文档库 最新最全的文档下载
当前位置:文档库 › 一般荷载条件下桥梁的多模态振动控制

一般荷载条件下桥梁的多模态振动控制

一般荷载条件下桥梁的多模态振动控制
一般荷载条件下桥梁的多模态振动控制

第十二次国际振动问题会议,icovp 2015

一般荷载条件下桥梁的多模态振动控制

摘要

TMD系统应用于观察缓解过度振动的桥梁结构风荷载和车辆荷载的目标。通常,在一个方向上占主导地位的模式(通常是垂直的)是在TMD系统的无源控制帐户。然而,考虑在一个方向上占主导地位的模式可能不被视为一个强大的做法,而任何桥梁结构具有主导模式,沿横向和垂直方向和相同的桥梁结构进行加载沿两个方向。在一般加载条件下的鲁棒振动控制的研究,提出了一种同时控制的主要水平,垂直和扭转模式的方法。模态频率响应函数(FRF)提出了利用传统模式的智能控制方法的基础策略。本文提出的基于模态频响函数的方法应用到现有的重要的大型桁架桥(saraighat桥)进行考虑一般的加载条件下的战区导弹防御系统的分析设计。一个很好的控制性能的基础上提出的设计方法,在各种模拟一般负载条件下观察。

关键词:振动,被动控制,调谐质量阻尼器,桥梁,模态频率响应;

1.简介

在结构系统振动被动控制领域,调谐质量阻尼器(TMD)是其中最古老的被动振动控制设备中存在的。一个TMD装置主要报告是观察动态吸振器(DVA)问题[ 1 ],TMD系统连接一个单自由度(SDOF)主系统。一个带不确定参数的TMD系统性能研究是由延森等人进行。[ 2 ]。对于多个TMD的入门工作(MTMD)系统、徐和井草[ 3 ]是一个主要的支撑结构大量紧密排列的固有频率的结构。AB é和井草[ 4 ]研究了TMD系统的特点对控制结构的响应频率密集。贾吉德和达塔[ 5 ]研究了一个简单的扭转耦合系统的动态响应特性和MTMD系统。Rana和Soong [ 6 ]解释MTMD系统针对某一特定的多自由度结构系统模式设计。在频域上的TMD系统最优设计的各种作品在使用/减少H∞规范如[ 7文献发现,8 ]。此外,对于风振控制TMD装置在考虑各种振动机理的文献中找到许多有趣的桥梁结构研究:(一)抖(例如[ 9 ])(B)颤振(例如[ 10 ])(C)涡激振动(即[ 11 ])。另一个调查发现TMD装置桥梁结构移动荷载作用下的振动控制,例如[ 12 ]。

从文献调研,发现桥梁结构的TMD系统进行设计通常考虑风荷载或荷载。在这些研究中,占主导地位的单方向模式(通常垂直)对TMD系统的设计考虑。然而,这样的设计可能不被视为强大的对一般负载条件下有效的水平和垂直方向。对TMD系统考虑广义的垂直同步控制加载的设计非常有限的作品,横向和扭转模式的文献报道。在目前的工作中,提出了利用模态频率响应函数是针对一般的加载条件下的控制策略(FRF)和传统模式的智能控制方法同时控制主要的横向、纵向和扭转模式。

2.MTMD系统设计:一个模态频响函数为基础的方法

在一个多自由度结构体系的TMD装置设计的情况下,它是可能的设计分别针对任何模式以类似的方式为单自由度TMD装置设计的TMD装置(SDOF)结构的系统,如果对应的振型是以适当的方式[ 6 ]规范。最后,MTMD系统单独设计为不同的目标模式是附在原结构设计的位置在各自工作的多模态控制装置。这种方法,通常认为是TMD设计的基本模型框架,采用的是提出了一种新的模态频响函数的TMD设计策略,同时控制水平研究(横向)和垂直模式。

2.1.模态频响函数对目标模式有关

对多自由度结构系统的运动方程可以表示为:

(1)

其中,[ M ],[ D ]和[ K ]代表质量,阻尼和刚度矩阵,而{ F }代表的力矢量。随着比例阻尼假定,利用模态矩阵为主的转变为,Eq.(1)可以转化为n (体积)耦合方程在模态坐标(齐)。非耦合方程和相关的模式可表示如下。

(2)

其中,和代表模态质量、阻尼系数、模态刚度和模态,模态坐标与模式相关的。如果,因为th i 模式形状、缩放或归一化,沿着自由度模态变形(假设J )连接成为统一的MTMD (即Φij = 1),然后是单独设计MTMD 装置针对一个多自由度结构系统th i 模式可行[ 6 ] 。

类似的缩放保持一个模式相关的控制和不受控制的情况下,这有助于比较两种情况下的模态坐标。可以提到的是,在目前的工作中,只有位移控制被认为是。基于位移响应的结构系统的频率响应可以表示为所有模态频率响应的总和[ 13 ]。状态空间矩阵,形成所需的模态频响函数矩阵和基于位移响应,表示为在Eqs 。(3a –3d )为th i 模式模态频响函数矩阵的计算关系表示为式Eq (4)。

(3a-3d )

(4)

其中Eq.和表示循环模态频率和模态阻尼比与。在式(4)1-记为i 在[I]代表身份矩阵。可以观察到,模态状态空间矩阵[i A ]和[i B ]代表第二阶模态方程。(2)和相关联的第一阶状态向量作为

。输入和输出向量{u}和{ y}

现在由式表示。(5a )和(5b )分别。

(5a-5b )

随后,i 模式是以类似的方式利用MTMD 装置控制一个单自由度系统装置采用MTMD 控制考虑。这样一个模态控制问题的原理图如图1所示为与模式的数量,

和代表位移协调,质量、阻尼的MTMD系统的性能系数和刚度单元。该系统的运动方程,如图1所示,可以表示为:

(6)

其中,;

一个配方的公式简单的例子(6)中的附录A相关的运动方程和方程的状态空间矩阵(6)可以表示为:

(7a)

(7b)

输入向量{u是{ F }从而同式(5a)和状态向量。在这个状态向量的第一状态是气,这有助于形成状态空间矩阵如Eq.(7C)具有类似的输出作为每Eq.(5b)。

(7c-7d)

可以注意到的输入和输出是同样相关的频响函数矩阵都失控的案例和控制模态坐标齐。它可以比较的频率响应的措施(幅度沿输入输出通道或谱范数)的不受控制的和控制的情况下,相关联的模态坐标气。模态坐标齐有无TMD例表

示为齐i-WT Q -i 和WOT Q -i 分别为清楚起见,虽然WT Q -i 和WOT

Q -i 表示相同的数量。

图1.MTMD 系统与模式相关的示意图

2.2.MTMD 系统针对多模式设计策略

无论是失控和控制系统为代表的Eqs 。(3a –3d )和Eqs 。(7a –7d )分别是多输入多输出(MIMO )系统。在本研究中,目标是控制一个单一的模式,根据所采用的模式明智的战略。任何模式的单模态振动的情况下,所有的自由度模态变形的变化将是相称的。因此,频率响应任何输入输出通道同样减少其他输入输出通道的频率响应相关的最小化。因此,一个单一的输入输出通道的频率响应可以控制一个特定的模式,最小化。适合的输入输出通道可以被认为是沿自由度与最大模态变形具有最大水平的频率响应[ 13 ]。在目前的工作中,一个单输入单输出通道的频响函数具有频率响应最大水平被认为与控制目标的最小化。模态频率

响应是使用H ∞规范量化。H ∞规范的失控和可控的情况下与RTH 的水平(横向)

主导模式表示为和分别。

为r 垂直统治模式类似的表述是和性能的因素被认为是代表水平和

垂直方向的和分别在12 h ,其中,

;。在这些公式中和的分母是常数,分子是

基于TMD 的参数变量。它是一个最小化问题的性能因素

酚醛树脂和型。

同时最小化的

酚醛树脂和型酚醛树脂被认为是最大限度地减少一个因

素定义为: (8)

其中,H C 和V C 是水平的横向和纵向的方式分别服从关系的重要因素:H C +V C =1。

2.3.扭转模式控制策略

扭转模式在水平(横向)和垂直方向上都占主导地位的模态变形。因此,扭转模式具有显着的频率响应在两个方向上。与纯横向或纵向模式中的一个被分配给一个这样的MTMD 系统模式,扭转模式控制两MTMD 系统本研究:(一)一个MTMD 系统控制水平的模态分量和(B )另一种MTMD 系统控制垂直模态分量。两个独立的频率响应信道被认为是这样一个扭转模式,以实现在两个方向上的控制。在这两种情况下,频率响应的输入通道被认为是具有最大模态变形,以及最大可控性的自由度。另一方面,横向和垂直方向的输出通道被认为是作为横向和垂直自由度分别具有最大模态变形。

2.4.优化框架

MTMD 系统配方不同类型文献[ 14 ]是可用的。在目前的研究中,一种MTMD 系统模型被认为刚度值和所有MTMD 个别单位阻尼比不变。保持相同的刚度为MTMD 单位通常被认为是针对制造有益。刚度值和相关联的第i 个模式MTMD 的第j 个单元中的阻尼比率表示为和

.MTMD 的单位总数在这里是为p 。相对于第i

个模态质量(MI )的MTMD 系统的总质量的质量比被表示为I P 。所述MTMD 单元为第i 个模式的平均频率被认为是T ,

。平均频率由系数

如果为如果ZZ 涉及用于第i 个模式固有频率。

MTMD 相对于第j 个单元的固有频率的比率被表示为

(9)

其中,。现在,自然频率和MTMD两单位质量比可以获得使用关系(i),和分别。它可以观察到的完整MTMD系统的配置进行评估,如果MTMD的参数如和是

可随着一个主系统参数。另一方面,这两个参数

u和P通常假定。因此,优化进

i

行考虑,和作为优化变量。质量比一个模式是在很宽的范围内变化,考虑到发散的MTMD系统的频谱分配的质量。参数p是所有MTMD系统不同的目标模式保持一致。为获得最优参数的MTMD系统的步骤是:

(a)为每一个可能的值的I P的最优值与模式有关,我F,我和Ti [评估以及相应的范数最小值。此练习是针对所有的目标模式进行的。

(b)与目标模式相关联的各种可能的质量比的单个集合与其他与其他目标模式相关联的可能的质量比集合。目的是找出质量比组合的可行集(MRC),其中包含的质量比MRC与每一个对应于每个目标模态质量。一个可行的MRC就是求其所有的质量比为代表的群众成为分配的总质量为次要系统接近相等。

(c)最后的运动是从基于方程定义的目标函数的可行的组合,选择一个特定的MRC(8)。这个练习的计算先决条件已经在一步一步完成了(a)。

三.样品桥和控制目标模式

样品(saraighat桥)是一个1.3公里长的铁路公路两用双层多跨(主跨钢桁梁桥10)在印度大河雅鲁藏布江。所有的主跨简支梁相似(从几何和工程特性)的上层建筑。下部结构和基础(钢筋混凝土制成)是显着更严厉的比上层建筑(钢制)。鉴于此,一个这样的主跨度被认为是有限元(铁)建模,以及振动控制的研究。该模型可以在2轴沿纵向图观察(水平)方向,y轴沿横向(水平)方向和Z轴沿垂直方向。第一两种模式,每个在水平和垂直方向沿与第一扭转模式是有针对性的控制。目标模式情况下对应的第一横、第二横,第一竖,第二竖,第一扭转控制水平分量和垂直分量第一扭控制表示为H1,H2,V1,V2,T1(H)和T1(V)分别。这些目标模式情况下的MTMD系统位置也如图2所示。

图2.对应于目标模态例MTMD系统位置:H1,H2,V1,V2,T1(H)和T1(V)

4.和MTMD系统性能设计。

6MTMD系统分为目标模式的情况下H1,H2,V1,V2,T1(H)和T1(V)。基于指定的位置,这些MTMD系统,相应的模式形状的适当的缩放进行随后的相应的模态质量计算。在表1中给出了相应的模态频率和模态阻尼比的模态质量。MTMD单位四不同的数字是1,4,12,30代表一个合理的宽范围的MTMD的单位数。分配给辅助系统即总质量的MTMD系统的总质量放在一起(MTMD)为1%的总上部结构质量,这相当于10.123吨(T)。最佳参数的确定四号MTMD的单位为1,4,12和30(有水平横向和纵向模式)同等的权重如表2。

量化的性能,计算了六个目标模态例不同数量的设计MTMD单元相关的模态频率响应。这些频率的反应是:(a)如图3所示(数量为12 MTMD)和(b)表3(在H∞范数与位移测量最小值计算)。图3和表3显示了频率响应的显着减少。此外,表3显示频率响应一致的减少与增加MTMD单位,数量虽然在性能上的改善并不显著,MTMD的数量就从12增加到30。此后,进行时程模拟。被认为是三种类型的加载:(a)车辆荷载沿横梁在道路以及轨道水平沿垂直方向的极端的节点(b)随机激励沿着DOFs(不含转动自由度)的结构与随机生成不同的白噪声(c)碱激发沿所有三平移自由度三种不同的白噪声。在所有的情况下,高斯白噪声样品(有持续时间为50秒的采样时间为0.02秒)被认为是激励与合理的宽的频谱。所有这些模拟练习使用最优MTMD的参数有12数量的单位进行MTMD。不同的运行模拟使用不同的噪声样本的性能变化。具有良好的控制

性能的仿真运行在表4量化:(a)最大控制(b)根均方(有效值)控制。这样的控制性能,使用的总的二次系统质量的超结构质量的1%,可以被视为相当令人满意的。

表1.6目标模态情况下的模态质量、模态频率和模态阻尼比

目标模式的案例模态质量(t)模态频率(赫兹)模态阻尼比

Mode (H1) 466.4475 0.9119 0.0302

Mode (V1) 519.2367 1.8624 0.0176

Mode (H2) 219.2702 2.1550 0.0198

Mode (V2) 569.6536 4.3976 0.0150

Mode (T1-H) 197.2645 2.9626 0.0074

Mode (T1-V) 2335.1670 2.9626 0.0074

表2.不同数量的MTMD单位的MTMD系统参数优化

MTMD的目标模式案例MTMD参数单位编号

H1 V1 H2 V2 T1(H) T1(V)

1 0.5889 0.298

2 0.0100 0.0100 0.0248 0.0841

4 0.5889 0.2537 0.0248 0.0100 0.0248 0.1137

12 0.5889 0.2537 0.0248 0.0100 0.0248 0.1137

30 0.5296 0.2982 0.0248 0.0100 0.0248 0.1285

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.1400 0.0800 0.0400 0.0000 0.0200 0.0000

12 0.1800 0.1000 0.0400 0.0000 0.0400 0.0000

30 0.1800 0.1200 0.0400 0.0000 0.0400 0.0000

1 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000

4 0.9800 1.0000 1.0000 1.0000 1.0000 1.0000

12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

30 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1 0.0750 0.0550 0.0200 0.0200 0.0250 0.0200

4 0.0300 0.022

5 0.0200 0.0200 0.0200 0.0200

12 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200

30 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200

表3.对MTMD系统参数优化相关的范数最小值

模态情况无TMD 有TMD (n=1) 有TMD (n=4) 有TMD (n=12) 有TMD (n=30) Mode (H1) 0.001082 0.000493 0.000457 0.000443 0.000458 Mode (V1) 0.000403 0.00018 0.000161 0.000158 0.000152 Mode (H2) 0.000628 0.000492 0.000417 0.000412 0.000412 Mode (V2) 0.000077 0.000067 0.000067 0.000067 0.000067 Mode (T1-H) 0.000993 0.000396 0.000383 0.000379 0.000377 Mode (T1-V) 0.000289 0.000179 0.000157 0.000157 0.000151

表4.在各种负载情况下的控制性能

控制性能激励案例反应方向

Max (%) RMS (%)

随机车辆荷载垂直24.47 27.76

随机上部结构加载水平18.39 29.94

垂直21.66 14.89 随机基激励水平17.78 20.83

垂直19.67 26.46

图3. 6模态情况相关的单位数为12扭转模态频率响应。

5.结论

提出了利用模态频响函数与专业水平的同步控制是一种一般的加载条件下的MTMD系统的设计策略,纵向和扭转模态。以下是结语从目前的研究得出:(a)设计MTMD系统分配总额1%的上部结构质量已降低峰值频率响应非常有效。

(b)同等的权重提供了两水平的情况(横向)和垂直模式的基础上提出的策略。这种考虑的权重是适当地反映在两个方向控制性能。

(C)设计MTMD系统已显示出良好的控制性能,对不同类型的载荷即车辆类型加载以及上部结构荷载随机。

(D)的MTMD系统设计为非基础激励型负载进行。然而,这样的设计是观察到在地震荷载等情况表现良好,由于MTMD系统设计是一种明智的方式进行。

参考文献

[ 1 ]J. ormondroyd Den Hartog,J.P.,the,of the dynamic理论:起落架振动。ASME TRANSACTIONS OF应用力学。(7)50(1928年),9–22

[ 2 ]Jensen,H.,setareh,M.,聚醚醚酮,R.:振动控制系统与TMDS for of具有不确定性质。结构工程杂志。(12)118,3285–3296(1992)

[ 3 ]Xu,K.,蔺艺草,T:动态特征与空间结构closely frequencies多学院。地震工程与结构动力学。1059–1070(12,21)(1992年)

[ 4 ]M.,蔺艺草,T:大众dampers for结构调整与自然frequencies closely间隔。地震工程与结构动力学。24(2),247–261(1995)

[ 5 ]R.S.,jangid,Datta,T.K.:性能调整质谱多dampers for of扭转耦合系统。地震工程与结构动力学。(3)26,307–317(1997)

[ 6 ]宋,蛙,R.,电汇:参量研究设计和质量dampers of simplified被调谐。工程结构。20(3),193–204(1998)

[ 7 ]西原,麻美,o. T封闭。解决方案:动态优化to the of absorbers精确振动(振幅因子magnification步极小化of the maximum)。杂志和照片空振。124,576–582兰达尔(2002)

[ 8 ]霍尔斯特德,D.M.,泰勒,D.L.:最佳线性阻尼振动系统absorbers for。ASME机械设计杂志。(4)103,908–913

[ 9 ](1981年)的古巷,H,M,。:优化的响应buffeting of of for suppressing TMD的大跨度桥梁。风工程与工业aerodynamics杂志。(1–3 1383–1392(42),1992年)

[ 10 ]陈,宣布蔡,C.S.:与大跨度桥梁耦合振动控制调谐质量阻尼器。声音与振动杂志。278(1,2,449––)459(2004)

[ 11 ] Patil,A.,Jung,美国,Lee,S.,Kwon,SD涡激振动的相互冲突的目标,减轻桥下。风工程与工业空气动力学杂志。99(12),1243 - 1252(2011)

[ 12 ]周,D,里县,J.,汉森,C。:抑制固定式磁悬浮列车-桥梁耦合共振使用调谐质量阻尼器。振动与控制杂志。19(2),191(2013)–203

[ 13 ] Gawronski,W.:先进的结构动力学与结构主动控制。施普林格出版社,出版公司,(2004)

[ 14 ]李,C.:优化多重调谐质量阻尼器结构基于位移和加速度动力放大系数下的地面加速度。地震工程与结构动力学。31(4),897 - 919(2002)

桥梁专业设计技术规定 第八章 桥梁震动及抗震

8 桥梁振动及抗震 8.1结构抗震体系 8.1.1结构应具有合理的地震作用传力途径和明确的计算简图。结构除了具有必要的承载能力以外,还应具有良好的变形能力和耗能能力,以保证结构的延性性能。 8.1.2结构的质量和刚度应均匀分布,避免因质量和刚度突变而造成地震时结构各部分相对变形过大。对于质量和刚度变化较大的部位,应采取有效措施予以加强。 8.1.3结构基础应建造在坚硬的地基上,尽可能避开活断层及地质条件不好的地基。当结构必须建造在软土地基或可能液化的地基上时,应对地基进行处理。 8.1.4上部结构应尽量采取连续的形式。当上部结构与下部结构之间的支座允许上部结构平动时,必须保证支承面宽度并采取相应的限位措施,防止落梁的发生。 8.1.5确定墩柱的截面尺寸时应避免墩柱的轴压比(墩柱所承受的轴向压力与抗压极限承载力之比)过大,以保证墩柱截面的延性性能。 8.1.6对于多跨连续结构,各中墩柱的截面尺寸和高度应使各柱的纵桥向刚度和横桥向刚度基本相同。跨径相差较大时,应考虑上部结构质量对横桥向频率的影响。对于地面高差较大的地形,可通过下挖地面来调整墩柱的高度。 8.1.7对于大跨度桥梁,应结合桥位处的地质条件和地震动特性等具体情况,对各种结构体系进行分析研究,选择抗震性能较好的结构体系。 8.2地震反应计算 8.2.1工程设计项目应按《地震安全性评价管理条例》(国务院令第323号)及各地方相应管理办法,要求业主对相应区域进行地震危险性分析,

并根据地震危险性分析进行结构的地震反应计算。在桥梁建设中尽量避开具有危险性的活动地震断层。活动性地震断层附近桥梁的地震反应计算要特别注意地面位移对结构的影响。按“条例”不需进行地震安全性评价的一般性工程,应按照《中国地震动参数区划图》(GB18306-xx)规定的设防要求进行抗震设防。 8.2.2应根据工程的重要性等级、场地的地质条件和地震烈度、结构的自振特性等情况,按照规范用反应谱方法进行结构的地震反应计算。对于大跨度桥梁,还应进行时程反应分析,并考虑地震动的空间不均匀性。 8.2.3对于地震作用的计算,应按公路桥梁相关规范执行,城市桥梁应根据道路等级和桥梁的重要性,按表8.1进行重要性系数修正。 表8.1 城市桥梁重要性修正系数Ci 考虑地震引起的位移,避免结构因位移过大而导致非强度破坏。 8.2.5对大跨度桥梁进行地震反应计算时,由于高阶振型的影响较大,必须计算足够多的振型。 8.2.6采用减震措施设计时,应结合具体桥型进行动力时程分析。 8.3构件抗震设计和抗震构造措施 8.3.1 应搜集桥位处地震基本烈度、地质构造、地震活动情况、工程地质及水文地质条件,并根据地震基本烈度及桥梁重要性等级采取相应的

第1章 桥梁博士系统的基本介绍

第1章桥梁博士系统的基本介绍(2学时)【主要讲授内容及时间分配】 1.1 系统概况(10分钟) 1.2 系统功能(15分钟) 1.3 系统的基本操作(20分钟) 1.4 系统的基本约定(20分钟) 1.5 系统项目的管理和操作(25分钟) 【重点与难点】 1、重点: 系统的基本操作、系统的基本约定、系统项目的管理和操作。 2、难点: 系统项目的管理和操作。 【教学要求】 1、了解系统概况和功能; 2、掌握系统的基本操作、系统的基本约定、系统项目的管理和操作;【实施方法】 课堂讲授,配合课堂操作演示

第1章桥梁博士系统的基本介绍 第一节系统概况 Dr.Bridge系统是一个集可视化数据处理、数据库管理、结构分析、打印与帮助为一体的综合性桥梁结构设计与施工计算系统。系统的编制完全按照桥梁设计与施工过程进行,密切结合桥梁设计规范,充分利用现代计算机技术,符合设计人员的习惯。对结构的计算充分考虑了各种结构的复杂组成与施工情况。计算更精确;同时在数据输入的容错性方面作了大量的工作,提高了用户的工作效率。 (1) 历史概述 该系统自1995年投向市场以来设计计算了钢筋混凝土及预应力混凝土连续梁、刚构、连续拱、桁架梁、斜拉桥等多种桥梁。在设计过程中充分发挥了程序实用性强、可操作性好、自动化程度较高等特点,对于提高桥梁设计能力起到了很好的作用。在设计应用过程中,通过实践校核及与其它软件的比较,桥梁博士进行了完善和扩充,进一步得到了稳定。 (2) 改版介绍 按照《公路桥涵设计通用规范》 JTG D60-2004和《公路钢筋混凝土及预应力混凝土桥涵设计规范》 JTG D62-2004进行补充修改。 对程序的前处理和后处理部分在原有的基础上做了大的改进,扩充的每个功能块都凝聚着开发组多年来的心血,都是经过认真的总结、研究和精心设计而最终完成的; 新增功能密切与桥梁工程设计实践相结合,借助力学技术和计算机技术全力解决用户在桥梁工程设计过程中碰到的棘手的数据处理问题,使用户能够集中精力解决桥梁结构的合理性问题。 节约数据处理时间、辅助用户设计是本次桥梁博士升级的两大主要特点。

桥梁工程施工质量控制要点

山东省胶东地区引黄调水工程莱州明渠段及附属建筑物工程 桥梁工程施工质量控制要点 山东省水利工程建设监理公司 胶东地区引黄调水工程项目监理部编

二OO七年七月

桥梁工程施工质量监要点与监理要点 1、钢筋材料检查 1)承包人应按60T每批次的频率,对每批进场钢筋抽检。抽检的项目包括:强度、伸长量、冷弯、焊接试件等试验项目。抽检合格后,方可加工并用在工程上。 2)承包人应将钢筋表面的浮皮、鳞锈清除干净。 2、各种钢筋接头的检查 各种钢筋接头的搭接长度,如绑扎搭接及各种焊接接头有不同的搭接长度,应按规范要求的标准检查验收。 搭接电弧焊接头焊缝长度: 双面焊< 5d 单面焊<10d 帮条电弧焊接头焊缝长度: 双面焊< 5d 单面焊<10d 绑扎钢筋接头搭接长度应符合规范要求。 钢筋接头一般采用焊接方式,尤其是大于或等于①25的钢筋。搭接和帮条电焊弧接头应尽量做成双面焊。 2)检查接头位置。钢筋接头的位置应在下料前做好安排并满足以下条件: (1)接头应设置在内力较小部位,并错开布置。接头间距离不小于1.3 倍搭接长度。 (2)配置在搭接长度区段内的受力钢筋,接头的截面面积占总截面面积的百分率应符合下表的规定。在此应特别注意接头截面积占总截面面积百分率的检查,应

正确理解是在搭接长度段内的接头,而不是指单纯的同一截面内的接头。 接头长度区段内受力钢筋接头面积的最大百分率 注:a、焊接接头长度区段内是指35d长度范围内,但不得小于50cm绑扎接头长度区段是指1.3倍搭接长度(d为钢筋直径)。 B、在同一根钢筋上应尽量少设接头。 C、装配式构件连接处的受力钢筋焊接接头,可不受此限制 d、绑扎接头中钢筋的横向净距不应小于钢筋直且不应小于25mm (3)接头位置离钢筋弯曲处的距离不应小于10d。不宜在构件最大弯矩位置做接头。 3)接头焊接质量检查 (1)钢筋电弧焊所采用的焊条,其性能应符合低碳钢和低合金钢电焊条标准的有关规定,其牌号应符合设计要求,设计未做规定时,参照规范的规定使用。 (2)操作电焊工应经过岗位培训,具有岗位操作合格证。上岗前应检 查电焊工的焊接试件,试验合格后方可上岗操作。

桥梁博士迈达斯使用

家在使用桥博、midas的时候经常会遇到些问题,希望大家把这些问题发出来,省的其他人在犯!! 我先来说几条 A:桥博 0、桥博裂缝输出单位为mm,力输出单位为KN,弯矩输出单位KN*m,应力输出单位Mpa 1、从CAD中往桥博里面导入截面或者模型时,CAD里面的坐标系必须是坐标系。 2、桥博里面整体坐标系是向上为正,所以我们在输荷载的时候如果于整体坐标系相反就要输入负值。 3、从CAD往桥博里导截面时,将截面放入同一图层里面,不同区域用不同颜色区分之。 4、桥博使用阶段单项活载反力未计入冲击系数。 5、桥博使用阶段活载反力已计入1.2的剪力系数。 6、计算横向力分布系数时桥面中线距首梁距离:对于杠杆法和刚性横梁法为桥面的中线到首梁的梁位线处的距离;对于刚接板梁法则为桥面中线到首梁左侧悬臂板外端的距离,用于确定各种活载在影响线上移动的位置。 7、当构件为混凝土构件时,自重系数输入1.04. 8、桥博里通过截面修改来修改截面钢筋时,需将“添加普通钢筋”勾选去掉,在截面里输入需要替换的钢筋就可以把钢筋替换掉。 9、在施工阶段输入施工荷载后,可以通过查看菜单中的“显示容设定”将显示永久荷载勾选上,这样就可以看看输入的荷载位置、方向是否正确。

10、桥博提供自定义截面,但是当使用自定义截面后,显示和计算都很慢,需要耐心。 11、桥博提供材料库定义,建议大家定义前先做一下统一,否则模型拷贝到其他电脑上时材料不认到那时就头疼了。 12、有效宽度输入是比较繁琐的事情,大家可以用脚本数据文件,事先在excel 中把有效宽度计算好,用Ultraedit列选模式往里面粘贴,很方便!! 14、当采用直线编辑器中的抛物线建立模型时,需要3个控制截面,第一个控制截面无所谓,第二个控制截面向后抛,第三个控制截面向前抛,桥博里面默认的是二次抛物线!! 15、当采用直线编辑器建立模型时,控制截面要求点数必须一致,否则告诉你截面不一致。 16、修改斜拉索面积时用斜拉索单元编辑器,在拉锁面积里需要输入拉索个数*单根拉索的面积。 17、挂篮操作的基本原理: 挂篮的基本操作为:安装挂篮(挂篮参与结构受力同时计入自重效应)、挂篮加载(浇筑混凝土)、转移锚固(挂篮退出结构受力、释放挂篮力及转移拉索索力)和拆除挂篮(消除其自重效应)。具体计算过程如下: ) 前支点挂篮:(一般用于斜拉桥悬臂施工) )如果挂篮被拆除,则挂篮单元退出工作,消除其自重效应。)如果挂篮转移锚固,则挂篮单元退出工作,释放挂篮力,并将拉索索力转到主梁上。 )如果安装挂篮,则将挂篮单元置为工作单元并与主梁联结,计算挂篮

2018年公路水运试验检测师_桥梁隧道真题答案与解析和解析[完整版]

word 格式 2017公路水运试验检测师桥梁隧道真题答案与 解析完整版 一、单选题(共30 题,每题 1 分,共30 分) 。 1. 桥梁用塑料波纹管环刚度试验,应从()根管材上各截取长300mn±10mn i式样一 段。 A. 二 B. 三 C. 五 D. 六 2. 桥梁锚具组装件静载锚固性能试验加载以预应力钢绞线抗拉强度标准值分() 级 等速加载。 A. 5 B. 10 C. 6 D. 4 3. 桥梁异形钢单缝伸缩装置试验检测项目为() 试验。 A. 拉伸、压缩 B. 垂直变形 C. 水平摩阻力 D. 橡胶密封带防水 4. 按照《公路隧道设计规范》(JTGD70-2004)的规定,长度为1000m的隧道为()。 A. 特长隧道 B. 长隧道 C. 中隧道 D. 短隧道 5. 在建设项目中,根据签订的合同,具有独立施工条件的工程,如独立大桥、中 桥、互通式立交应划分为( )。 A. 分项工程 B. 分部工程 C. 单位工程

word格式 D. 子分部工程 6. 对经久压实的桥梁地基士,在墩台与基础无异常变位的情况下可适当提高承载 能力,最大提高系数不得超过()。 A. 1.15 B. 1.20 C. 1.25 D. 1.35 7. 当钢筋保护层厚度测试仪的探头位于()时,其指示信号最强。 A. 钢筋正上方 B. 与钢筋轴线垂直 C. 与钢筋轴线平行 D. 与钢筋轴线平行且位于钢筋正上方 8. 钻芯法中对芯样要求其公称直径不宜小于集料最大粒径的();也可采用小直径 芯样试件,但其工程直径不直小于()且不得小于集料最大粒径的()。 A. 4 倍,80mm 3 倍 B. 3 倍,70mm 2 倍 C. 3 倍,60mm 2 倍 D. 3 倍,50mm 2 倍 9. 回弹法检测混凝土强度时如果为非水平方向且测试因为非混凝土的浇筑侧面时, ()。 A. 应先对回弹值进行角度修正再对修正后的值进行浇筑面修正 B. 应先进行浇筑面修正再对回弹值进行角度修正 C. 修正顺序不影响检测结果 D. 对回弹值进行角度修正即可 10. 对混凝士桥梁主要构件或主要受力部位布设测区检测钢筋锈蚀电位,每一测区的测点 数不宜少于()个。 A. 5 B. 10 C. 15 D. 20 610 CDBAD word 格式

桥梁施工工序质量控制要点

桥梁施工质量控制要点 一.桩基施工 1.工艺流程图

2.质量验收规范标准 钢筋笼质量验收标准(mm) 混凝土灌注桩质量验收标准(mm)

3.工序质量控制要点及要求 ①埋设护筒质量控制:埋设护筒时,护筒中心轴线对正测定的桩位中心,严格保持护筒的垂直度。护筒固定在正确位置后,护筒周边进行夯实,以保证其垂直度及防止泥浆流失及位移、掉落。护筒上口应绑扎木方对称吊紧,防止下窜。所用钢护筒大小要求至少比设计桩径大20cm才可进行施钻,冲击钻钢护筒至少比设计桩径大40cm,钢护筒偏差在10cm范围内才可钻进。 ②钻机就位质量控制:钻机就位前,须将路基垫平填实,钻机按指定位置就位,并须在技术人员指导下,调整钻杆的角度。钻机安装就位之后,应精心调平,确保施工中不发生倾斜、移位。 ③钻进成孔过程质量控制:在施工不同区段的第一根桩时,钻机要慢速运转,掌握地层对钻机的影响情况,以确定在该地层条件下的钻进参数。在钻进过程中,不可进尺太快,由于采取泥浆护壁,因此,要给一定的护壁时间。在钻进过程中,一定要保持泥浆面,不得低于护筒顶40cm。在提钻时,须及时向孔内补浆,以保证泥浆高度。在钻进过程中,要经常检查钻斗尺寸。(可根据试钻情况决定其大小)。施工过程中如发现地质情况与原钻探资料不符应立即通知技术部门及时处理。 泥浆池根据现场实际条件设置,此外自备两个用钢板焊制的40m3泥浆池,泥浆性能参数如下表: 注:施工时根据具体地层条件而定 钻孔深度比设计深度超深不小于5cm、桩基嵌岩深度和岩层必须符合设计图纸要求才可终孔。

④钢筋笼制作与安装质量控制:根据设计,计算好箍筋用料长度、主筋分布段长度,将盘条钢筋调直后再用圆盘制作螺旋箍筋。将支撑架按2~3m的间距摆放在同一水平面上对准中心线,然后将配好定长的主筋平直摆放在焊接支撑架上。将加强箍筋按设计要求套入主筋并保持与主筋垂直,进行焊接。加强箍筋与主筋焊好后,将螺旋箍筋按规定间距绕于其上并间隔点焊固定。制作好的钢筋笼稳固垫高放置在平整的地面上,防止变形。吊放钢筋笼入孔时应对准孔位,保持垂直,轻放、慢放入孔,不得左右旋转。若遇阻碍应停止下放,查明原因进行处理。严禁高提猛落和强制下入。下放钢筋笼时,要求有技术人员在场,记录好测护筒顶标高,准确计算吊筋长度,以控制钢筋笼的桩顶标高。钢筋笼制作和安装的质量严格按照设计图纸施作,主筋间距、箍筋间距、外径、保护层厚度、中心平面位置、顶端高程、底面高程应符合规范验收标准,钢筋接头搭接焊满足单面焊10d,双面焊5d,焊接要饱满、平顺、焊渣及时清理干净的要求。声测管安装位置和长度必须符合设计图纸要求,接头连接必须紧固,管内灌水必须采用清水。 ⑤下导管清孔灌注水下砼质量控制:成孔和清孔质量检验合格后,开始灌注混凝土。导管下入长度和实际孔深必须做严格丈量,使导管底口与孔底的距离能保持在0.3~0.5m左右。导管下入必须居中。灌注混凝土,首浇混凝土必须保证埋管深度不小于1米,由于在该工程中使用的漏斗容积不算大,在实际操作中,漏斗中放入锥塞,当砼灌满漏斗,立即拔起塞子,同时继续向漏斗补加砼,使砼连续浇注。在完成首浇后,灌注砼要连续从漏斗口边侧溜滑入导管内,不可一次放满,以避免产生气囊。拔管时,要准确测量砼灌注深度和计算导管埋深后,方可拔管。导管埋深不得大于6m,也不得小于2m。为确保桩顶质量,在桩顶设计标高以上加灌 1.0m。在灌注将近结束时,由于导管内砼柱高度减少,超压力降低。如出现砼顶升困难时,可适当减小导管埋深使灌注工作顺利进行,在拔出最后一节长导管时,拔管速度要慢,避免孔内上部泥浆压入桩中。钢护筒在灌注结束,砼初凝前拔出,起吊护筒时要保持其垂直性。当桩顶标高很低时,砼灌不到地面,砼初凝后,回填钻孔。

2019年公路桥梁荷载试验.doc

公路桥梁检验highway bridge rating gonglu qiaoliang jianyan 公路桥梁检验(卷名:交通) highway bridge rating 对桥梁的运营状况、承载能力和耐久性能进行的技术评定。 公路桥梁检验包括桥梁结构的检查和验算,以及桥梁荷载试验和量测等。结构检查的设备在19世纪以前是相当简陋的,还没有直接量测结构应变的仪器。直至20世纪20~40年代才出现各种类型的应变计。桥梁荷载试验已有100多年历史,例如1850年英国建造的最大跨径为140米的箱形连续梁铁路桥(不列颠桥),原设计是一座有加劲梁的吊桥,在建造过程中,曾进 行荷载试验,并改变了原设计方案。 检验程序首先检查桥梁各部构造的技术状况,然后根据桥梁的现状进行结构检算。初建的新型桥梁和缺乏技术资料的旧桥,必要时需进行荷载试验。通过桥梁结构的变位(线位移和角位移)、应变(或转换为应力)、动力特性参量(频率、振幅、阻尼比和动力系数等)、裂缝和损害等项目的检测,来证实桥梁在强度、刚度、稳定性、耐久性和动力性能等方面能否满足安全运营 的要求。 检验内容包括桥梁结构检查和荷载试验。 结构检查主要内容有:①桥梁上部结构和下部结构总体尺寸和变位的状况的检查;②桥梁承重构件截面尺寸及其细部组合的偏差检查;③桥面的平整度检查;④材料的物理力学性能和可能存在的裂缝、缺陷、渗漏、锈蚀和侵蚀等损害的检查;⑤必要时还进行地基和河床冲刷等状 况的复查。 结构检查的技术和设备大致可分为无破损检查和局部破损检查。无破损检查主要用于结构材料强度、质量和缺陷等检查。无破损检查应用的技术有:回弹仪检查的技术;超声波探测技术(脉冲传递、脉冲衰减和全息摄影等方法);射线照相或衰减测定技术(电磁放射线有Χ射线、γ射线、红外线和紫外线;核子放射线有中子、质子和正电子束等);磁力或磁通量探测技术;染色渗入法;探测锈蚀状况的半电池电位测量;激光全息摄影技术;光学孔径仪与光纤维和小型闭路电视录象机组合的观测技术;振动法检验技术等。无破损检查技术往往需要几种方法综合运用才能得到可靠的结果,并且需要有经验的检验人员。因此,用一般的量具和放大镜等辅助工具进行外观的检查诊断仍是最广泛的检查手段,必要时才应用无破损检查技术,辅助判断。为了检查与试验作业的方便,尚有专用的桥梁检查车和轻型拼装式悬吊检查架。 局部破损检查是在构件上采取试样进行物理化学分析和力学性能试验的检查方法。如测定材料的强度、弹性模量、混凝土的水泥含量、氯化物含量、炭化深度和渗水等测定,都需在构件上取样。又如混凝土或防水层电阻率的测量等,往往需要在构件上钻孔插入探测仪器进行测量。 荷载实验桥梁静力荷载试验的加载设备常用大型货车、拖挂车、翻斗车、水车和施工机械等各种普通装载车;也有专用的单轴或多轴加载挂车和测定结构影响线的自行式单点荷载设备;有的场合也用压重物等。桥梁自振特性的试验测定方法大致有三类:第一类是常用的突然加载或卸载的方法激振桥梁,如跳车、释放、撞击和小火箭等冲击荷载;第二类用运转频率可调的起振机或专用的单轴电-液惯性加振挂车进行谐振试验;第三类用脉动信号测试与分析的方法,用磁带机记录桥梁无载时的脉动随机信息,并用信号处理机进行谱分析,可取得多阶振型的特征值。 桥梁受迫振动响应的试验测定常用接近运营条件的车辆,以不同车速通过桥梁进行行车试验,测定桥梁的动力系数与车速的关系;或在桥梁动力响应最大的部位进行起动或刹车试验;也可利用平时交通荷载或风荷载等随机荷载,测定桥梁随机振动的响应。 检测桥梁受载及响应的仪器大体可分为静态测量仪器和动态测量仪器两种,也有相互组合和

韩学良的桥梁结构与技术

桥梁工程与技术 08房建1班韩学良 200810701038 1、桥梁结构工程的分类 按结构分类,按结构体系分类是以桥梁结构的力学特征为基本着眼点,对桥梁进行分类,以利于把握各种桥梁的基本特点,也是桥梁工程学习的重点之一。以主要的受力构件为基本依据,可分为梁式桥、拱式桥、刚架桥、斜拉桥、悬索桥五大类。 1.1、梁式桥 主梁为主要承重构件,受力特点为主梁受弯。主要材料为钢筋混凝土、预应力混凝土,多用于中小跨径桥梁。简支梁桥合理最大跨径约20米,悬臂梁桥与连续梁桥合宜的最大跨径约60-70米。优点:采用钢筋砼建造的梁桥能就地取材、工业化施工、耐久性好、适应性强、整体性好且美观;这种桥型在设计理论及施工技术上都发展得比较成熟。缺点:结构本身的自重大,约占全部设计荷载的30%至60%,且跨度越大其自重所占的比值更显著增大,大大限制了其跨越能力。 1.2、拱式桥 拱肋为主要承重构件,受力特点为拱肋承压、支承处有水平推力。主要材料是圬工、钢筋砼,适用范围视材料而定。跨径从几十米到三百多米都有,目前我国最大跨径钢筋砼拱桥为170米。优点:跨越能力较大;与钢桥及钢筋砼梁桥相比,可以节省大量钢材和水泥;能耐久,且养护、维修费用少;外型美观;构造较简单,有利于广泛采用。缺点:由于它是一种推力结构,对地基要求较高;对多孔连续拱桥,为防止一孔破坏而影响全桥,要采取特殊措施或设置单向推力墩以承受不平衡的推力,增加了工程造价;在平原区修拱桥,由于建筑高度较大,使两头的接线工程和桥面纵坡量增大,对行车极为不利。 1.3、钢架桥 钢架桥是一种桥跨结构和吨台结构整体相连的桥梁,支柱与主梁共同受力,受力特点为支柱与主梁刚性连接,在主梁端部产生负弯矩,减少了跨中截面正弯矩,而支座不仅提供竖向力还承受弯矩。主要材料为钢筋砼,适宜于中小跨度,常用于需要较大的桥下净空和建筑高度受到限制的情况,如立交桥、高架桥等。优点:外形尺寸小,桥下净空大,桥下视野开阔,混凝土用量少。缺点:基础造价较高,钢筋的用量较大,且为超静定结构,会产生次内力。 1.4、斜拉桥 梁、索、塔为主要承重构件,利用索塔上伸出的若干斜拉索在梁跨内增加了弹性支承,减小了梁内弯矩而增大了跨径。受力特点为外荷载从梁传递到索,再到索塔。主要材料为预应力钢索、混凝土、钢材。适宜于中等或大型桥梁。优点:梁体尺寸较小,使桥梁的跨越能力增大;受桥下净空和桥面标高的限制小;抗风稳定性优于悬索桥,且不需要集中锚锭构造;便于无支架施工。缺点:由于是多次超静定结构,计算复杂;索与梁或塔的连接构造比较复杂;施工中高空作业较多,且技术要求严格。 1.5、悬索桥 主缆为主要承重构件,受力特点为外荷载从梁经过系杆传递到主缆,再到两端锚锭。主要材料为预应力钢索、混凝土、钢材,适宜于大型及超大型桥梁。优点:由于主缆采用高强钢材,受力均匀,具有很大的跨越能力。缺点:整体钢度小,抗风稳定性不佳;需要极大的两端锚锭,费用高,难度大。

桥梁博士输出模板操作说明[001]

桥梁博士输出模板操作说明 Start开始, end结束,不考虑大小写 可循环的变量名及其含义 “()”内的内容为循环范围,大部分支持all关键字,“()”内的数据格式支持“-/”和“*”表达式。 iS:施工阶段号 ? iS(1) 表示第1施工阶段; ? iS(1-3) 或iS(1 2 3) 表示第1施工阶段到第3施工阶段; ? iS(all) 表示所有施工阶段。 iE:单元号 ? iE(1)表示1号单元; ? iE(1-3) 或iE(1 2 3)表示1到3号单元; ? iE(all)表示所有单元; ?iE(1-10,5) 括号中1-10表示单元号,5为指定施工阶段,此项的意义为:1到10号单元中到第5施工阶段为止安装完成的单元号; ?iE(all,5,1)括号中all表示单元号,5为指定施工阶段,1为单元类型:钢筋砼构件,此项的意义为:所有单元中到第5施工阶段为止安装完成的,并且为钢筋砼构件单元号。单元类型:1为钢筋砼;2为预应力砼;3为组合构件;4为钢构件;5为拉索;6为圬工构件。 iN:节点号 ? iN(1)表示第1节点; ? iN(1-3) 或iN(1 2 3)表示第1到第3节点; ? iN(all) 表示所有节点; ? iN(all,iS) 表示指定施工阶段中已经安装单元的节点。 iR:支承点号 ? iR(1)表示第1支撑点; ? iR(1-3)或iR(1 2 3)表示第1到第3支撑点; ? iR(all) 表示所有支持点; ? iR(all,iS) 表示指定施工阶段中已经安装单元的支撑点。 iZ:组合类型号 ? iZ(1)表示第1种组合; ? iZ(1-3) 或iZ(1 2 3)表示第1种组合到第3种组合; ? iZ(all) 表示所有组合,all为1-9,组合1到组合9。 iT:钢束号 ? iT(1)表示第1号钢束; ? iT(1-3) 或iT(1 2 3)表示第1号钢束到第3号钢束; ? iT(all) 表示所有钢束。 ? iT(all,iS) 表示指定施工阶段中已经安装钢束。 iI:影响线点号

公路桥梁工程施工质量控制要点

三峡库区巴东新县城至野三关公路工程 (第XJ-02合同段) 桥梁施工质量控制要点 中国葛洲坝集团股份有限公司 巴野公路路基项目第二标段施工项目部 二○一四年四月 公路桥梁工程施工质量控制要点 (红色字体为课题选项) 1、钢筋工程 2、混凝土工程 3、钻孔灌注桩施工要点 4、桥梁下部构造墩台施工要点 5、T梁预制和后张法预应力施工要点 6、制板、T梁吊装与桥面铺装施工要点

桥梁工程施工质量控制要点 一、钢筋工程 1、钢筋材料检查 (1)按60T每批次的频率,对每批进场钢筋抽检。抽检的项目包括:强度、伸长量、冷弯、焊接试件等试验项目。抽检合格后,方可加工并用在工程上。 (2)将钢筋表面的浮皮、泥浆、鳞锈清除干净。 2、各种钢筋接头的检查 各种钢筋接头的搭接长度,如绑扎搭接及各种焊接接头有不同的搭接长度,应按规范要求的标准检查验收。 (1)搭接电弧焊接头焊缝长度: 双面焊不小于5d 单面焊不小于10d (2)帮条电弧焊接头焊缝长度: 双面焊不小于5d 单面焊不小于10d (3)绑扎钢筋接头搭接长度应符合规范要求: 钢筋接头一般采用焊接方式,尤其是大于或等于Ф25的钢筋。搭接和帮条电焊弧接头应尽量做成双面焊。 3、检查接头位置,钢筋接头的位置应在下料前做好安排并满足以下条件: (1)接头应设置在内力较小部位,并错开布置。接头间距离不小于1.3倍搭接长度。 (2)配置在搭接长度区段内的受力钢筋,接头的截面面积占总截面面积的百分率应符合下表的规定。在此应特别注意接头截面积占总截面面积百分率的检查,应正确理解是在搭接长度段内的接 头,而不是指单纯的同一截面内的接头。 接头长度区段内受力钢筋接头面积的最大百分率 注:a、焊接接头长度区段内是指35d长度范围内,但不得小于50cm,绑扎接头长度区段是指1.3 倍搭接长度(d为钢筋直径)。

桥梁博士-基础版V1.0用户手册

桥梁博士-基础版 V1.0 用户使用手册 上海同豪土木工程咨询有限公司 https://www.wendangku.net/doc/9c13442038.html, 2009年2月

目录 第 1 章基本介绍 (1) 1.1功能概述 (1) 1.2运行环境 (2) 1.3编制依据 (2) 1.4基本操作 (3) 1.5系统基本约定 (5) 第 2 章矩形扩大基础输入和输出 (6) 2.1基本参数 (6) 2.2荷载参数 (7) 2.3地质参数 (10) 2.4水文参数 (11) 2.5结构参数 (13) 2.6矩形扩大基础结果输出 (14) 第 3 章U形扩大基础输入和输出 (16) 3.1U形扩大基础参数输入.........................................................................................错误!未定义书签。 3.2基本参数 (16) 3.3荷载参数 (17) 3.4地质参数 (17) 3.5水文参数 (17) 3.6结构参数 (17) 3.7U形扩大基础结果输出 (18) 第 4 章承台桩基础参数输入 (19) 4.1基本参数..................................................................................................................错误!未定义书签。 4.2荷载参数..................................................................................................................错误!未定义书签。 4.3地质参数..................................................................................................................错误!未定义书签。 4.4水文参数..................................................................................................................错误!未定义书签。 4.5结构参数..................................................................................................................错误!未定义书签。 4.6承台桩基础结果输出............................................................................................错误!未定义书签。第 5 章单排桩柱基础输入和输出 . (40) 5.1基本参数..................................................................................................................错误!未定义书签。 5.2荷载参数..................................................................................................................错误!未定义书签。 5.3地质参数..................................................................................................................错误!未定义书签。 5.4水文参数..................................................................................................................错误!未定义书签。

桥梁工程施工质量控制要点

铁路客运专线工程 桥梁施工质量控制要点 目录 第一章铁路客运专线桥梁工程的特点 第二章桥梁施工前的准备 第三章基础工程质量控制要点 第四章墩台施工质量控制要点 第五章桥梁预制质量控制要点 第六章桥位制梁质量控制要点 第七章高性能混凝土(耐久性混凝土) 第一章铁路客专桥梁工程的特点 2005年以来,我国开始大规模的铁路客运专线建设。京津城际铁路和合宁、石太、郑西、武广、甬台温等客运专线铁路已经建成运营;京沪、哈大、京石等多条线路正在建设;列入规划待开工的项目还有6000亿元投资。 根据2008年10月31日《中长期铁路网调整规划》,2020年全国铁路营业里程规划目标达到12万公里以上,其中客运专线由为1.6万公里,电化率达到60%。

在已经开工和列入规划的铁路客运专线中,桥梁工程占有很大比例,高架桥和长桥数量也多于普通铁路。 1.1 客运专线桥梁的特点 客运专线大量采用桥梁工程,保证了高速条件下安全性与舒适性,也注重了环境适应性的理念。桥梁工程设计与建造具有以下特点: (1)选择刚度大的结构 客运专线桥梁一般采用简支梁和连续梁,且选用双线整孔箱形截面。高架车站及道岔桥多采用刚架桥。 (2)桥梁结构以预应力混凝土梁为主 大部分为预应力混凝土梁,钢筋混凝土梁、钢-混结合梁也有少量使用。 (3)大跨度桥梁较少 考虑客运专线对线路平顺性的要求,选用大跨度桥梁较为慎重。在跨越道路、沟谷、较宽河流时,一般尽可能地采用悬灌法施工的预应力混凝土梁,很少采用其它结构和材料的桥梁。 (4)采取耐久性措施 在预定作用和预定的维修和使用条件下,客运专线主要承力结构应满足100年使用年限,故综合采取了一系列耐久性措施。主要包括采用整体密闭的桥面,使用高性能混凝土,加大保护层厚度(梁和墩台混凝土保护层均在3cm以上),并设置良好的防排水设施。 (5)桥面布置的特点 用挡碴墙(防撞墙)代替护轨,以便于线路维修养护;设置优质防排水系统;预留检查车及维修养护通道。

第四章 桥梁振动试验

第四章桥梁振动试验 4.1概述 振动是设计承受动荷载的工程结构必须研究的问题,桥梁不仅要研究由车辆移动荷载引起的振动,还要研究桥梁结构本身的抗震、抗风性能和能力。 随着结构计算、施工技术和建筑材料等方面科技水平的不断进步,桥梁的跨度越来越大,因此对桥梁振动性能的研究分析提出了更高的要求。桥梁振动试验可以求的基本问题可以归类为三种:桥梁振源、桥梁自振特性和结构动力反应。 桥梁振源的测定一般包括对能引起桥梁振动的风、地震和车辆振动等振动荷载的测定。 桥梁自振特性是桥梁结构的固有特性,也是桥梁振动试验中最基本的测试内容。 车辆、风和地震等外荷载作用下桥梁结构动力反应的测定是评价桥梁结构动力性能的基本内容之一。 传统的结构动力学方法,根据力学原理建立结构的数学模型,然后由已知振源(输入力或运动)去求所需要的动态响应。这种方法至少有两方面的问题难以完善:一是阻尼系数只能凭假定设置;其次是计算图式和设计图式与实际结构之间的差异。 振动试验已经发展起来的参数识别与模态分析技术,是改善理论计算不足的有力手段。它的基本做法是,利用已知(或未知)输入力对结构激振,用仪器测得结构的输出响应,然后通过输入、输出的关系(或仅输出)求取结构的数学模型,使更接近于结构的实际情况。 振动试验作为一门独立的工程振动学科,解决了许多理论计算上无法解决的实际问题,我国从1976年唐山地震后滦河大桥的抗震试验开始,各高校、科研单位先后对许多实桥和模型桥做过振动试验,特别是近年来对新建的一些大跨度桥梁进行施工阶段和运营阶段的振动试验,许多实测数据已直接为桥梁结构的振动分析、抗震抗风研究所利用。 4.2桥梁自振特性参数测定 测定桥梁自振特性参数是桥梁振动试验的基本内容,要研究桥梁结构的抗震、抗风或抗其它动荷载的性能和能力必须了解桥梁结构的自振特性。 自振特性参数,也称动力特性参数和振动模态参数,主要包括结构的自振频率(自振周期)、阻尼比和振型等,是由结构形式、材料性能等结构固有的特性决定,与外荷载无关。 4.2.1自振特性参数 1.自振频率和自振周期 自振频率是自振特性参数中最重要的概念,物理上指单位时间内完成振动的次数,通常用f表示,单位为赫兹(Hz),也可以用圆频率ω(ω =2πf)表示,单位为1/秒(1/s)。 自振周期(T)指物体振动波形重复出现的最小时间,单位为秒(s),它和自振频率互成倒数关系T=1/f。

结构振动控制的概念及分类

耗能方案 性能来抵御地震作用的,即由结构本身储存和消耗地震能量,以满足结构抗震设防标准,小震不坏,可能无法满足安全性的要求;另一方面,在满足设计要求的情况下,结构构件的尺寸可能需做得很大木工程领域新兴一种新型的抗震方式——结构振动控制,即对结构施加控制机构,由控制机构和结构 半主动控制和混合控制。 是由控制装置随结构一起振动变形而被动产生的。被动控制可分为基础隔震技术、耗能减震技术和吸是由控制装置按某种控制规律,利用外加能源主动施加的。主动控制系统由传感器、运算器和施力作术。主动控制有主动拉索系统(ATS)、主动支撑系统(ABS)、主动可变刚度系统(AVSS)、主动质期开始研究主动控制。目前,主动控制在土木工程中的应用已达30多项,如日本的Takenaka实验控制力虽也由控制装置自身的运动而被动的产生,但在控制过程中控制装置可以利用外加能源主动调置、半主动TMD、半主动力触动器、半主动变刚度装置和半主动变阻尼装置等。 主动控制,或者是同时应用不止一种的被动控制装置,从而充分发挥每一种控制形式和每一种控制装:同时采用AMD和TMD的混合控制系统、主动控制和基础隔震相结合的混合控制系统以及主动控制和

京的清水公司技术研究所。 ,但由于建筑结构体形巨大导致所需的外加能源较大,加之控制装置的控制的算法比较复杂,而且存好,容易实现,目前发展最快,应用最广,尤其是其中的基础隔震技术已相当成熟,并得到了一定程主动控制低廉,而且不需要较大的动力源,因此其具有广阔的应用和发展前景;混合控制综合了某几 和耗能减震技术。 置控制机构来隔离地震能量向上部结构传输,使结构振动减轻,防止地震破坏。目前研究开发的基础和混合隔震等。近年来,越来越多的国家开展了基础隔震技术的研究,因此,隔震技术也得到了飞速:日本94栋,美国21栋,中国46栋,意大利19栋,新西兰16栋,已采用了基础隔震技术。最近有 使结构的振动能量分散,即结构的振动能量在原结构和子结构之间重新分配,从而达到减小主结构振尼器(TLD);(3)质量泵;(4)液压—质量控制系统(HMS);(5)空气阻尼器。其中,应用最多两个重300吨的TMD,质量块在9米长的钢板上滑动,它很好地减小了大楼的风振反应,防止了玻璃幕nade桥的桥塔均安装了TMD,其减震效果均令人十分满意。日本的Yokohama海岸塔是一个高101米析表明,安装了TLD后塔的阻尼比由0.6%增加到4.5%,在强风作用下塔的加速度减小到原来的1/3 TLD以控制其风振反应。

浅谈预应力桥梁荷载试验分析

浅谈预应力桥梁荷载试验分析 发表时间:2019-01-15T11:08:20.687Z 来源:《建筑学研究前沿》2018年第31期作者:郭利娜 [导读] 结合某预应力桥梁工程实例,对桥梁荷载试验分析要点内容进行研究,首先详细论述静载试验的要求,同时在分析测试方法及检测仪器相关内容的基础上,归纳总结了桥梁荷载试验检测结果,实践可知整个桥梁的载荷满足设计标准,符合运营要求。 山西晋城路桥建设有限公司 摘要:结合某预应力桥梁工程实例,对桥梁荷载试验分析要点内容进行研究,首先详细论述静载试验的要求,同时在分析测试方法及检测仪器相关内容的基础上,归纳总结了桥梁荷载试验检测结果,实践可知整个桥梁的载荷满足设计标准,符合运营要求。 关键词:公路桥梁;预应力;荷载;试验分析 0前言 在公路桥梁工程中,桥梁荷载大小直接影响到桥梁整体工程的质量,因此,在建设过程中,必须要财务有效的方式对桥梁荷载进行试验,从而保证桥梁工程的质量得到提高。 1工程概况 某桥梁工程建设在二级公路项目中,其主要的结构形式即为预应力混凝土简支梁桥。桥梁的上部结构主要应用的是预应力混凝土简支空心板的形式,应用C50混凝土进行施工。空心板桥跨中部分的结构形式即为空心断面,支点连接位置上应用的是实心断面结构形式。桥梁工程的自上而下分别有沥青面层、防水层以及找平层组成。 2静载试验 根据桥梁的实际情况,需要进行如下几个方面的检查。 ①截面附近区域的结构性能 ②桥梁的截面挠度与挠度横向分布情况 ③在满足设计条件下,截面附近位置是否存在裂缝问题; ④试验过程中,检测混凝土应变参数;⑤试验过程中是否存在变形的问题。 2.1测试方法及检测仪器 根据施工工艺规范要求,主要应用的是落地支架为参考点的形式,利用电测位移计来确定挠度参数,其分辨率为±1mm。应变测试主要针对的是截面位置,应用的是应变计与静变计来进行测试。根据实际测量的应变值以及桥梁材料的弹性模量参数来进行应力的测试。裂缝问题通常都是通过肉眼观测确定的,使用裂缝宽度检测仪来确定具体尺寸。 2.2试验荷载 根据设计荷载参数的要求,需要在桥梁的2车道中分别进行纵向载荷布置,汽车荷载按照规定的要求来计入到冲击系数H1,并且通过计算确定截面内力值,以此为基础来开始进行试验加载进行。按照设计正常载荷作为试验过程的荷载参数,然后根据截面内力等效原则开始进行载荷设置,确保测试截面试验荷载达到相应技术规范的要求,保证最终的试验结果的准确性与可行性。加载车辆的规格和数量要根据结构来最终确定,同时也要结合荷载等级参数来确定。根据试验工艺规范的要求,静力试验的过程中,一般可以按照偏左加载、偏右加载以及居中加载等3中主要的形式,这几种加载形式可以达到15个工况,最终可以确保加载试验参数的准确性,也能够精确的判定桥梁的性能是否能够满足使用的需要。 3检测结果及分析 如果将所有的截面测试点都进行详细的描写是比较复杂的篇幅也会比较长,本文只选择1截面在偏左试验荷载之下的测试结果与计算结果进行对比分析,其他的截面测试结果就不再进行列举和分析。 3.1挠度检测结果 根据所测量的挠度参数,将试验测试中的挠度参数变化绘制成为下图1分布曲线,其主要是横向分布的方式,同时与计算数据进行对比分析,详见下表1所示。 图1 比较图 表1 应变检测结果 分析表明:在试验荷载的影响之下,所有结构截面中的实测挠度值都要比计算数据小,其检测数据系数全部都在 0.37~0.85之间,

桥梁共振和预防

列车-桥梁共振研究的现状与发展趋势及预防共振的措施 列车通过桥梁时将引起桥梁结构的振动,而桥梁的振动又反过来影响车辆的振动,这种相互作用、相互影响的问题就是车辆与桥梁之间振动耦合的问题。人类自1825年建成第一条铁路以来,便开始了对列车与桥梁相互作用研究探索的漫长历史过程。1849年Willis提交了第一份关于桥梁振动研究的报告,探讨了Chester铁路桥梁塌毁的原因。在随后的近100年时间内,由于当时力学水平、计算技术、方法及手段的落后,研究中通常将车辆、桥梁简单地看作两个独立的模型,在这种模型里,机车车辆被简化成单个或多个集中力,或者将其各种动力因素简化为简谐力,而桥梁被处理成均布等截面梁,采用级数展开的方法进行近似的求解,这些方法基本上只能算是解析或半解析法。 20 世纪60、70年代以来,电子计算机的出现以及有限元技术的发展,使得车桥耦合振动研究有了飞速的发展,从车桥系统的力学模型、激励源的模拟到研究方法和计算手段等都有了质的飞跃,人们可以建立比较真实的车辆和桥梁计算模型,然后用数值模拟法计算车辆和桥梁系统的耦合振动响应,美国、日本、欧洲和国内诸多学者为车桥耦合振动理论的发展做出了重要贡献,在车辆模型、桥梁模型以及车桥系统耦合振动方面取得了不少成就。 本文就车桥耦合振动的研究思路、车辆分析模型、桥梁分析模型、轮轨接触关系、激励源、数值计算方法6个方面,较系统地阐述了列车~桥梁耦合振动研究的现状与进展,总结在上述6个方面已取得的一些研究成果和结论,同时,指出目前研究工作中存在的尚待进一步完善的问题,就如何进一步开展上述领域的研究作了初步探讨。 1 车桥耦合振动研究的现状 20 世纪60、70年代,西欧和日本开始修建高速铁路,对桥梁动力分析提出了更高的要求;同时,电子计算机的出现以及有限元技术的发展,使得车桥振动研究具备了强有力的分析手段,这极大地促进了车桥耦合振动研究的向前发展。 日本在修建本四联络线时,对车桥动力响应做了大量的理论研究、试验研究和现场测试工作。通过分析轮轨横向力、轮重减载率、脱轨系数和车体加速度来

相关文档
相关文档 最新文档