文档库 最新最全的文档下载
当前位置:文档库 › 数据结构期末考点总结

数据结构期末考点总结

数据结构期末考点总结
数据结构期末考点总结

结构力学知识点复习过程

建筑物和工程设施中承受、传递荷载而起骨架作用的部分称为工程结构,简称为结构。 从几何角度来看,结构可分为三类,分别为:杆件结构、板壳结构、实体结构。 结构力学中所有的计算方法都应考虑以下三方面条件: ①力系的平衡条件或运动条件。 ②变形的几何连续条件。 ③应力与变形间的物理条件(或称为本构方程)。 结点分为:铰结点、刚结点。 铰结点:可以传递力,但不能传递力矩。 刚结点:既可以传递力,也可以传递力矩。 支座按其受力特质分为:滚轴支座、铰支座、定向支座、固定支座。 在结构计算中,为了简化,对组成各杆件的材料一般都假设为:连续的、均匀的、各向同性的、完全弹性或弹塑性的。 荷载是主动作用于结构的外力。 狭义荷载:结构的自重、加于结构的水压力和土压力。 广义荷载:温度变化、基础沉降、材料收缩。 根据荷载作用时间的久暂,可以分为:恒载、活载。 根据荷载作用的性质,可以分为:静力荷载、动力荷载。 结构的几何构造分析 在几何构造分析中,不考虑这种由于材料的应变所产生的变形。 杆件体系可分为两类: 几何不变体系------在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系------在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 自由度:一个体系自由度的个数,等于这个体系运动时可以独立改变的坐标的个数。 一点在平面内有两个自由度(横纵坐标)。 一个刚片在平面内有三个自由度(横纵坐标及转角)。 凡是自由度的个数大于零的体系都是几何可变体系。 一个支杆(链杆)相当于一个约束。可以减少一个自由度。 一个单铰(只连接两个刚片的铰)相当于两个约束。可以减少两个自由度。一个单刚结(刚性结合)相当于三个约束,可以减少三个自由度。 如果在一个体系中增加一个约束,而体系的自由度并不因而减少,则此约束称为多余约束。增加了约束,计算自由度会减少。因为w=s-n . 瞬变体系:本来是几何可变、经微小位移后又成为几何不变的体系称为瞬变体系。 实铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,并且两根链杆能在其中一个刚片上交于一点,所构成的铰就叫实铰。 瞬铰:两个刚片(地基也算一个刚片),如果用两根链杆给链接上,两根链杆在两刚片间没有交于一点,而是在两根链杆的延长线上交于一点,从瞬时微小运动来看,这就是瞬铰了。两根链杆所起的约束作用等效于在链杆交点处上面放了一个单铰的约束作用。通常所起作用为转动。 截面上应力沿杆轴切线方向的合力,称为轴力。轴力以拉力为正。 截面上应力沿杆轴法线方向的合力称为剪力。剪力以绕微段隔离体顺时针转者为正。 截面上应力对截面形心的力矩称为弯矩。在水平杆件中,当弯矩使杆件下部受拉时,弯矩为正。 作轴力图和剪力图要注明正负号。作弯矩图时,规定弯矩图的纵坐标应画在受拉纤维一边,不注明正负号。 通常在桁架的内力计算中,采用下列假定: ①桁架的结点都是光滑的铰结点; ②各杆的轴线都是直线并通过铰的中心; ③荷载和支座反力都作用在结点上。 根据几何构造的特点,静定平面桁架可分为三类:简单桁架,联合桁架,复杂桁架。 在单杆的前提下,当结点无荷载作用时,单杆的内力必为零。此单杆称为零杆。 由链杆和梁式杆组成的结构,称为组合结构。 链杆只受轴力作用;梁式杆除受轴力作用外,还受弯矩和剪力作用。 三铰拱受力特点: ①在竖向荷载作用下,梁没有水平反力,而拱则有推力。 ②由于推力的存在,三铰拱截面上的弯矩比简支梁的弯矩小。弯矩的降低,使拱能更充分地发挥材料的作用。 ③在竖向荷载作用下,梁的截面内没有轴力,而拱的截面内轴力较大,且一般为压力。 合理拱轴线:在固定荷载作用下使拱处于无弯矩、无剪力、而只有轴力作用的轴线。 合理轴线:通常指具有不同高跨比的一组抛物线。 影响线 内力影响线:表示单位移动荷载作用下内力变化规律的图形。无论在剪力、弯矩、支座反力的影响线图中都需要标上正负号。影响线是研究移动荷载最不利位置和计算内力最大值(或最小值)的基本工具。 荷载:特定单位移动荷载P=1 固定、任意荷载最不利位置:如果荷载移动到某个位置,使某量Z达到最大值,则此荷载位置称为最不利位置。 影响线的一个重要作用,就是用来确定荷载的最不利位置。 定出荷载最不利位置判断的一般原则是:应当把数量大、排列密的荷载放在影响线竖距较大的部位。 计算结构的位移目的有两个: ①一个目的是验算结构的刚度,即验算结构的位移是否超过允许的位移限值。 ②另一个目的是为超静定结构的内力分析打下基础。 产生位移的原因主要有下列三种: ①荷载作用②温度变化和材料胀缩③支座沉降和制造误差 一组力可以用一个符号P表示,相应的位移也可用一个符号Δ表示,这种夸大了的力和位移分别称为广义力和广义位移。 图乘法的应用条件:①杆段应是等截面直杆段。②两个图形中至少应有一个是直线,标距y0 应取自直线图中。 互等定理包括四个普遍定理:①功的互等定理②位移互等定理 ③反力互等定理④位移反力互等定理。 3、对称结构就是指: ①结构的几何形式和支承情况对某轴对称。 ②杆件截面和材料性质也对此轴对称。(因而杆件的截面刚度EI对此轴对称) 4、对称荷载:对称荷载绕对称轴对折后,左右两部分的荷载彼此重合(作用点相对应、数值相等、方向相同) 反对称荷载:反对称荷载绕对称轴对折后,左右两部分的荷载正好相反(作用点相对应、数值相等、方向相反) 超静定结构有一个重要特点,就是无荷载作用时,由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用也可以产生内力。 超静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移也可以产生内力。 静定结构:由于其他因素(如:支座移动、温度改变、材料收缩、制造误差)的作用可以产生位移但不能产生内力。 力法:多余未知力静定结构变形协调(位移相等) 位移法:结构独立结点位移(角、线位移)超静定单杆(是用位移表示的)平衡方程 2、系数EAi /Li是使杆端产生单位位移时所需施加的杆端力,称为杆件的刚度系数。 体系的自由度指的是确定物体位置所需要的最少坐标数目。 拱的基本特点是在竖向荷载作用下会产生水平支座反力。 .静定结构的特性:(1)静定结构的全部约束反力与内力都可以用静力平衡方程求得。(2)温度变化、支座位移不引起静定结构的内力。3)当一个平衡力系作用在静定结构的某一自身几何不变的杆上时,静定结构只在该力系作用的杆段内产生内力。(4).作用在静定结构的某一自身为几何不变的杆 段上的某一荷载,若用在该段上的一个等效 力系来代替,则结构仅在该段上的内力发生 变化,其余部分内力不变。 1.平面杆件结构分类? 梁、刚架、拱、桁架、组合结构。 2.请简述几何不变体系的俩刚片规则。 两刚片用一个铰和一根不通过该铰链中心的链杆或不全交于一点也不全平行的三根链杆相联,则组成的体系是几何不变的,并且没有多余约束。 3.请简述几何不变体系的三刚片规则。 三刚片用不共线的三个铰两两相联或六根链杆两两相联,则组成的体系是几何不变体系,且没有多余约束。 4.从几何组成分析上来看什么是静定结构,什么是超静定结构?(几何特征) 无多余约束的几何不变体系是静定结构,有多余约束的几何不变体系是超静定结构,有几个多余约束,即为几次超静定。 5.静定学角度分析说明什么是静定结构,什么是超静定结构? 只需要利用静力平衡条件就能计算出结构全部支座反力和构件内力的结构称为静定结构;全部支座反力和构件内力不能只用静力平衡条件确定的结构称为超静定结构。 6.如何区别拱和曲梁 杆轴为曲线且在竖向荷载作用下能产生水平推力的结构,称为拱;杆轴为曲线,但在竖向荷载作用下无水平推力产生,称为曲梁。 7.合理拱轴的条件? 在已知荷载作用下,如所选择的三铰拱轴线能使所有截面上的弯矩均等于零,则此拱轴线为合理拱轴线。 仅供学习与参考

大学数据结构期末知识点重点总结(考试专用)

.. ;.. 第一章 概论 1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算 2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系 可以用一组数据(结点集合K )以及这些数据之间的 一组二元关系(关系集合R )来表示:(K, R) 结点集K 是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据 关系集R 是定义在集合K 上的一组关系,其中每个关系r (r ∈R )都是K ×K 上的二元关系 3.数据类型 a.基本数据类型 整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char )、指针类型(pointer ) b.复合数据类型 复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型 4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多) 5.四种基本存储映射方法:顺序、链接、索引、散列 6.算法的特性:通用性、有效性、确定性、有穷性 7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化 8.渐进算法分析 a .大Ο分析法:上限,表明最坏情况 b .Ω分析法:下限,表明最好情况 c .Θ分析法:当上限和下限相同时,表明平均情况 第二章 线性表 1.线性结构的基本特征 a.集合中必存在唯一的一个“第一元素” b.集合中必存在唯一的一个“最后元素” c.除最后元素之外,均有唯一的后继 d.除第一元素之外,均有唯一的前驱 2.线性结构的基本特点:均匀性、有序性 3.顺序表 a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度 b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L (设每个元素需占用L 个存储单元) c. 线性表的优缺点: 优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样 缺点:空间难以扩充 d.检索:ASL=【Ο(1)】 e .插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n )】 f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n )】 4.链表 4.1单链表 a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等 b.带头结点的怎么判定空表:head 和tail 指向单链表的头结点 c.链表的插入(q->next=p->next; p->next=q;)【Ο(n )】 d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n )】 e.不足:next 仅指向后继,不能有效找到前驱 4.2双链表 a.增加前驱指针,弥补单链表的不足 b.带头结点的怎么判定空表:head 和tail 指向单链表的头结点 c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;) d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;) 4.3顺序表和链表的比较 4.3.1主要优点 a.顺序表的主要优点 没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利 b.链表的主要优点 无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况 4.3.2应用场合的选择 a.不宜使用顺序表的场合 经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素 b.不宜使用链表的场合 当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相 比其比例较大时,应该慎重选择 第三章 栈与队列 1.栈 a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种 b.应用: 1)数制转换 while (N) { N%8入栈; N=N/8;} while (栈非空){ 出栈; 输出;} 2)括号匹配检验 不匹配情况:各类括号数量不同;嵌套关系不正确 算法: 逐一处理表达式中的每个字符ch : ch=非括号:不做任何处理 ch=左括号:入栈 ch=右括号:if (栈空) return false else { 出栈,检查匹配情况, if (不匹配) return false } 如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式: 计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式: <表达式> ::= <项><项> + | <项> <项>-|<项> <项> ::= <因子><因子> * |<因子><因子>/|<因子> <因子> ::= <常数> ? <常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式 InfixExp 为中缀表达式,PostfixExp 为后缀表达式 初始化操作数栈OP ,运算符栈OPND ;OPND.push('#'); 读取InfixExp 表达式的一项 操作数:直接输出到PostfixExp 中; 操作符: 当‘(’:入OPND; 当‘)’:OPND 此时若空,则出错;OPND 若非空,栈中元 素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若 为‘(’,弹出即可 当‘四则运算符’:循环(当栈非空且栈顶不是‘(’&& 当前运算符优先级>栈顶运算符优先级),反复弹出栈顶运 算符并输入到PostfixExp 中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP ; while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP ; 运算符:退出两个操作数, 计算,并将结果入栈} c.递归使用的场合:定义是递归的;数据结构是递归的;解决问题的方法是递归的 2.队列 a.若线性表的插入操作在一端进行,删除操作在另一端进行,则称此线性表为队列 b.循环队列判断队满对空: 队空:front==rear ;队满:(rear+1)%n==front 第五章 二叉树 1.概念 a. 一个结点的子树的个数称为度数 b.二叉树的高度定义为二叉树中层数最大的叶结点的层数加1 c.二叉树的深度定义为二叉树中层数最大的叶结点的层数 d.如果一棵二叉树的任何结点,或者是树叶,或者恰有两棵非空子树,则此二叉树称作满二叉树 e.如果一颗二叉树最多只有最下面的两层结点度数可以小于2;最下面一层的结点都集中在该层最左边的位置上,则称此二叉树为完全二叉树 f.当二叉树里出现空的子树时,就增加新的、特殊的结点——空树叶组成扩充二叉树,扩充二叉树是满二叉树 外部路径长度E :从扩充的二叉树的根到每个外部结点(新增的空树叶)的路径长度之和 内部路径长度I :扩充的二叉树中从根到每个内部结点(原来二叉树结点)的路径长度之和 2.性质 a. 二叉树的第i 层(根为第0层,i ≥0)最多有2^i 个结点 b. 深度为k 的二叉树至多有2k+1-1个结点 c. 任何一颗二叉树,度为0的结点比度为2的结点多一个。n0 = n2 + 1 d. 满二叉树定理:非空满二叉树树叶数等于其分支结点数加1 e. 满二叉树定理推论:一个非空二叉树的空子树(指针)数目等于其结点数加1 f. 有n 个结点(n>0)的完全二叉树的高度为?log2(n+1)?,深度为?log2(n+1)?? g. 对于具有n 个结点的完全二叉树,结点按层次由左到右编号,则有: 1) 如果i = 0为根结点;如果i>0,其父结点编号是 (i-1)/2 2) 当2i+1∈N ,则称k 是k'的父结 点,k'是的子结点 若有序对∈N , 则称k'k ″互为兄弟 若有一条由 k 到达ks 的路径,则 称k 是的祖先,ks 是k 的子孙 2.树/森林与二叉树的相互转换 a.树转换成二叉树 加线: 在树中所有兄弟结点之间加一连线 抹线: 对每个结点,除了其最左孩子外,与其余孩 子之间的连线 旋转: 45° b.二叉树转化成树 加线:若p 结点是双亲结点的左孩子,则将的右孩子,右孩子的右孩子,所有右孩子,都与p 的双亲用线连起来 线 调整:将结点按层次排列,形成树结构 c.森林转换成二叉树 将各棵树分别转换成二叉树 将每棵树的根结点用线相连 为轴心,顺时针旋转,构成二叉树型结构 d.二叉树转换成森林 抹线:将二叉树中根结点与其右孩子连线,及沿右分支搜索到 的所有右孩子间连线全部抹掉,使之变成孤立的二叉树 还原:将孤立的二叉树还原成树 3.周游 a.先根(次序)周游 若树不空,则先访问根结点,然后依次先根周游各棵子树 b.后根(次序)周游 若树不空,则先依次后根周游各棵子树,然后访问根结点 c.按层次周游 若树不空,则自上而下自左至右访问树中每个结点 4.存储结构 “左子/右兄”二叉链表表示法:结点左指针指向孩子,右结点指向右兄弟,按树结构存储,无孩子或无右兄弟则置空 5. “UNION/FIND 算法”(等价类) 判断两个结点是否在同一个集合中,查找一个给定结点的根结点的过程称为FIND 归并两个集合,这个归并过程常常被称为UNION “UNION/FIND ”算法用一棵树代表一个集合,如果两个结点在同一棵树中,则认为它们在同一个集合中;树中的每个结点(除根结点以外)有仅且有一个父结点;结点中仅需保存父指针信息,树本身可以 存储为一个以其结点为元素的数组 6.树的顺序存储结构 a. 带右链的先根次序表示法 在带右链的先根次序表示中,结点按先根次序顺序存储在一片连续的存储单元中 每个结点除包括结点本身数据外,还附加两个表示结构的信息字段,结点的形式为: info 是结点的数据;rlink 是右指针,指向结点的下一个兄弟;ltag 是一个左标记,当结点没有子结点(即对应二 叉树中结点没有左子结点时),ltag 为 1,否则为 0 b. 带双标记位的先根次序表示法 规定当结点没有下一个兄弟(即对应的二叉树中结点没有右子结点时)rtag 为1,否则为0 c. 带双标记位的层次次序表示法 结点按层次次序顺序存储在一片连续的存储单元中 第七章 图 1.定义 a.假设图中有n 个顶点,e 条边: 含有e=n(n-1)/2条边的无向图称作完全图 含有e=n(n-1) 条弧的有向图称作有向完全图 若边或弧的个数e < nlogn ,则称作稀疏图,否则称作稠密图 b. 顶点的度(TD)=出度(OD)+入度(ID) 顶点的出度: 以顶点v 为弧尾的弧的数目 顶点的入度: 以顶点v 为弧头的弧的数目 c.连通图、连通分量 若图G 中任意两个顶点之间都有路径相通,则称此图为连通图 若无向图为非连通图,则图中各个极大连通子图称作此图的连通分量 d.强连通图、强连通分量 对于有向图,若任意两个顶点之间都存在一条有向路径,则称此有向图为强连通图 否则,其各个极大强连通子图称作它的强连通分量 e.生成树、生成森林 假设一个连通图有n 个顶点和e 条边,其中n-1条边和n 个顶点构成一个极小连通子图,称该极小连通子图为此连通图的生成树 对非连通图,则将由各个连通分量构成的生成树集合称做此非连通图的生成森林 2.存储结构 a.相邻矩阵表示法 表示顶点间相邻关系的矩阵 若G 是一个具有n 个顶点的图,则G 的相邻矩阵是如下定义的n ×n 矩阵: A[i,j]=1,若(Vi, Vj)(或)是图G 的边 A[i,j]=0,若(Vi, Vj)(或)不是图G 的边 b.邻接表表示法 为图中每个顶点建立一个单链表,第i 个单链表中的结点表示依附于顶点Vi 的边(有向图中指以Vi 为尾的弧)(建立单链表时按结点顺序建立) 3.周游 a. 深度优先周游: 从图中某个顶点V0出发,访问此顶点,然后依次从V0的各个未被访问的邻接点出发,深度优先搜索遍历图中的其余顶点,直至图中所有与V0有路径相通的顶点都被访问到为止 b. 广度优先周游: 从图中的某个顶点V0出发,并在访问此顶点之后依次访问V0的所有未被访问过的邻接点,随后按这些顶点被访问的先后次序依次访问它们的邻接点,直至图中所有与V0有路径相通的顶点都被访问到为止,若此时图中尚有顶点未被访问,则另选图中一个未曾被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止 4.拓扑排序 拓扑排序的方法是:1)选择一个入度为0的顶点且输出之 2)从图中删掉此顶点及所有的出边 3)回到第1步继续执行,直至图空或者图不空但找不到无前驱(入度为0)的顶点为止 5.单源最短路径(Dijkstra 算法) 6.每对顶点间的最短路径(Floyd 算法) 7.最小生成树 a.Prim 算法 b.Kruskal 算法 c.两种算法比较:Prim 算法适合稠密图,Kruskal 算法适合稀疏图 第八章 内排序 算法 最大时间 平均时间 直接插入排序 Θ(n2) Θ(n2) 冒泡排序 Θ(n2) Θ(n2) 直接选择排序 Θ(n2) Θ(n2) Shell 排序 Θ(n3/2) Θ(n3/2) 快速排序 Θ(n2) Θ(nlog n) 归并排序 Θ(nlog n) Θ(nlog n) 堆排序 Θ(nlog n) Θ(nlog n) 桶式排序 Θ(n+m) Θ(n+m) 基数排序 Θ(d ·(n+r)) Θ(d ·(n+r)) 最小时间 S(n) 稳定性 Θ(n) Θ(1) 稳定 Θ(n) Θ(1) 稳定 Θ(n2) Θ(1) 不稳定 Θ(n3/2) Θ(1) 不稳定 Θ(nlog n) Θ(log n) 不稳定 Θ(nlog n) Θ(n) 稳定 Θ(nlog n) Θ(1) 不稳定 Θ(n+m) Θ(n+m) 稳定 Θ(d ·(n+r)) Θ(n+r) 稳定 第十章 检索 1.平均检索长度(ASL )是待检索记录集合中元素规模n 的函数, 其定义为: ASL= Pi 为检索第i 个元素的概率;Ci 为找到第i 个元素所需的比较次数 2.散列 a.除余法 用关键码key 除以M(取散列表长度),并取余数作为散列地址 散列函数为:hash(key) = key mod M b.解决冲突的方法 开散列方法:把发生冲突的关键码存储在散列表主表之外(在主表外拉出单链表) 闭散列方法:把发生冲突的关键码存储在表中另一个位置上 c.线性探查 基本思想:如果记录的基位置存储位置被占用,就在表中下移,直到找到一个空存储位置;依次探查下述地址单元:d0+1,d0+2,...,m-1,0, 1,..., d0-1;用于简单线性探查的探查函数是:p(K, i) = i d.散列表的检索 1.假设给定的值为K ,根据所设定的散列函数h ,计算出散列地址h(K) 2. 如果表中该地址对应的空间未被占用,则检索失败,否则将该地址中的值与K 比较 3. 若相等则检索成功;否则,按建表时设定的处理冲突方法查找探查序列的下一个地址,如此反复下去,直到某个地址空间未被占用(可以插入),或者关键码比较相等(有重复记录,不需插入)为止 e.散列表的删除:删除后在删除地点应加上墓碑(被删除标记) f.散列表的插入:遇到墓碑不停止,知道找到真正的空位置 第十一章 索引技术 1.概念: a.主码:数据库中的每条记录的唯一标识 b.辅码:数据库中可以出现重复值的码 2.B 树 a.定义:B 树定义:一个m 阶B 树满足下列条件: (1) 每个结点至多有m 个子结点; (2) 除根和叶外 其它每个结点至少有??个子结点; (3) 根结点至少有两个子结点 例外(空树,or 独根) (4) 所有的叶在同一层,可以有??- 1到m-1个关键码 (5) 有k 个子结点的非根结点恰好包含k-1个关键码 b.查找 在根结点所包含的关键码K1,…,Kj 中查找给定的关键码值(用顺序检索(key 少)/二分检索(key 多));找到:则检索成功;否则,确定要查的关键码值是在某个Ki 和Ki+1之间,于是取pi 所指结点继续查找;如果pi 指向外部结点,表示检索失败. c.插入 找到的叶是插入位置,若插入后该叶中关键码个数

数据结构实验报告

数据结构实验报告 一.题目要求 1)编程实现二叉排序树,包括生成、插入,删除; 2)对二叉排序树进行先根、中根、和后根非递归遍历; 3)每次对树的修改操作和遍历操作的显示结果都需要在屏幕上用树的形状表示出来。 4)分别用二叉排序树和数组去存储一个班(50人以上)的成员信息(至少包括学号、姓名、成绩3项),对比查找效率,并说明在什么情况下二叉排序树效率高,为什么? 二.解决方案 对于前三个题目要求,我们用一个程序实现代码如下 #include #include #include #include "Stack.h"//栈的头文件,没有用上 typedefintElemType; //数据类型 typedefint Status; //返回值类型 //定义二叉树结构 typedefstructBiTNode{ ElemType data; //数据域 structBiTNode *lChild, *rChild;//左右子树域 }BiTNode, *BiTree; intInsertBST(BiTree&T,int key){//插入二叉树函数 if(T==NULL) { T = (BiTree)malloc(sizeof(BiTNode)); T->data=key; T->lChild=T->rChild=NULL; return 1; } else if(keydata){ InsertBST(T->lChild,key); } else if(key>T->data){ InsertBST(T->rChild,key); } else return 0; } BiTreeCreateBST(int a[],int n){//创建二叉树函数 BiTreebst=NULL; inti=0; while(i

(完整版)非常实用的数据结构知识点总结

数据结构知识点概括 第一章概论 数据就是指能够被计算机识别、存储和加工处理的信息的载体。 数据元素是数据的基本单位,可以由若干个数据项组成。数据项是具有独立含义的最小标识单位。 数据结构的定义: ·逻辑结构:从逻辑结构上描述数据,独立于计算机。·线性结构:一对一关系。 ·线性结构:多对多关系。 ·存储结构:是逻辑结构用计算机语言的实现。·顺序存储结构:如数组。 ·链式存储结构:如链表。 ·索引存储结构:·稠密索引:每个结点都有索引项。 ·稀疏索引:每组结点都有索引项。 ·散列存储结构:如散列表。 ·数据运算。 ·对数据的操作。定义在逻辑结构上,每种逻辑结构都有一个运算集合。 ·常用的有:检索、插入、删除、更新、排序。 数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。 ·结构类型:由用户借助于描述机制定义,是导出类型。 抽象数据类型ADT:·是抽象数据的组织和与之的操作。相当于在概念层上描述问题。 ·优点是将数据和操作封装在一起实现了信息隐藏。 程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。算法取决于数据结构。 算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。 评价算法的好坏的因素:·算法是正确的; ·执行算法的时间; ·执行算法的存储空间(主要是辅助存储空间); ·算法易于理解、编码、调试。 时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。 渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。 评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。 时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O (n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

结构力学单元复习题第一套、2.doc

结构力学一、二单元复习资料 一、填空题 1.荷载按作用时间久暂分为和两类。 2.结构计算简图中,结点通常简化为结点、结点和组合结点。 杆系结构中联结杆件的基本结点有和两种。 3.刚结点的特点是,各杆件在连接处既无相对错动也无相对,可以传递剪力 和。 4.建筑是关于空间的艺术,建筑物中起到支撑起稳固空间作用的骨架体系被称为,骨架体系中能够承受和传递力的作用的杆件被称为。很多杆件通过约束相联所组成的体系,按照几何形状是否可变可以分为和。 5.杆系结构按其受力特性不同可分为:、拱、、、组合结构、悬索结构。 6.连接n根杆件的复铰相当于个单铰,相当于个约束,一个固定铰支座相当于个约束,一个固定端支座相当于个约束。 7.切断受弯杆后再加入一个单铰,相当于去掉了个约束 8.几何不变体系的三个基本组成规则分别是三刚片规则、规则、规则。9.两刚片用一个铰和_________________相联,组成无多余约束的几何不变体系。 10.平面内一个点和一根链杆自由运动时的自由度数分别等于和。 11.从几何组成上讲,静定和超静定结构都是体系,前者多余约束而后者多余约束。 12.试判断下列图示体系的几何组成性质,图是没有多余约束的几何不变体系, 图是几何可变体系。 (a) (b) (c) 13.下列(a)图体系为几何体系;(b)图体系为几何体系;(c)图体系为体系。其中有多余联系的体系为图中的体系,此体系的自由度为,计算自由度W为。 (a) (b) (c)

二、判断题 1.三刚片用三个铰两两相联必成为几何不变体系。() 2.某结构若计算自由度W≤0,则该结构必是几何不变体系。() 3.当一个体系的计算自由度为零时,必为几何不变体系。() 4.几何不变体系的自由度一定为0,而其计算自由度可能大于0。() 5.两刚片用一个铰和一根不通过此铰的链杆连接,组成没有多余约束的几何不变体系。() 6.瞬变体系由于经微小位移后就变成几何不变体系,所以可以作为结构形式使用。()7.静定结构几何不变且无多余联系。() 8.几何不变体系的计算自由度必定等于零。() 三、单选题 1.下列哪种情况不能组成无多余约束的几何不变体系() A.三刚片以3个铰两两相连,3个铰不在一条直线上; B.两刚片以一个铰和一个链杆相连,链杆不通过铰; C.两刚片以3个链杆相连,3个链杆不平行也不汇交; D.无。 2.图示结构的几何性质为()。 A. 几何不变体,无多余约束 B. 几何不变体,有多余约束 C. 常变体系 D. 瞬变体系 题2图题3图题4图 3.如图所示平面杆件体系为()。 A.几何不变无多余约束体系; B.几何不变有多余约束体系; C.瞬变体系; D.常变体系。 4.如图所示体系为() A.几何不变无多余约束体系 B.几何不变有多余约束体系 C.几何可变体系 D.无法确定5.图示体系为()体系 A.无多余约束几何不变 B.有多余约束几何不变 C.瞬变体系 D.常变体系

数据结构期末总结

您现在的位置:希赛教育首页> 自考学院> 数据结构与算法> 正文 数据结构第三章(栈与队列)习题参考答案https://www.wendangku.net/doc/9b13709668.html,作者:自考频道来源:希赛教育2008年1月5日发表评论进入社区 一、基础知识题 3.1 设将整数1,2,3,4依次进栈,但只要出栈时栈非空,则可将出栈操作按任何次序夹入其中,请回答下述问题: (1)若入、出栈次序为Push(1), Pop(),Push(2),Push(3), Pop(), Pop( ),Push(4), Pop( ),则出栈的数字序列为何(这里Push(i)表示i进栈,Pop( )表示出栈)? (2) 能否得到出栈序列1423和1432?并说明为什么不能得到或者如何得到。 (3)请分析1,2 ,3 ,4 的24种排列中,哪些序列是可以通过相应的入出栈操作得到的。 3.2 链栈中为何不设置头结点? 答:链栈不需要在头部附加头结点,因为栈都是在头部进行操作的,如果加了头结点,等于要对头结点之后的结点进行操作,反而使算法更复杂,所以只要有链表的头指针就可以了。 3.3 循环队列的优点是什么? 如何判别它的空和满? 答:循环队列的优点是:它可以克服顺序队列的"假上溢"现象,能够使存储队列的向量空间得到充分的利用。判别循环队列的"空"或"满"不能以头尾指针是否相等来确定,一般是通过以下几种方法:一是另设一布尔变量来区别队列的空和满。二是少用一个元素的空间。每次入队前测试入队后头尾指针是否会重合,如果会重合就认为队列已满。三是设置一计数器记录队列中元素总数,不仅可判别空或满,还可以得到队列中元素的个数。

3.4 设长度为n的链队用单循环链表表示,若设头指针,则入队出队操作的时间为何? 若只设尾指针呢? 答:当只设头指针时,出队的时间为1,而入队的时间需要n,因为每次入队均需从头指针开始查找,找到最后一个元素时方可进行入队操作。若只设尾指针,则出入队时间均为1。因为是循环链表,尾指针所指的下一个元素就是头指针所指元素,所以出队时不需要遍历整个队列。 3.5 指出下述程序段的功能是什么? (1) void Demo1(SeqStack *S){ int i; arr[64] ; n=0 ; while ( StackEmpty(S)) arr[n++]=Pop(S); for (i=0, i< n; i++) Push(S, arr[i]); } //Demo1 (2) SeqStack S1, S2, tmp; DataType x; ...//假设栈tmp和S2已做过初始化 while ( ! StackEmpty (&S1)) { x=Pop(&S1) ; Push(&tmp,x);

数据结构实验总结报告

数据结构实验总结报告 一、调试过程中遇到哪些问题? (1)在二叉树的调试中,从广义表生成二叉树的模块花了较多时间调试。 由于一开始设计的广义表的字符串表示没有思考清晰,处理只有一个孩子的节点时发生了混乱。调试之初不以为是设计的问题,从而在代码上花了不少时间调试。 目前的设计是: Tree = Identifier(Node,Node) Node = Identifier | () | Tree Identifier = ASCII Character 例子:a(b((),f),c(d,e)) 这样便消除了歧义,保证只有一个孩子的节点和叶节点的处理中不存在问题。 (2)Huffman树的调试花了较长时间。Huffman编码本身并不难处理,麻烦的是输入输出。①Huffman编码后的文件是按位存储的,因此需要位运算。 ②文件结尾要刷新缓冲区,这里容易引发边界错误。 在实际编程时,首先编写了屏幕输入输出(用0、1表示二进制位)的版本,然后再加入二进制文件的读写模块。主要调试时间在后者。 二、要让演示版压缩程序具有实用性,哪些地方有待改进? (1)压缩文件的最后一字节问题。 压缩文件的最后一字节不一定对齐到字节边界,因此可能有几个多余的0,而这些多余的0可能恰好构成一个Huffman编码。解码程序无法获知这个编码是否属于源文件的一部分。因此有的文件解压后末尾可能出现一个多余的字节。 解决方案: ①在压缩文件头部写入源文件的总长度(字节数)。需要四个字节来存储这个信息(假定文件长度不超过4GB)。 ②增加第257个字符(在一个字节的0~255之外)用于EOF。对于较长的文件,

会造成较大的损耗。 ③在压缩文件头写入源文件的总长度%256的值,需要一个字节。由于最后一个字节存在或不存在会影响文件总长%256的值,因此可以根据这个值判断整个压缩文件的最后一字节末尾的0是否在源文件中存在。 (2)压缩程序的效率问题。 在编写压缩解压程序时 ①编写了屏幕输入输出的版本 ②将输入输出语句用位运算封装成一次一个字节的文件输入输出版本 ③为提高输入输出效率,减少系统调用次数,增加了8KB的输入输出缓存窗口 这样一来,每写一位二进制位,就要在内部进行两次函数调用。如果将这些代码合并起来,再针对位运算进行一些优化,显然不利于代码的可读性,但对程序的执行速度将有一定提高。 (3)程序界面更加人性化。 Huffman Tree Demo (C) 2011-12-16 boj Usage: huffman [-c file] [-u file] output_file -c Compress file. e.g. huffman -c test.txt test.huff -u Uncompress file. e.g. huffman -u test.huff test.txt 目前的程序提示如上所示。如果要求实用性,可以考虑加入其他人性化的功能。 三、调研常用的压缩算法,对这些算法进行比较分析 (一)无损压缩算法 ①RLE RLE又叫Run Length Encoding,是一个针对无损压缩的非常简单的算法。它用重复字节和重复的次数来简单描述来代替重复的字节。尽管简单并且对于通常的压缩非常低效,但它有的时候却非常有用(例如,JPEG就使用它)。 变体1:重复次数+字符 文本字符串:A A A B B B C C C C D D D D,编码后得到:3 A 3 B 4 C 4 D。

数据结构复习要点(整理版).docx

第一章数据结构概述 基本概念与术语 1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。 2. 数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。 (补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。 ) 3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也 叫做属性。) 4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。 数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。 依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种: 1. 集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。 2. 线性结构:结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。 3. 树形结构:结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素 (根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。 4. 图状结构:结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。 (2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构: 1. 顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。 2. 链式存储结构:借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。 5. 时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n 无关系T(n)=O(1) 2. 线性阶:算法的时间复杂度与问题规模 n 成线性关系T(n)=O(n) 3. 平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++ 时间复杂度的大小比较: O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

相关文档
相关文档 最新文档