文档库 最新最全的文档下载
当前位置:文档库 › 玻尔兹曼系统下经典统计和半量子统计

玻尔兹曼系统下经典统计和半量子统计

玻尔兹曼系统下经典统计和半量子统计

格子Boltzmann

格子Boltzmann 方法模拟C/C 复合材料 颗粒沉积过程 罗思璇 () Particle Deposition Process Simulation in C/C Composites by Lattice-Boltzmann Method Luo Sixuan () Abstract: Lattice Boltzmann method is used here to study the particle deposition process on C/C composites surface. This method considered the boudary condition change during particle deposition. Finally, the deposition pattern is obtained. Keywords: LB Method; flow-particle coupling; C/C composites; deposition 摘要:本文使用格子Boltzmann 方法研究了固体火箭发动机中C/C 复合材料表面上颗粒的沉积模态。该方法考虑了沉积过程中边界形貌的变化对流场的影响,最终得到了颗粒在碳纤维表面的沉积形态。 关键词:LB 方法;流固耦合;C/C 复合材料;沉积 0 引言 C/C 复合材料是目前新材料领域重点研究和开发的一种新型超高温热结构材料,具有密度小,比强度大、热膨胀系数低、热导率高等特点,是理想的航空航天高温材料[1, 2]。 C/C 复合材料在工作过程中其表面流过的工质为高温燃气。高温燃气中通常带有燃烧产生的固体颗粒,如选用较高比冲的含铝推进剂时会产生一定量的凝聚相(Al2O3颗粒)。固体颗粒在C/C 复合材料表面的沉积、冲刷及烧蚀会造成材料内型面的破坏,甚至影响气动性能。 本文使用格子Boltzmann 方法模拟C/C 复合材料中碳纤维上颗粒沉积过程及形态。 1模拟流场的格子Boltzmann 模型 格子Boltzmann 方法是近二十年来刚发展起来的,一种以“半晶格分离法”为处理方式的新型热量逐级传递数值方法,最初是在研究电磁场中的流动现象时被提出的,并且该方法可以确定流体域、固体域和温度场在边界处的连续性,十分适合针对复杂几何形状流固耦合传热问题的数值分析。与传统的经典CFD 方法相比,格子波尔兹曼算法具有很多优点。因而近年来受到国内外学者的广泛关注,并迅速在气固两相流和传热等研究领域得到应用。 格子Boltzmann 方法将流体抽象为微观的虚拟颗粒,通过这些颗粒在规则的网格点上进行碰撞和迁移来达到模拟流场的目的。分布函数f i (x ,t )表示t 时刻,x 网格点上,速度为c i 流体颗粒的概率密度,流场的宏观量通过对分布函数进行统计而得到。本文使用D3Q15模型模拟流场,流体宏观密度ρ和动量ρu 计算如下: 10 Q i i f ρ-==∑,1 Q i i i f ρ-==∑u c (1) 本文使用BGK 碰撞算子[3],流场演化方程为: eq (,)(,)[(,)(,)]i i i i i f x t t t f x t f x t f x t τ+??+?-=-c (2) 其中?t 为时间步长,τ为无量纲松弛时间,eq i f 为平衡态分布函数,在D2Q9模型中如下计算:

经典和量子统计物理学的初步认识(高工大作业,第三部分)

西安交通大学 高等工程热力学 报告 学号:XXXXXXXXXX 姓名:XXXXX 专业:工程热物理 班级:XXXXXX 能源与动力工程学院 2015/12/26

经典和量子统计物理学的初步认识 经典统计物理学是建立在经典力学基础上的学科,而量子统计物理学是建立在量子力学基础上的学科,从经典统计到量子统计,它们之间存在着一定的区别和联系,并在一定的条件下可以相互转换。利用经典统计方法推证热力学中的能量均分定理,并结合热容量的定义求解某些系统内能及热容量时,发现其理论值与实际值存在差异,这是经典统计物理难以解决的问题,本文采用量子统计理论做出了合理的解释,从而使理论值和实际值吻合的很好。因此,可以看出经典统计的局限性是量子统计理论建立的基础,量子统计理论很好的补充了经典统计理论的不足。 1. 理想气体物态方程的经典统计推导 在普通物理的热学中,从气体的实验定律(如:玻意耳—马略特定律、查理定律及盖吕萨克定律)出发推导理想气体物态方程,而在理论物理中热力学统计利用经典统计方法仍能给出相应的理论,它是经典统计物理应用的一个典型的实例。对自由粒子而言,其自由度r=3,其坐标表示为(x ,y ,z),与之相对应的动量为(p x ,p y ,p z ),那么它的能量为: 2222x y z p 1==(p +p +p )2m 2m ε()1 将(1)式代入玻耳兹曼系统下的配分函数: 1222x y z l (p +p +p )2m l l z e e β βεωω--==∑∑()2 由于玻耳兹曼系统的特点是每个粒子可以分辨,可看成经典系统,则系统看成连续分布的,即配分函数中的求和变为积分,则有: 131...222(p +p +p )x y z 2m x y z z e dxdydzdp dp dp h β -=??()3 求解积分可得: 3 2122()z V h β =πm ()4 其中V dxdydz =???是气体的体积,根据玻耳兹曼系统广义力的统计表达式类比压强的统计表达式为: 1lnz N P V β?=?()5 将(4)式带入(5)式,求导可得理想气体的压强: NkT P V = ()6

玻尔兹曼分布

玻尔兹曼分布 中文名称:麦克斯韦-玻尔兹曼分布 外文名称:Maxwell Boltzmann distribution 麦克斯韦-玻尔兹曼分布是一个概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。它以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼命名。 物理应用: 麦克斯韦-玻尔兹曼分布形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。麦克斯韦-玻尔兹曼分布通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。 麦克斯韦-玻尔兹曼分布可以用统计力学来推导,它对应于由大量不相互作用的粒子所组成、以碰撞为主的系统中最有可能的速率分布,其中量子效应可以忽略。由于气体中分子的相互作用一般都是相当小的,因此麦克斯韦-玻尔兹曼分布提供了气体状态的非常好的近似。

在许多情况下(例如非弹性碰撞),这些条件不适用。例如,在电离层和空间等离子体的物理学中,特别对电子而言,重组和碰撞激发(也就是辐射过程)是重要的。如果在这个情况下应用麦克斯韦-玻尔兹曼分布,就会得到错误的结果。另外一个不适用麦克斯韦-玻尔兹曼分布的情况,就是当气体的量子热波长与粒子之间的距离相比不够小时,由于有显著的量子效应也不能使用麦克斯韦-玻尔兹曼分布。另外,由于它是基于非相对论的假设,因此麦克斯韦-玻尔兹曼分布不能做出分子的速度大于光速的概率为零的预言。 推导: 麦克斯韦的推导假设了三个方向上的表现都相同,但在玻尔兹曼的一个推导中利用分子运动论去掉了这个假设。麦克斯韦-玻尔兹曼分布可以轻易地从能量的玻尔兹曼分布推出:其中Ni是平衡温度T时,处于状态i的粒子数目,具有能量EI和简并度GI,N是系统中的总粒子数目,k是玻尔兹曼常数。(注意有时在上面的方程中不写出简并度HI。在这个情况下,指标i将指定了一个单态,而不是具有相同能量EI的GI的多重态。)由于速度和速率与能量有关,因此方程1可以用来推出气体的温度和分子的速度之间的关系。这个方程中的分母称为正则配分函数。

统计规律

统计规律 1问题的提出 在统计学中有大数定律如下: 定义11 若L L ,,,,21n ξξξ是随机变量序列,如果存在常数列,使对任意的L L ,,,,21n a a a 0>ε,有 1P lim 1=??? ???????????ε,有 1lim =? ?????

Matlab实现格子玻尔兹曼方法

Matlab实现格子玻尔兹曼方法 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % cylinder.m: Flow around a cyliner, using LBM %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License % as published by the Free Software Foundation; either version 2 % of the License, or (at your option) any later version. % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % You should have received a copy of the GNU General Public % License along with this program; if not, write to the Free % Software Foundation, Inc., 51 Franklin Street, Fifth Floor, % Boston, MA 02110-1301, USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% clear % GENERAL FLOW CONSTANTS lx = 250; ly = 51; obst_x = lx/5+1; % position of the cylinder; (exact obst_y = ly/2+1; % y-symmetry is avoided) obst_r = ly/10+1; % radius of the cylinder uMax = 0.02; % maximum velocity of Poiseuille inflow Re = 100; % Reynolds number nu = uMax * 2.*obst_r / Re; % kinematic viscosity omega = 1. / (3*nu+1./2.); % relaxation parameter maxT = 400000; % total number of iterations tPlot = 5; % cycles % D2Q9 LATTICE CONSTANTS t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; col = [2:(ly-1)]; [y,x] = meshgrid(1:ly,1:lx); obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; obst(:,[1,ly]) = 1;

随机误差统计分布规律.

实验题目:时间测量中的随机误差分布规律 实验目的:用常规仪器(如电子秒表、频率计等)测量时间间隔,通过对时间和频率测量的随机误差分 布,学习用统计方法研究物理现象的过程和研究随机误差分布的规律。 实验原理:1、常用时间测量仪表的简要原理 (1)机械节拍器由齿轮带动摆作周期性运动。 (2)电子节拍器按一定的频率发出有规律的声响和闪光。 (3)电子秒表兼有数种测时功能。电子秒表机芯由CMOS 集成电路组成,用石英晶体振荡器 作时标,一般用六位夜晶数字显示。 (4)V AFN 多用数字测试仪由PMOS 集成元件和100kHz 石英晶体振荡器构成。六档方波脉冲 作为时标信号和闸门时间。 2、统计分布规律和研究 (1)假设在近似消除了系统误差(或系统误差很小,可忽略不计,或系统误差为一恒定值) 的条件下,对时间t 进行N 次等精度测量,当测量次数N 趋于无穷大时,各测量值出现的概率密度分布可用正态分布的概率密度函数表示: 2 22)(21 )(σπ σx x e x f -- = 其中n x x n i i ∑== 1 为测量的算术平均值, 1 )(1 2 --=∑=n x x n i i σ为测量列的标准差, ?-=a a dx x f a P )()( 式中σσσ3,2,=a (2)概率密度分布曲线 求出各小区间中点的正态分布的概率密度值f(x),以f(x)为纵坐标,t 为横坐标,可得概率 密度分布曲线。若此概率密度分布曲线与统计直方图上断相吻合,则可认为测量值是基本符合正态分布的。 实验步骤:1、时间测量 (1)用电子秒表测量机械节拍器的摆动周期(以3个周期为一测量周期)。 (2)将机械节拍器上好发条使其摆动,在等精度条件下重复测量150,记录每次的测量结果。 2、数据进行处理(计算平均值、标准差、作出相应图表、误差分析等)及统计规律研究。 实验器材:电子秒表、机械节拍器

lbm波尔兹曼算法

波尔兹曼方法基本原理 格子Boltzmann 方法是使用简单的微观模型来模拟流体的宏观行为的一种新的方法。格子Boltzmann 方法是建立在微观粒子运动论基础上的数值计算方法。其求解过程一般需要通过编程来实现! 一般来说研究流体的行为有两种方法:一种是从宏观的角度出发,假设流体连续分布于整个流场,注入密度、速度、压力等物理量均是时间可空间的足够光滑的函数。另一种是从微观的角度,从非平衡统计力学的观点出发,假设流体是由大量的微观的例子组成,这些例子遵守力学定律,同时服从统计定律,运用统计的方法来讨论流体的宏观性质。 然而流体是由大量的粒子组成的,当我们从宏观的角度研究流体行为的时候,并没有涉及到单个粒子的行为。通常我们所感兴趣的事代表某个点的宏观量,例如密度、速度、压力。根据连续性假设我们可以推导出N-S 方程,并且利用数学上的微积分知识来求解,然而由于N-S 方程是高度非线性化的偏微分方程,仅仅一些具有简单变界或者比较严格物理闲着的现象才能够得到理论分析界,如果从微观的角度了研究单个粒子的真是行为,对于一个包含大量例子的系统来说粒子的运动方程往往是得不到解的。统计学可以考虑整个系统所有的状态以及处理这个状态的概率来解决这些困难,对于稀薄气体所得到的就是Boltzmann 方程,但是得到的方程还不够,我们还要借助于统计方法得到流体的宏观性质,这就要求解Boltzmann 方程,然而Boltzmann 方程是一非线性微分方程,一般情况下严格求解也是非常困难的。 格子气方法是近年来发展起来的模拟流体力学以及其他系统的比较新的方法,格子气自动机模拟流场,就是将流体及其存在的时间和空间完全离散,给出离散的流体粒子之间相互作用以及迁移的规则。流体只存在于空间网格上,用一系列布尔变量,.....,2,1)(,(b i t x n i =来描述在时刻t 位于x 处节点的每一个速度方向是否有粒子存在,其中b 表示每一个节点的速度方向的数目,粒子在每一个时间步长的演化包括两部分:()a 迁移,粒子沿它的速度方向向距离最近的节点运动;()b 碰撞,当不同的粒子同时到达某个节点时,按照一定的碰撞规则发生碰撞并改变运动的方向,格子气模型具有两重 意义: ()a 尽可能建立一个简单的模型是指能够用来模拟一个有大量粒子组成的系统;()b 反映粒子真实碰撞的本质,这样经过长时间我们可以获得流体的宏观特性。 粒子的演化过程能够用来模拟宏观的流体过程是基于下列事实,即流体的宏观特性是系统内大量粒子整体行为的结果。分子之间的相互作用可以改变流体的传输特性,比如粘度,但是并不改变宏观方程的基本形式。 格子气的HPP 模型与FPH 模型 HPP 模型将流体存在的空间划分为间距为单位长度的正方形网格,将流体想象成许多有质量没有体积的微小粒子组成,在同一时刻同一网格节点上,每一个速度方向最多允许存在一个粒子,每个粒子可以向四个方向的其中之一运动,并且遵守以下碰撞准则:当且仅当只有两个粒子沿相反方向达到某节点时(对头碰撞),它们沿另外的两个方向离开该节点,其他情形则直接穿透,PHP 模型则是将流场划分为间距为单位长度的正三角网格,并且增加了相应的碰撞准则。 格子气的微观方程 为简单起见,以HPP 模型为例,用()x ,t n i 代表在时刻t 位置x 处的节点上第i 个方向的粒子数,则整个布尔场的更新可以写成 ()()()()231312,1++++++-Λ-ΛΛ-Λ-ΛΛ-Λ=++i i i i i i i i i i i n n n n n n n n n e x t n ν

Matlab实现玻尔兹曼晶格模拟

Matlab实现格子玻尔兹曼方法(Lattice Boltzmann Method,LBM)模拟clear % GENERAL FLOW CONSTANTS lx = 250; ly = 51; obst_x = lx/5+1; % position of the cylinder; (exact obst_y = ly/2+1; % y-symmetry is avoided) obst_r = ly/10+1; % radius of the cylinder uMax = 0.02; % maximum velocity of Poiseuille inflow Re = 100; % Reynolds number nu = uMax * 2.*obst_r / Re; % kinematic viscosity omega = 1. / (3*nu+1./2.); % relaxation parameter maxT = 400000; % total number of iterations tPlot = 5; % cycles % D2Q9 LATTICE CONSTANTS t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; col = [2:(ly-1)]; [y,x] = meshgrid(1:ly,1:lx); obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2; obst(:,[1,ly]) = 1; bbRegion = find(obst); % INITIAL CONDITION: (rho=0, u=0) ==> fIn(i) = t(i) fIn = reshape( t' * ones(1,lx*ly), 9, lx, ly); % MAIN LOOP (TIME CYCLES) for cycle = 1:maxT % MACROSCOPIC VARIABLES rho = sum(fIn); ux = reshape ( ... (cx * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; uy = reshape ( ... (cy * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; % MACROSCOPIC (DIRICHLET) BOUNDARY CONDITIONS

量子力学思考题及解答

量子力学思考题 1、以下说法就是否正确: (1)量子力学适用于微观体系,而经典力学适用于宏观体系; (2)量子力学适用于η不能忽略的体系,而经典力学适用于η可以忽略的体系。 解答:(1)量子力学就是比经典力学更为普遍的理论体系,它可以包容整个经典力学体系。 (2)对于宏观体系或η可以忽略的体系,并非量子力学不能适用,而就是量子力学实际上已经 过渡到经典力学,二者相吻合了。 2、微观粒子的状态用波函数完全描述,这里“完全”的含义就是什么? 解答:按着波函数的统计解释,波函数统计性的描述了体系的量子态。如已知单粒子(不考虑自旋)波函数)(r ? ψ,则不仅可以确定粒子的位置概率分布,而且如粒子的动量、能量等其她力学量的概率分布也均可通过)(r ? ψ而完全确定。由于量子理论与经典理论不同,它一般只能预言测量的统计结果,而只要已知体系的波函数,便可由它获得该体系的一切可能物理信息。从这个意义上说,有关体系的全部信息显然已包含在波函数中,所以说微观粒子的状态用波函数完全描述,并把波函数称为态函数。 3、以微观粒子的双缝干涉实验为例,说明态的叠加原理。 解答:设1ψ与2ψ就是分别打开左边与右边狭缝时的波函数,当两个缝同时打开时,实验说明到达屏上粒子的波函数由1ψ与2ψ的线性叠加2211ψψψc c +=来表示,可见态的叠加不就是概率相加,而就是波函数的叠加,屏上粒子位置的概率分布由222112 ψψψ c c +=确定,2 ψ 中出现有1ψ与2ψ的干涉项]Re[2* 21* 21ψψc c ,1c 与2c 的模对相对相位对概率分布具有重要作用。 4、量子态的叠加原理常被表述为:“如果1ψ与2ψ就是体系的可能态,则它们的线性叠加 2211ψψψc c +=也就是体系的一个可能态”。 (1)就是否可能出现)()()()(),(2211x t c x t c t x ψψψ+=; (2)对其中的1c 与2c 就是任意与r ? 无关的复数,但可能就是时间t 的函数。这种理解正确不? 解答:(1)可能,这时)(1t c 与)(2t c 按薛定谔方程的要求随时间变化。

第三章量子统计理论 从经典统计到量子统计 量子力学对经典力学的改正

第三章 量子统计理论 第一节 从经典统计到量子统计 量子力学对经典力学的改正 波函数代表状态 (来自实验观测) 能量和其他物理量的不连续性 (来自Schroedinger 方程的特征) 测不准关系 (来自物理量的算符表示和对易关系) 全同粒子不可区分 (来自状态的波函数描述) 泡利不相容原理 (来自对易关系) 正则系综 ρ不是系统处在某个()q p ,的概率,而是处于某个量子 态的概率,例如能量的本征态。 配分函数 1E n n Z e k T ββ-== ∑ n E 为第n 个量子态的能量,对所有量子态求和 (不是对能级求和)。 平均值 1 E n n e Z β-O = O ∑ O 量子力学的平均值

第二节 密度矩阵 量子力学 波函数 ∑ψΦ=ψn n n C , 归一化 平均值 ∑ΦO Φ=ψO ψ=O *m n m n m n C C ,?? 统计物理 系综理论:存在多个遵从正则分布的体系 ∴ ∑ΦO Φ= O *m n m n m n C C ,? 假设系综的各个体系独立,m n C C m n ≠=* ,0 理解:m n C C * 是对所有状态平均,假设每个状态出现的概率为 ...)(...m C ρ,对固定m ,-m C 和m C 以相同概率出现,所以 ∑ΦO Φ=O *n n n n n C C ? 如果选取能量表象,假设n n C C *按正则分布,重新记n n C C * 为n n C C * 1E n n n C C e Z β-*= 这里 n n n E H Φ=Φ? 引入密度矩阵算符ρ ? [ ]n n n C H Φ=Φ=2 ?0?,?ρ ρ 显然 ∑ΦΦ=n n n n C 2 ?ρ , ??,0H ρ??=??

格子玻尔兹曼方法(LBM)及其在微通道绕流中的应用

2019年第19卷第1期 编辑李文波 安全数值模拟专栏 格子玻尔兹曼方法(LBM)及其在 微通道绕流中的应用 冯俊杰,孙冰,姜杰,徐伟,石宁 (中国石化青岛安全工程研究院化学品安全控制国家重点实验室,山东青岛266071 ) 摘要:卜绍了格子玻尔兹曼方法基本理论 与计算方法,并建立了D2Q9计算模型,对宏观尺 度及微通道中的非稳态绕流进行了数值模拟,得 到了绕流过程的速度分布和涡量分布等信息,对 流场结构、固体阻力、尾涡脱落等变化规律进行了 分析。结果表明,格子玻尔兹曼方法以其计算稳 定、效率高等优势能够应用于微反应器领域的数值 模拟;同等液相停留时间条件下,微反应器中的圆柱 绕流湍动程度明显降低,未形成周期性涡流,流动更 加均勾稳定,有助于实现化学反应的精确控制。 关键词:(LBM)微反应器通 0 前言 微反应器在提高反应过程安全性、缩短反应 间、提高转化率、灵活生 面具有独特的优势,实现微通道 的精确测定和控制是微反应器发挥诸多优势的保障和广泛应用的基础[1]。由于微通道内的 具有尺度小、多尺度、相界面与复杂的特点,传统的计 体力学(CFD)方作为宏观模 在着诸多 ,而格子玻尔兹曼方法(lattice Boltzmann method,LBM)突破 了计 的框架, 离散模 发,通群的碰撞和迁移代 的体模型,更接近 的微观本质,在微流控领域具有明 显的优势[—3]。 格子玻尔兹曼 的体离散 为在网格 的介观 ,通过计 的碰 撞和迁移规律得到 布函数,进而统计计算到宏观变量如压力、速度 布规律,创造性地了模 体 的模 离散模型 的转变[]。LBM平 计物理 学的Boltzmann方程,因而能成为联系微观 尺 度与宏观尺度之间的 [5_6]。的C FD方法 宏观的 ,而难以计:些 不符合 者难以用宏观方程描述的 系统,对于这些体系往往 借助微观的 '动 力学 体动理论来进行描述[]。对 力 学来说必须同时跟踪大量 的运动,实际求解 的计算量 大。在这 , 论和概率统计力学的LBM就成为 有 法,其具有更高的计算效率,并且容易 行计 收稿日期=2018-07-16 作者简介:I俊杰,博士,工程师,2016年毕业于 北京化工大学化学工程与技术专业,现于中国 石化青岛安全工程研究院从事本质安全化技 术、反应器工程等方面工作。 SAFETY HEALTH & ENVIRONMENT U7

常见统计分布及其特点

【附录一】常见分布汇总 一、二项分布 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果, 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是。 二、泊松poisson分布 1、概念 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 2、特点——期望和方差均为λ。 3、应用(固定速率出现的事物。)——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布 三、均匀分布uniform 设连续型随机变量X的分布函数F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。 四、指数分布Exponential Distribution 1、概念

2、特点——无记忆性 (1)这种分布表现为均值越小,分布偏斜的越厉害。 (2)无记忆性 当s,t≥0时有P(T>s+t|T>t)=P(T>s) 即,如果T是某一元件的寿命,已知元件使用了t 小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。 3、应用 在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果 五、正态分布Normal distribution 1、概念 2、中心极限定理与正态分布(说明了正态分布的广泛存在,是统计分析的基础) 中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n 的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布。 3、特点——在总体的随机抽样中广泛存在。 4、应用——正态分布是假设检验以及极大似然估计法ML的理论基础 定理一:设X1,X2,X3.。。Xn是来自正态总体N(μ,δ2)的样本,则有 样本均值X~N(μ,δ2/n)——总体方差常常未知,用t分布较多 六、χ2卡方分布(与方差有关)chi-square distribution 1、概念 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同 分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),其中参数n 称为自由度 【注意】假设随机干扰项呈正态分布。因此,卡方分布可以和RSS残差平方和联系起来。用RSS/δ2,所得的变量就是标准正态分布,就服从卡方分布。

中山大学 热力学统计思考题答案汇总

热力学思考题答案汇总 第一章热力学的基本规律 ?什么是热力学平衡态(弛豫时间、热动平衡) 热力学平衡态:孤立系经过足够长的时间后,各种宏观性质在长时间内不发生变化 弛豫时间:系统由初始状态达到热力学平衡态的时间,决定于趋向平衡的过程的性质。热动平衡:虽然平衡态下的宏观性质不随时间变化,但系统的微观粒子仍在不断运动 涨落:平衡态下的宏观物理量在平均值附近的变化 非孤立系的平衡态:将系统与外界看作复合的孤立系 ?什么是热力学第零、一、二定律(及其表达式) 热力学第零定律:如果两个系统A和B各自与第三个系统达到热平衡,那么A和B之间也处于热平衡 热力学第一定律:系统在终态B 和初态 A 的内能之差U B- U A等于过程中外界对系统所作的功与系统从外界吸收的热量之和 热力学第一定律就是能量守恒定律:自然界的一切物质都具有能量,能量有各种不同的形式,可以从一种形式转化为另一种形式,从一个物体传递到另一个物体,在传递与转化的过程中能量的数量不变 热力学第一定律的另外一种表述:第一类永动机是不可能造成的 Q +W S= U B- U A热力学第一定律的数学表达式 热力学第二定律的两种表述 克氏表述:不可能把热量从低温物体传到高温物体而不引起其它变化 开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其它变化 热力学第二定律开氏表述的另外一种说法:第二类永动机是不可能造成的 ?什么是物质的物态方程(理想气体、范氏方程) 物态方程的一般形式和相关物理量 物态方程的一般形式 由热平衡定律,平衡态下的热力学系统存在状态函数(温度),物态方程就是温度与状态参量之间的函数关系f(p,V,T )=0 相关物理量 体胀系数α:压强不变,温度升高1K的体积相对变化 压强系数β:体积不变,温度升高1K的压强相对变化 等温压缩系数k T:温度不变,增加压强的体积相对变化 体胀系数α、压强系数β和等温压缩系数的关系 加热固体或液体时很难实现体积不变,即压强系数β很难直接测量,通常是通过α和间

玻尔兹曼分布

玻尔兹曼分布 在物理学(特别是统计力学)中,麦克斯韦 - 玻尔兹曼分布是以詹姆斯·克拉克斯·马克斯韦尔和路德维希·波兹曼命名的特定概率分布。 这是第一次定义,并且用于描述颗粒速度在理想化的气体,其中所述颗粒的固定容器内自由移动,而不会彼此互动,除了非常简短的碰撞,其中它们与彼此或与它们的热环境交换能量和动量。在该上下文中,术语“颗粒”仅指气态颗粒(原子或分子),并且假设颗粒系统已达到热力学平衡。[1]这种粒子的能量遵循所谓的麦克斯韦 - 玻尔兹曼统计通过将粒子能量与动能等同来推导出速度的统计分布。 在一个封闭的空间中,温度为T,里面只有两种能级,粒子的总数为N,且两种能级对应的个数分别 为:,所以能级的粒子总和为。那么N个粒子的不同状态组合数记为,且为:

通过组合数计算一下熵,熵是来源热力学的概念,熵是衡量物质的混乱程度的量,通常和物质的状态有关,我们知道当物质的能量越高时混乱程度也越高,能量越低时混乱程度也越低,下面给出熵的定义: 其中是玻尔兹曼常数,取log就是熵的来源。 把带进上式的: 现在我给空间增加少了的能量,此时封闭的空间的低 能级的粒子就会越变到高能级,也就是说会有少量的变为即: ,其中是变化的粒子数,由此我们从新计算熵为: 得到:

我们知道上式的分子和分母项是一样多的,同时在封闭的空间中是足够大的,是很小的,因此可以 把化简为: 然而从热力学角度,熵的变化量和温度以及加入的能量有关(参考维基百科),因此有如下的公式; 联立和两式的到: 化简得到为:

从上式我们看到,不同能级的比值和能量、温度T、玻尔兹曼常数都有关系,上式就称为玻尔兹曼分布。

用格子玻尔兹曼方法研究流动_反应耦合的非线性渗流问题

用格子玻尔兹曼方法研究流动2反应耦合的 非线性渗流问题 3 许友生 1)2)  李华兵 3)4)  方海平3) 黄国翔 1) 1)(华东师范大学物理系,上海 200062)2) (浙江师范大学物理系,金华 321004) 3) (中国科学院上海应用物理研究所,上海 201800) 4) (桂林电子工业学院计算科学与应用物理系,桂林 541004)(2003年10月28日收到;2003年12月1日收到修改稿) 根据格子玻尔兹曼计算技术以及相应渗流理论,对多孔介质内流动2反应(矿物介质的溶解等)耦合这一非线性渗流问题进行了数值研究,计算结果与解析解基本符合.数字图像重构技术反映的结果表明流体流动和反应之间可以发生强烈的耦合和反耦合作用,同时可以形成条带结构这一自组织现象,与实验和其他理论分析结果符合也很好. 关键词:非线性渗流,耦合反应,数值模型 PACC : 4755M ,0340 3 国家自然科学基金(批准号:10372094和10274021)、浙江省自然科学基金(批准号:M103082)及浙江省教育厅科研基金(批准号:20020871)资助的课题. E -mail :XY S.001@https://www.wendangku.net/doc/9b17117375.html, 11引言 流动2反应(矿物介质的溶解等)耦合渗流是伴有化学反应和复杂物理过程的动力学问题,其研究领域涉及多孔介质中流体的对流、扩散、弥散、吸附、浓缩、分离、互溶、传热、传质、相变、离子交换、中和、氧化等过程,应用范围主要包括地下资源开采、地球物理、生物渗流、工程渗流等领域.这类问题具有非平衡性、多尺度性、随机性等非线性特征,可以视为一个复杂的巨系统.研究这类问题通常采用以下两种方法. 1)理想化模型 用一个通过适当简化的模型替代实际的多孔介质,从而对体系中发生的流动2反应耦合现象可以很方便地用数学方法进行精确的理论分析[1] .值得注意的是,尽管这类模型比较简单,却仍然可以把影响流动2反应耦合现象的主要因子考虑在内. 2)微观统计模型 运用统计物理理论,构造出一个孔隙内流体质点可分辨的微观运动统计模型, 对质点的各类运动加以平均后得到流体的宏观描 述 [2] . 用上述两种模型得到的结果正确与否,需要靠 实验来检验,尽管利用数学分析可以将某些问题考虑得更细致一些,但把数据与介质之间的基本性质联系起来,仍然需要实验加以确定.这些传统的方法在计算流体速度、压力等物理量时,一般都在宏观Navier 2Stokes 方程基础上做有限差分离散后,得到代 数方程,从而得到数值结果.这种数值处理方法,由于其表面上的复杂性往往掩盖了渗流问题在微观上的简单性,比如空隙介质中多相流的相互驱替等现象只是大量流体粒子之间以牛顿方程的规则相互作用的动力学集中表现,而统计力学认为流体是由大量的微观粒子组成的,粒子的运动遵守经典力学定律的同时,还服从微观统计定律.近几年逐渐兴起的 格子玻尔兹曼方法(lattice Boltzmann method ,即 LBM )[3,4] 正是这样一种简单化的微观数值分析体 系,通过运用统计物理方法讨论多孔介质内流体的宏观性质.这种方法在流体速度空间中的传播算子(演化步骤)是线性的,配合碰撞算子(弛豫过程)和 第53卷第3期2004年3月100023290Π2004Π53(03)Π0773205 物 理 学 报 ACT A PHY SIC A SI NIC A V ol.53,N o.3,March ,2004 ν2004Chin.Phys.S oc.

量子统计复习题

1. 证明量子正则系综的“等几率分布”是最可几分布。 2. 证明正则分布???() H H e Tr e ββρ --=的熵最大。 3. 证明巨正则系综分布??()??()?() H N H N e Tr e βμβμρ ----=的熵最大。 4. 证明等温等压系综??()??()?() H pV H pV e Tr e ββρ -+-+=的熵最大。 5. 证明:1)箱中自由粒子到达箱中任一位置的几率相等;2)箱中自由粒子波包的空间范围量级 为3)箱中自由粒子的平均能量为 32 B k T 。@P52 6. 利用量子正则系综理论,求磁场B 中自由电子的平均自旋。@P57 7. 证明正则系综的密度矩阵满足微分方程???H ρρβ ?- =? @P58 8. 证明相对于谐振子,非谐振子对外做功的能力变小了。 9. 对一线性谐振子 222?1H 22 p m q m ω=-+,利用量子正则系综理论证明:@P52 (1) 12 V T H == (维里定理) 已知: 2 2 [()tanh ()coth( )] 42 2 q m q q q q H e q ωωβωββ''-++--'= (2) 高温极限 1 2 ωβ<< , 112 2 B V T H k T == = (已知:1x e x =++ ) (3) 低温极限 1 2 ωβ>> ,2 1 () 2 2(,)( )m q q m q q e ωω ρπ'- +'= ,对应n=0的基态极限情况。 10. 对正则系综,证明下列关系 (1) ,,()[ ()]V N B V N F S k T lnQ T T ??=-=?? (2) ,,( )( )T N B N T F S k T T lnQ V V ?? =-=?? (3) ,,()( )V T B V T F k T lnQ N N μ??=-=-?? (4) ,?[ ]N V U H lnQ β ?= =-? (5) 22 ,,2 ()( )[ ]V N V B N V S lnQ C T k T ββ ??==?? (6) S =(E -F)β

玻尔兹曼分布

玻尔兹曼分布 玻尔兹曼分布律是一种覆盖系统各种状态的概率分布、概率测量或者频率分布。当有保守外力(如重力场、电场等)作用时,气体分子的空间位置就不再均匀分布了,不同位置处分子数密度不同。玻尔兹曼分布律是描述理想气体在受保守外力作用、或保守外力场的作用不可忽略时,处于热平衡态下的气体分子按能量的分布规律 玻尔兹曼(L.E.Boltzmann)将麦克斯韦分布律推广到有外力场作用的情况。在等宽的区间内,若E1>E2,则能量大的粒子数dN1小于能量小的粒子数dN2,状态即粒子优先占据能量小的,这是玻尔兹曼分布律的一个重要结果。经过将近一个世纪的传播,物理学界、化学界渐渐接受了道尔顿的“原子—分子模型”,但原子、分子的确凿证据迟迟没有找到。恰恰此时,一股更强大的科学成就——热力学第一、第二定律出现了。热力学原则上解决了一切化学平衡的问题。1892年,物理化学家奥斯特瓦尔德试图在此基础上证明,将物理学和化学问题还原为原子或分子之间的力学关系是多余的。他试图将“能量”赋以实物一样的地位,甚至要把物质还原为能量。他提出“世界上的一切现象仅仅是由于处于空间和时间中的能量变化构成的”。在统计学中,麦克斯韦- 玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。它一开始在物理中定义并使用是为了描述(特别是统计力学中描述理想气体)在理想气体中粒子自由移动的在一个固定容器内与其它粒子无相互作用的粒子速度,除了它们相互或与它们的热环境交换能量与动量所产生的非常短暂的碰撞。在这种情况下粒子指的是气态粒子(原子或分子),并且粒子

系统被假定达到热力学平衡。在这种分布最初从麦斯威尔1960年的启发性的基础上衍生出来时,玻尔兹曼之后对这种分布的物理起源进行了大量重要调查粒子速度概率分布指出哪一种速度更具有可能性:粒子将具有从分布中随机选择的速度,并且比其它选择方法更可能在速度范围内。分布取决于系统的温度和粒子的质量。麦克斯韦- 波尔兹曼分布适用于经典理想气体,这是一种理想化的实际气体。在实际气体中,存在可以使其速度分布与麦克斯韦- 波尔兹曼形式不同的各种效应(例如,范德华相互作用,涡流,相对论速度限制和量子交换相互作用)。然而,常温下的稀释气体表现得非常接近于理想的气体,麦克斯韦速度分布对于这种气体是非常好的近似值。因此,它形成了动力学气体理论的基础,其提供了许多基本气体性质(包括压力和扩散)的简化解释。

相关文档
相关文档 最新文档