等领域有广泛应用。微弱信号检测技术是采用电子学、信息论、计算机和物理学的方法, 分析噪声产生的原因和规律, 研究被测信号的特点和相关性, 检测被噪声淹没的微弱有用信号。微弱信号检测的宗旨是研究如何从强噪声中提取有用信号, 任务是研究微弱信号检测的理论、探索新方法和新技术, 从而将其应用于各个学科领域当中。微弱信号检测的不同方法 ( 1) 生物芯片扫描微弱信号检测方法 微弱信号检测是生物芯片扫描仪的重要组成部分, 也是生物芯片技术前进过程中面临的主要困难之一, 特别是在高精度快速扫描中, 其检测灵敏度及响应速度对整个扫描仪的性能将产生重大影响。 随着生物芯片制造技术的蓬勃发展, 与之相应的信号检测方法也迅速发展起来。根据生物芯片相对激光器及探测器是否移动来对生物芯片进行扫读, 有扫描检测和固定检测之分。扫描检测法是将激光器及共聚焦显微镜固定, 生物芯片置于承片台上并随着承片台在X 方向正反线扫描和r 方向步进向前运动, 通过光电倍增管检测激发荧光并收集数据对芯片进行分析。激光共聚焦生物芯片扫描仪就是这种检测方法的典型应用, 这种检测方法灵敏度高, 缺点是扫描时间较长。 固定检测法是将激光器及探测器固定, 激光束从生物芯片侧向照射, 以此解决固定检测系统的荧光激发问题, 激发所有电泳荧光染料通道, 由CCD捕获荧光信号并成像, 从而完成对生物芯片的扫读。CCD 生物芯片扫描仪即由此原理制成。这种方法制成的扫描仪由于其可移动, 部件少, 可大大减少仪器生产中的失误, 使仪器坚固耐用; 但缺点是分辨率及灵敏度较低。根据生物芯片所使用的标记物不同, 相应的信号检测方法有放射性同位素标记法、生物素标记法、荧光染料标记法等。其中放射性同位素由于会损害研究者身体, 所以这种方法基本已被淘汰; 生物素标记样品分子则多用在尼龙膜作载体的生物芯片上, 因为在尼龙膜上荧光标记信号的信噪比较低, 用生物素标记可提高杂交信号的信噪比。目前使用最多的是荧光标记物, 相应的检测方法也最多、最成熟, 主要有激光共聚焦显微镜、CCD 相机、激光扫描荧光显微镜及光纤传感器等。 ( 2) 锁相放大器微弱信号检测 常规的微弱信号检测方法根据信号本身的特点不同, 一般有三条途径: 一是降低传感器与放大器的固有噪声, 尽量提高其信噪比; 二是研制适合微弱检测原理并能满足特殊需要的器件( 如锁相放大器) ;三是利用微弱信号检测技术, 通过各种手段提取信号, 锁相放大器由于具有中心频率稳定, 通频带窄,品质因数高等优点得到广泛应用。常用的模拟锁相放大器虽然速度快, 但是参数稳定性和灵活性差, 而且在与微处理器通信时需要转换电路; 传统数字锁相放大器一般使用高速APDC 对信号进行高速采样, 然后使用比较复杂的算法进行锁相运算, 这对微处理器的速度要求很高。现在提出的新型锁相检测电路是模拟和数字处理方法的有机结合, 这种电路将待测信号和参考信号相乘的结果通过高精度型APDC 采样,

基于锁定放大器的微弱信号检测系统设计

龙源期刊网 https://www.wendangku.net/doc/9b12908791.html, 基于锁定放大器的微弱信号检测系统设计 作者:蒋碧波杨振国杨越 来源:《科技经济市场》2017年第04期 摘要:文章设计了一种基于锁定放大器的微弱信号检测系统,该系统以相敏检波器和单片机为核心,结合加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。测试表明,该系统可以有效地用于噪声淹没的微弱信号检测。 关键词:微弱信号;强噪声;相敏检波 0.概述 微弱信号检测技术综合利用电子、信息学、计算机技术和物理学方法,研究导致噪声的原因和规律,以及被测信号的相关性,将被噪声淹没的微弱有用信号检测出来。相较于生物芯片扫描法中扫描时间与检测灵敏度难以兼顾的缺点和微弱振动信号的谐波小波频域提取法的局限性来说,以锁定放大器为核心的微弱信号检测系统更有潜力。 用调制器将直流或渐变信号进行交流放大,可以避免噪声的不利影响;利用相敏检测器检测频率和相位,利用窄带低通滤波器来抑制高频噪声,大大提高了稳定性,这些优点使得该项技术具有更加广阔的应用前景。 1.锁定放大器的原理 锁定放大器由信号通道、参考通道、相敏检波器以及输出电路组成。其基本思想是将与被测信号相同频率和相位关系的参考信号作为基准信号,使得只有与被测信号本身以及与参考信号同频和同相的噪声分量有响应,其他频率的噪声被抑制,从而能提取出有用信号。若增加辅助前置放大器,锁相放大器增益可达220dB,能检测极微弱交流输入信号。锁定放大器输出为直流电压信号,且正比于输入信号幅度及被测信号与参考信号相位差。与一般的带通放大器不同,锁相放大器具有极强的抗噪声能力。 系统的核心相敏检波器(PSD)的本质功能是对两个信号之间的相位进行检波,只有当同频同相信号输入时,为全波整流且输出最大。 2.系统总体设计 本系统总体框图如图1所示,系统由接收信号预处理通道、参考信号预处理通道、相关器及输出电路组成,其中核心部件相关器,它包括开关乘法器和RC低通滤波器;其中加法器由同相放大电路构成,实现噪声与待测信号相加,使得信号淹没在噪声环境中,然后经过衰减器衰减约100倍,模拟接收方收到的信号,并送入以相敏检波器为核心的微弱信号检测电路。参

基于PWM调制的微弱信号检测的毕设论文 (本科).

学校代码: 11059 学号: Hefei University 毕业设计(论文)BACH ELOR DISSERTATION 论文题目:基于PWM调制的微弱信号检测 学位类别:工学学士 年级专业: 作者姓名:孙悟空 导师姓名: 完成时间: 2015年5月8号

中文摘要 工程设计领域中在强噪声环境下对微弱信号的检测始终是个技术难点。因此,全面地去研究、分析微弱信号在时域、频域等方面的特点,以及微弱信号的检测技术,都非常重要且有意义的。 本文首先介绍了在电子设备中元器件内部因为载流粒子的运动及外部因素导致系统噪声产生的原理。阐述了在分析研究微弱信号的方法中,时域分析法是目前应用范围最为广泛的分析方法,比如短时Fourier、小波变换。在此基础上,本文从工程设计的角度重点分析了PWM技术检测微弱信号的原理及实现的方法。PWM检测技术是利用PWM脉冲对微弱信号的调制, 从而达到进行频谱搬移。最后,对于调制后的信号,本文中采用带通、全波整形以及低通等三种方式实现了对待调制信号的解调,并在解调端得到最终的解调信号。 在电路仿真方面本文给出了基于Multisim软件的系统电路仿真图。通过搭建各个模块然后利用仿真电路给出了系统调制解调的各个过程及波形图。利用示波器对系统调制、解调等模块的波形检测可以发现各个模块的信号波形与理论波形基本吻合,系统的设计满足对微弱信号检测的要求。 关键词:微弱信号检测;频谱搬移;PWM调制

Abstract The detection of weak signal in the field of engineering design is always a technical difficulty.. Therefore, it is very important and meaningful to study and analyze the characteristics of weak signal in time domain and frequency domain and the detection technology of weak signal.. In this paper, we first introduce the in Zhongyuan electronic equipment device for load flow particle's motion and external factors lead to system noise principle. In the research of weak signal analysis, time-domain analysis is the most widely used method, such as short time Fourier and wavelet transform.. On this basis, the paper analyzes the principle and the method of the weak signal detection from the angle of the engineering design from the point of view of the engineering design.. PWM detection technology is the use of PWM pulse modulation of the weak signal, so as to achieve the frequency shift. Finally, for modulated signals, this paper by band-pass, full wave shaping and low pass in three ways the treated signal modulation and demodulation, and the final demodulation signal at the end of the demodulation. In the circuit simulation, the paper presents the simulation chart of the system circuit based on Multisim.. By building each module and using the simulation circuit, the process and the waveform of the system modulation and demodulation are given.. Using the oscilloscope system modulation and demodulation module of waveform detection can be found that each module of signal waveform and theoretical waveforms are basically consistent, the design of the system meet the requirements of weak signal detection. .Keyword:Weak signal detection ;Frequency shift ;PWM detection

微弱信号检测课程论文

微弱信号检测 课程论文 题目数字滤波技术的研究 学生姓名 学号 院系 专业 指导教师 二OO九年十二月三十一日

数字滤波技术的研究 摘要:阐述了数字滤波技术的概念和特点,探讨了算术平均值法、积分平均值法、加权算术平均法、中值滤波法、滑动平均值法以及限幅滤波法等几种常用的数字滤波技术。 关键词:数字滤波技术;特点;常用方法。 一、概述 在信号的检测与处理过程中,干扰信号经常会使系统不稳定,有时甚至能带来严重的后果。如果要消除干扰,可用数字字滤波技术对信号进行处理。数字滤波技术是指在软件中对采集到的数据进行消除干扰的处理。一般来说,除了在硬件中对信号采取抗干扰措施之外, 还要在软件中进行数字滤波的处理, 以进一步消除附加在数据中的各式各样的干扰, 使接收到的信号能够真实地反映传递信息的实际情况。 二、数字滤波技术的特点 对于一般的测量仪器, 检测现场传感器所测到的信号不可避免地要混杂一些干扰信号, 尤其在长线传输时更是如此, 在模拟控制系统中, 都是由硬件组成各种各样的滤波器滤除干扰。在数字控制系统里, 除一些必要的硬件滤波器外, 很多滤波任务可由数字滤波器来承担, 数字滤波器实质上是一种数字处理方法, 是由程序实现的数学运算。数字滤波又称软件滤波。数字滤波在数字控制系统里得到成功的应用, 因为与硬件滤波相比, 数字滤波有很多优点。 数字滤波是对数字进行滤波, 因此它不仅适用于测量仪器的现场测量, 也同样适用于其它用到数据处理的领域, 如图象信息, 地形地貌信息等庞大数据的数据处理。 数字滤波的优点是 1. 数字滤波器是由程序实现的, 不需增加硬设备, 且可以多个输人通道共用, 因而成本低。 2. 由于数字滤波是由程序实现的, 不需硬设备, 因而可靠性高, 稳定性好, 同时不存在阻 抗匹配的问题。 3. 使用灵活, 修改方便。 如果在某个回路要更换滤波器, 若采用更换硬件的方法就要更换器件或设备, 更换费用高且很麻烦, 而采用数字滤波的方法只需调用另一个滤波子程序即可。若要更改滤波器参数, 数字滤波器只需修改内存中的某个数据即可, 非常灵活。 4. 可以实现硬件滤波无法实现或难以实现的滤波任务。 以低通滤波器来说, 如果截止频率很低, 便要求滤波器的电阻和电容值很大, 电阻太大, 滤波器的稳定性差, 电容值大则体积大。但对数字滤波来说只是某几个参数不同比如时间常数, 实现起来很方便。另外有些滤波方法用硬件实现是很困难的, 但用数字滤波就很容易比如判断滤波。 三、几种常用的数字滤波方法 1. 算术平均值法

《微弱信号检测技术》教学大纲

《微弱信号检测技术》教学大纲 课程类别:专业任选课课程代码:XZ8269 总学时:48学时学分:3 适用专业:电子信息科学与技术 先修课程:高等数学、模拟电子技术、信号与系统分析、高频电子线路、电子测量与仪器 一、课程的地位、性质和任务 本课程是电子信息科学与技术专业的专业限选课,其涵盖的内容是电子信息科学与技术专业本科学生所应具备的知识结构的重要组成部分。其任务是:通过本课程的学习,使学生掌握有关噪声的概念及低噪声设计方面的基本知识和基本方法,并具有初步的电磁兼容方面的知识与基本的技能,为毕业后从电子系统的设计打下基础。本课程的主要内容包括:噪声与低噪声测试系统的设计、屏蔽与接地技术、锁定放大器的工作原理、取样与取样积分原理、相关检测、自适应噪声抵消等。 二、课程教学的基本要求 要求学生掌握微弱信号的概念、噪声信号的数学分析方法、电子系统噪声的来源、锁定放大器的工作原理、屏蔽与接地技术,了解电磁兼容的概念及相关技术、取样与取样积分原理,一般了解相关检测和自适应噪声抵消。 三、理论教学内容与学时分配 1.噪声与低噪声设计(10学时) 噪声的基本概念;电阻的热噪声和过剩噪声;半导体器件的噪声特性;低噪声放大器设计;微弱信号检测系统的屏蔽与接地技术;电磁兼容的基本概念及基本方法。 2.锁定放大器的工作原理(16学时) 相关函数和相关检测;锁定放大器概述;锁定放大器中的相关器;锁定放大器中的同步积分器;旋转电容滤波器;几种典型的锁定放大器;锁定放大器的动态范围及动态协调;锁定放大器的应用。 3.取样与取样积分原理(10学时) 取样的物理过程;取样定理;实时取样与变换取样的基本概念;取样积分器原理和工作方式;门积分器的原理分析;几种典型的取样积分器;取样积分器的参数选择及应用;多点信号平均及其发展。 4.相关检测(6学时) 概述;相关函数的实际运算及误差分析;相关函数算法及实现;相关函数的峰点跟踪;相关检测的应用。。 5.自适应噪声抵消(6学时) 自适应噪声抵消原理;最陡下降法;最小均方算法;其他自适应算法;自适应滤波器应用。 四、教学方法的原则建议 教学重点:锁定放大器的原理及典型锁定放大器;相关检测。 教学难点:噪声的数学分析方法;屏蔽与接地技术;电磁兼容的概念及相关技术。 教学方法的原则建议:教学中应注意讲解理论与实际的联系,特别是具体电路和基本技术要重点讲解,务求让学生掌握。 五、考核方式及成绩构成 考核方式:开卷 成绩评定:平时30%,期末考试70%。

小波变换与微弱信号检测

一、引言 “微弱信号”不仅意味着信号的幅度很小,而且主要指的是被噪声淹没的信号,“微弱”是相对噪声而言的。微弱信号检测技术不同于一般的检测技术,它注重的不是传感器的物理模型和传感原理、相应的信号转换电路和仪表实现方法,而是如何抑制噪声和提高信噪比,可以说,微弱信号检测技术是一门专门抑制噪声的技术[1]。 目前已经得到广泛应用的微弱信号检测方法有时域方法和频域方法两大类,其中时域方法有相关检测、锁定放大、取样积分和数字式平均;频域方法主要是功率谱估计。但当被检测的信号非常微弱时,信号经上述方法分析处理后,有可能被测信号功率仍然小于噪声功率,甚至有可能仍然相当微弱,比噪声小几个数量级甚至被噪声淹没,或者在某些特定场合下噪声不理想,不能在看成白噪声时,利用上述检测方法就有一定的局限性了。而小波变换是一种变分辨率的时域分析方法,小波应用于降噪、重建与数据压缩等方面国内外研究已取得一定的成果。将小波变换引入微弱信号检测领域,可以充分发挥小波变换的优势,利于微弱信号检测技术的进一步推广和应用。本文主要由三部分组成:小波变换降噪原理分析,小波降噪相关仿真实验和小波降噪应用于微弱信号检测原理和相关算法。 二、小波变换降噪原理分析 小波分析的地位在数学界是独一无二的。小波分析从本质上讲是对一个信号进行投影,并在特定空间内按照称之为小波的基函数对数学表达式的展开和逼近,寻求最小个数的函数表示。小波分析是调和分析发展史上里程碑式的进展,是对Fourier 分析的重要补充和发展。它一方面保留了Fourier 分析的优点,更重要的是克服了Fourier 分析不能做局部化的不足[3]。 2.1小波变换的基本原理 小波分析是一种信号的时间尺度(时间-频率)的分析方法。 设)(t ψ为一平方可积函数,其Fourier变换)(?w ψ满足允许条件 ∞<=∫dw w w C R 2)(?ψψ时,称)(t ψ为小波母函数。将小波母函数进行伸缩和平移后得:(1 )(,a b t a t b a ?=ψψ,称该式为一个小波序列,其中a 称为尺度因子,b 为平移因子,a 1为归一化因子。对任意的函数)()(2R L t f ∈,则其连续小波变换定义为: dt a b t t f a b a W R f ( )(1 ),(??=∫ψ0,,≠∈a R b a (1)小波逆变换为:db a b t a b a W a da C t f f )(1),(1)(2?×=∫∫+∞∞?+∞∞?ψψ(2)

微弱信号检测

微弱信号检测电路实验报告 课程名称:微弱信号检测电路 专业名称:电子与通信工程___年级:_______ 学生姓名:______ 学号:_____ 任课教师:_______

微弱信号检测装置 摘要:本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下,识别出已知频率的微弱正弦波信号,并将其放大。该系统由加法器、纯电阻分压网络、微弱信号检测电路组成。其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路完成微小信号的检测。本系统是以相敏检波器为核心,将参考信号经过移相器后,接着通过比较器产生方波去驱动开关乘法器CD4066,最后通过低通滤波器输出直流信号检测出微弱信号。经最终的测试,本系统能较好地完成微小信号的检测。 关键词:微弱信号检测锁相放大器相敏检测强噪声

1系统设计 1.1设计要求 设计并制作一套微弱信号检测装置,用以检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。整个系统的示意图如图1所示。正弦波信号源可以由函数信号发生器来代替。噪声源采用给定的标准噪声(wav文件)来产生,通过PC 机的音频播放器或MP3播放噪声文件,从音频输出端口获得噪声源,噪声幅度通过调节播放器的音量来进行控制。图中A、B、C、D和E分别为五个测试端点。 图1 微弱信号检测装置示意 (1)基本要求 ①噪声源输出V N的均方根电压值固定为1V±0.1V;加法器的输出V C =V S+V N,带宽大于1MHz;纯电阻分压网络的衰减系数不低于100。 ②微弱信号检测电路的输入阻抗R i≥1 MΩ。 ③当输入正弦波信号V S 的频率为1 kHz、幅度峰峰值在200mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 (2)发挥部分 ①当输入正弦波信号V S 的幅度峰峰值在20mV ~ 2V范围内时,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ②扩展被测信号V S的频率范围,当信号的频率在500Hz ~ 2kHz范围内,检测并显示正弦波信号的幅度值,要求误差不超过5%。 ③进一步提高检测精度,使检测误差不超过2%。 ④其它(例如,进一步降低V S 的幅度等)。

锁相放大器综述

题目: 锁相放大器的原理及应用 姓名: 单位: 学号: 联系方式:

摘要 锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。本文主要介绍了锁相放大器原理,发展过程,基本组成,重要参数和在各方面的应用。 关键词:锁相放大器,噪声,傅立叶变换

一、锁相放大器的定义 锁相放大器是一种对交变信号进行相敏检波的放大器。它利用和被测信号有相同频率和相位关系的参考信号作为比较基准,只对被测信号本身和那些与参考信号同频(或者倍频)、同相的噪声分量有响应。因此,能大幅度抑制无用噪声,改善检测信噪比。此外,锁相放大器有很高的检测灵敏度,信号处理比较简单,是弱光信号检测的一种有效方法。锁相放大器又称锁定放大器是对正弦信号(含具有窄带特点的调幅信号)进行相敏检波的放大器,它实际上是一个模拟的傅立叶变换器,在强噪声下,利用有用信号的频率值准确测出有用信号的幅值。应用在科学研究的各个领域中:如通讯、工业、国防、生物、海洋等。 二、锁相放大器的历史 上世纪六十年代美国公司研制出第一台利用模拟电路实现微弱正弦信号测量的锁相放大器,使微弱信号检测技术突破性飞越,为解决大量电子测量做出贡献,在物质表面组份分析以及表面电子能态研宄方面有重大意义。自上世纪后期开始,国内外越来越多的人开始研宄锁相放大器,随着科技的发展,越来越多性能优良的锁相放大器被研发出来,在各个领域应用广泛,极大程度上推动了各个学科的发展,目前,从提高系统的灵敏度、减小噪声带宽、提高检测精度、改善信噪比上都有了很大的进步。近年来,数字电子技术飞速发展,锁相放大器也在这一契机下,出现了模数混合的锁相放大器与数字锁相放大器,这在一定程度上弥补了由于物理器件造成的模拟锁相放大器的缺点,极大改善了性能,提升了研究层次与扩大了应用范围。国外相较于国内而言,起步要早一些,己研发出一系列锁相放大器。美国公司、美国公司是行业的龙头企业,它们所研制的模拟型:、和数字型:、、、均已有较成熟的发展与应用。其中公司是世界范围内数字锁相放大器研制的佼佼者,该公司的产品在到的频率带宽内可测,具有自动获取、自动补偿功能,具有谐波抑制功能、度的相位分辨率和大于的动态保留,时间常数位从到可调,它的数字信号处理设计使它具有很大的动态存储,这就减少了使用带通滤波器时带进的噪声以及系统的不稳定性。就国内而言,南京大学唐鸿宾等对锁相放大器的研宄起步较早,研发出了系列锁相放大器,该校微弱信号检测中心顺势

微弱信号检测学习总结分析方案

微弱信号检测学习总结报告 1本课程的基本构成 本课程目录: 第1章微弱信号检测与随机噪声 第2章放大器的噪声源和噪声特性 第3章干扰噪声及其抑制 第4章锁定放大 第5章取样积分与数字式平均 第6章相关检测 第7章自适应噪声抵消 本课程分为七章: 第一章主要介绍随机噪声的统计特性,是后续各章的理论基础。 第二章主要介绍电路内部固有噪声源及其特性,对各种有源器件的噪声性能进行分析,并阐述低噪声放大器设计中需要考虑的几个问题。 第三章介绍干扰噪声的来源、特点及各种耦合途径,并详细介绍屏蔽和接地对于各种干扰噪声的抑制作用,以及其他一些常用的抗干扰措施和微弱信号检测电路设计原则。 第四~七章分别为锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消,分别介绍这几种方法的理论基础、设计实现以及一些应用实例。 因此本课程<微弱信号检测)基本构成:微弱信号检测与随机噪声,放大器的噪声源和噪声特性、干扰噪声及其抑制、锁定放大、取样积分与数字式平均、相关检测、自适应噪声抵消。 2本课程研究的基本问题 微弱信号是相对背景噪声而言的,其信号幅度的绝对值很小、信噪比很低<远小于1)的一类信号。如果采用一般的信号检测技术,那么会产生很大的测量误差,甚至完全不能检测。微弱信号检测的主要目的是提高信噪比。微弱信号检测是测量技术中的一个综合性的技术分支,它利用电子学、信息论和物理学的方法,分析噪声产生的原因和规律,研究被测信号的特征和相关性,检出并恢复被背景噪声掩盖的微弱信号。微弱信号检测技术研究的重点是:如

何从强噪声中提取有用信号,探索采用新技术和新方法来提高检测系统输出信号的信噪比。 本课程<微弱信号检测)研究噪声的来源和统计特性,分析噪声产生的原因和规律,运用电子学和信号处理方法检测被噪声覆盖的微弱信号,并介绍几种行之有效的微弱信号检测方法和技术。 3学习本课程<微弱信号检测)后了解、掌握了哪些内容 通过对微弱信号这门课程的学习,我掌握的内容主要有以下几个方面: <1)了解了常规小信号检测的手段和方法,即滤波、调制放大与解调、零位法、反馈补偿法。 <2)掌握了随机噪声及其统计特征。 ①随机信号的概率密度函数 对于连续取值的随机噪声,概率密度函数(PDF>P(x>表示的是噪声电压x

相关文档