文档库 最新最全的文档下载
当前位置:文档库 › 四色定理是求解最大值问题以及证明

四色定理是求解最大值问题以及证明

四色定理是求解最大值问题以及证明
四色定理是求解最大值问题以及证明

四色定理是求解最大值问题以及证明

摘要:问题一:如果任何一个国家与它邻接区域或说国家的染色都是不同的时候,是不是任何两个邻接区域的颜色就是不同的?

问题二:两个国家的邻接区域还没有什么,但说到三个国家的时候,就有了不同,在其中一个国家看来,另外两个国家都与这个国家是邻接区域,但这两个国家之间有什么关系?一,这两个国家不是相互区域邻接;二,这两个国家是相互区域邻接。四色定理的证明可以从这两个问题出发。

正文:

虽然我们用计算机证明了四色定理,但正如汤米·R·延森和比雅尼·托夫特在《图染色问题》一书中问的:“是否存在四色定理的一个简短证明,……使得一个合格的数学家能在(比如说)两个星期里验证其正确性呢?”【1】

严谨版本的染色问题需要用到拓扑学的概念来定义,那么四色问题的论证是否一定需要拓扑学来证明呢?如果不用拓扑学用其他数学证明,算不算是证明了呢?

什么是四色定理?

四色定理是一个著名的数学定理:如果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;另一个通俗的说法是:每个地图都可以用不多于四种颜色来染色,而且没有两个邻接的区域颜色相同。【1】

那么不用计算机能不能论证四色定理的成立呢?

先看一个问题,问题一:如果任何一个国家与它邻接区域或说国家的染色都是不同的时候,是不是任何两个邻接区域的颜色就是不同的?【2】答案是肯定的。这样四色问题就变成了:平面地图上,如果任何一个国家的邻接区域颜色都是不一样的,是不是只要四种颜色就可以全部描述?如果能够证明成立,那么四色定理就是

成立的。

证明如下:

问题二:两个国家的邻接区域还没有什么,但说到三个国家的时候,就有了不同,在其中一个国家看来,另外两个国家都与这个国家是邻接区域,但这两个国家之间有什么关系?一,这两个国家不是相互区域邻接;二,这两个国家是相互区域邻接。

这样三个或者三个以上国家的时候,区域邻接有两种关系:一种是,这个国家的所有的邻接区域国家都与这个国家是区域邻接的关系,但这些国家之间不是相互区域邻接的关系;【注:这里的相互区域邻接指的是完全相互区域邻接,有n个国家,就是n个国家之间是相互区域邻接的。其中一个国家与部分国家区域邻接不算。】二就是,这个国家的所有的邻接区域都与这个国家是区域邻接的关系,同时,这些国家之间还是相互区域邻接的关系。

首先,对不是相互区域邻接的关系的证明。

这一点在《四色定理非计算机的简短证明》中已经证明了,这里简单叙述一下。这里四色定理转化成数学就是函数求解最大值的问题。我们用函数可以解出最大值,论证四色定理的成立。证明:

第一,任何一个国家都是与n个国家相连接的,即与

一个国家相连接的国家个数有n个。n可以是

任意整数。任何一个国家都是占据一个颜色的。第二,这个国家与所有连接国家的关系:1,所有连接的国家组成闭合区域,2,所有连接的国家

没有组成闭合区域。

第三,任意选择一个国家,如果国家的邻接国家颜色都是不一样的,那么用于邻接国家的颜色的个

数与邻接国家的个数n有什么关系?a,当与

这个国家所有连接的国家组成闭合区域的时

候,所有连接的国家中任选一个为起点,闭合

的最后两个国家是接壤的。这样我们得出,当

n是1的时候,我们知道颜色只能是1. 当n

大于1是奇数的时候,需要的颜色是3;当n

大于1是偶数的时候,颜色是2.因为是偶数的

时候,n/2整除,两个颜色的话,最后结尾的

两个国家正好不相同;当是奇数的时候,由于,

不能被2整除,剩一,剩下的国家不论选择与

接头的国家相同还是与结尾的国家颜色相同,

都是颜色相同。所以需要第三种颜色。这样,

不论一个国家接壤的国家的个数是多少,与颜

色关系不大,决定颜色个数只与n是奇数还是

偶数有关。这样一个国家的周围接壤的国家的

颜色最多用三个颜色就可以标出来,加上这个

国家本身的颜色,就是四个。{这个国家本身的

颜色不能与任何一个接壤的国家的颜色相同。}

这样我们知道了一个国家与周围国家接壤的时

候,最多用四种颜色。b, 当与这个国家所有连

接的国家没有组成闭合区域的时候,当n是1

的时候,我们知道颜色只能是1。当n大于1

是奇数的时候,需要的颜色是2;当n大于1

是偶数的时候,需要的颜色也是2.此时颜色的

个数与n的个数无关,与n是奇数还是偶数无

关。因为,在所有接壤的国家中,一边的国家

与另一边的国家是不接壤的,所以只要任何两

个接壤的国家的颜色是不同的就可以,即只需

两个颜色。这样,加上这个国家本身的颜色,

就是三个。{这个国家本身的颜色不能与任何一

个接壤的国家的颜色相同。}这样,此时一个国

家与周围国家接壤的时候,最多用三种颜色。第四,通过一个国家与周围国家接壤的时候,周围接壤的国家是否闭合两种情形,我们得出:一个

国家与周围国家接壤的时候,最多用四种颜色,

任何一个国家的邻接区域颜色都是不一样的。第五,这样,无数个国家组成的一定平面内的地图中,

这个地图中任何一个国家都是与其他国家接壤

的,当任何一个国家都与周围接壤国家的颜色

不同的时候,那么这个区域内任何两个邻接区

域的染色都是不同的。

这样由于任何一个国家与它两个邻接区域的染色都是不同的时候,最多需要的染色是4种{周围国家3种,这个国家1种,即4种},只要四种染色就可以使任何两个邻接区域的颜色是不同的,所以如果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;或者说:每个地图都可以用不多于四种颜色来染色,而且没有两个邻接的区域颜色

相同。即四色定理成立。

以上所需的简单数学公式为,任何一个国家与之接壤的国家个数x与需要颜色y的关系,y=f(X),

在a情形中,y=f(X)对应法则为,x=1,y=1;x大于1为奇数的时候,y=3; x大于1为偶数的时候,y=2.x 限域是正整数。y最大值是3.在b情形中,y=f(X)对应法则为,x=1,y=1;x大于1为奇数的时候,y=2; x大于1为偶数的时候,y=2. x限域是正整数。y最大值是2.

四色定理成立的公式为,y定,表示所需的颜色总数,y表示任何一个国家与之接壤的国家个数x与需要颜色y的关系,y定=y+1.y最大值为3,所以y定最大值是4.

通过以上的阅读,我们发现,b情况中,得出与n是奇数还是偶数无关是不对的,是片面的,因为需要的颜色是2是不对的,片面的。是的,以上我们很快就可以找出需要的颜色是3的情形。这种需要的颜色是3的情形是怎样的情形呢?这种情形就是国家之间都是相互区域邻接的关系。这种情形,四色定理是否依然成立?这个在《四色定理的几何语言描述以及奇特的证明》和《四色定理奇妙而简短的证明》中进行了证明,这里捡主要的说一下。

国家之间是相互区域邻接关系的四色证明

这里四色定理可以转换成几何语言。邻接区域的几何语言就是两个点的线段。一个国家就是一个一定面积的闭合面。就是闭合线。相邻区域就是两个国家的共有线段,或者说共同线段。一个平面内,区域相邻的闭合面或说国家最多能有多少?这里的区域相邻指的是相互区域相邻。

两个国家的相邻区域是一条线段。三个国家相互区域相邻有三条线段。三个国家相互区域相邻有两种形式,一种是无缝区域相邻,另一种是有缝区域相邻。

在百度文库作者何xp的文章《四色定理》第五页的这个图形,来讲解一下。去掉外围蓝色的,和黄色的,剩下四个国家。中心蓝色a表示,绿色的用b表示,黄色的用c表示,红色的用d表示。abc三个国家就是无缝区域相邻。bcd三者就是有缝区域相邻。

四个国家相互区域相邻的时候,相邻区域是六条线段。四个国家相互区域相邻的时候,必有一个国家被包围。与这三个国家外的国家不能相邻,包括,点的相邻。

有没有五个国家相互区域相邻呢?没有的。因为,四个国家相互区域相邻的时候必有一个国家被其他国家包围,第五个国家与这四个国家区域相邻的时候,其实是与三个国家相邻,永远不能与被包围的国家相邻,所以在平面上,没有五个国家相互区域相邻的时候。

如果两个邻接的区域的颜色不能相同,那么一个地图上最多只要四种颜色就可以把平面上所有的国家标示出来。就是说果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样;另一个通俗的说法是:每个地图都可以用不多于四种颜色来染色,而且没有两个邻接的区域颜色相同,是成立的。四色定理是成立的。

为什么四个国家相互区域相邻的时候,必有一个国家被其他国家包围?

先说一说,三个国家相互区域相邻的情形。三个国家相互区域相邻的时候,线段之间有什么关系?线段与国家有什么关系?线段属于国家国境线的一部分。任何一个线段都是两个国家的共同部分。任何两个线段都同属于一个国家的国境线。线段与线段是连接的,连接线段的是国境线。任何两个线段都是通过国境线连接的,那么,三个线段是可以通过国境线连接的。

线段的连接属于国境线的连接,三个线段的连接就是国境线的连接。三个线段的连接是什么?

无缝区域相邻的时候,三个国家无缝连接,三个线段有一个共同的点,三个国家已经吻合连接,之间没有空间。有缝区域相邻的时候,三个线段本身是不连接的。三个线段的连接,即三个国家的国境线是连接的,此时,三条国境线的连接组成闭合曲线,即把三个国家之间的空间与外界隔绝。

为什么三个线段的连接会隔绝与外部的联系呢?因为,在几何中两点决定线段,三点形成平面。三个国家相连的时候,线段与线段是通过国境线是相连接的,三个线段是相互连接,那么三个线段至少有三个点是连接的,这样三点确定一平面,所以三个国家有缝连接,国境线的相互连接会造成一个与外界不联系的闭合曲面。【线段上任何一个点都通过两个国家的国境线,并且线段与线段通过国境线是连接的,所以形成闭合。】在平面内任意放置的三个线段,如果三个线段都是连接的,那么线段的连接必形成闭合线,形成两条闭合线,外面的闭合线包围里面的闭合线。

因为不在一条直线的三点确定平面,那么两个线段四个点的首尾连接必形成闭合面,那么在平面上,任意放置的三个不连接线段,如果把三个线段相互连接,那么线段的连接必形成闭合线,形成两条闭合线,并且外面的闭合线包围着里面的闭合线。--这是个推论。这个推论,如果把线段看成是相互连接的三个国家的相邻区域,那么线段的相互连接(或者说首尾连接)就是国境线的连接,那么相互连接的三个国家必形成闭合线。

三个线段有一个公共点的时候,三个线段的连线形成闭合线,形成闭合面。如果线段是国之间的区域连接,那么三个国家无缝连接。

当第四个国家与三个相互区域相邻的国家相互区域相邻的时候,1,三个国家有缝连接的时候,由于三个国家形成一个闭合曲面,这个闭合曲面就可以是一个国家,所以,第四个国家可以是处在三个国家包围中的国家;2,三个国家,无缝连接的时候,第四个国家,要与其中两个国家区域相邻,那么一个是这三个国家形成无缝连接,但是没有与另外那个国家连接,所以不形成四国区域相邻。当形成区域连接的时候,发现与三个国家有缝连接,包围一个国家相同,此时把一个国家包围了进去。就是说四个相邻的时候,必有一个国家被包围。

四国区域相邻的时候,公共有六个线段,其中三个连接在一起,组成一个国家的全部国境线。

就是说在四国区域相邻的时候,有一个国家的国境线全部是公共线段。

五国区域相邻呢?呵呵,当第五个国家想要区域相邻的时候,永远接触不到被包围的那个国家,所以也就形不成五国区域相邻。就是说在平面上,四国区域相邻,四个闭合曲面区域相

邻是极限。不包括飞地。所以在一个国家看来,所有与这个国家区域邻接的国家之间是相互区域邻接关系的时候,四色定理成立。

所以,任何一个国家与它区域邻接国家的染色都是不同的时候,只需要四种颜色就可以描述出来。

当任何一个国家与它区域邻接国家的染色都是不同的时候,只需要四种颜色就可以描述出来,所以如果使地图上每两个邻接区域染的颜色都不一样,只需要四种颜色。所以四色定理成立。这与地图上国家的区域邻接是‘相互区域邻接’还是‘不是相互区域邻接’无关,与地图是由‘相互区域邻接’国家和‘不是相互区域邻接’国家的混组无关。

另,在《四色定理奇妙而简短的证明》中我们这样说‘由于B点被三个国家包围,平面内能够连接的点只有A,C,D三点,这样第四个国家连接后,最后一个点不能形成与原来三个国家的连接,所以此时,与三个相互连接的国家都连接的国家只有一个。’这种描述是不准确的。可以说成‘国家与国家的连接需要有一个公共线段,两点确定一个线段,由于B点被三个国家包围,那么第四个国家与三个相互连接的国家连接的时候,必须要在AC的外线上选择两个点,必须在CD的外线即能够连接的国境线部分,选择两个点,这样,不论是否与A,D两点重合,都会把国家a包围,与外界隔绝开来,那么

第五个国家就不能与国家a形成国家连接。与C点重合就形成全包围。不通过a国的情形,上有描述。

2014年1月3日05:01:27吴兴广

参考文献:【1】《四色定理》百度科【2】《数学公式1+1=1/2的成立》小马吃鱼【3】《四色定理非计算机的简短证明》天涯博客【4】《四色定理》百度文库

何xp【5】《四色定理的几何语言描述以及奇特的证明》

吴兴广【6】《歪解光速不变原理》【7】

【8】《物理学中量的计算与相对论的关系》【9】《四色定理奇妙而简短的证明》

中值定理证明

中值定理 首先我们来瞧瞧几大定理: 1、 介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A 及 f(b)=B,那么对于A 与B 之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

重要定理的证明

考研数学重要定理、性质及公式证明总结 ()()()()()()()()000000001,211112y f x x y f x x y f x x dy f x x f x dx y f x x y f x x f x x x ==''==?====()函数在点处可微的充分必要条件是函数在点处可导且当函数在点处可微时,有; ()如果函数在点处可导,则函数函数在点处必连续,反之不一定.证明:()参看同济教材七版上册页; ()参看同济教材七版上册82页.设函数在处可导且取极值1.证明一元函数可微、可导及连续的关系: 2.证明费马定理: ()()[]()()()()()()()[]()()()()()()()() () ()0=0.125,,,,,,=0. 126,,,,0,,.130,f x f x a b a b f a f b a b f f b f a f f x g x a b a b g x a b g b g a g f x ξξξξξ''=∈'-'≠?∈= '-,则证明:参看同济教材七版上册页.设在上连续在内可导,且则至少存在一点使得证明:参看同济教材七版上册页.设、在上连续内可导且则,使得证明:参看同济教材七版上册页.设3.证明罗尔定理: 4.证明柯西中值定理: 5.证明洛必达法则: ()()()()() () ()()()()()[]()()()()[]0 0000,:1lim lim 0,2lim ;lim lim .133,,,00,,144x x x x x x x x x x g x x g x f x f x f x f x g x g x g x g x f x a b a b f x f x a b →→→→→'≠''==∞='''><在点的某去心邻域内可导,且又满足() ()极限存在或为则证明:参看同济教材七版上册页. 设在上连续在内可导,且则在上单调增加(单调减少).证明:参看同济教材七版上册6.证明函数单调性的充分判别法: ()[]()()()()[]()()0000,,,00,,148(),0,00155f x a b a b f x f x a b f x x x f x f x x x ''><'''==><=页. 设在上连续在内二阶可导,且则在上的图形是凹的(凸的). 证明:参看同济教材七版上册页.设在处二阶可导若(),则是极小(大)值点.证明:参看同济教材七版上册页. 7.证明曲线凹凸性的充分判别法: 8.证明极值点的充分条件: @ 考 研 数学 高老 师

泰特猜想的延续 ——四色定理的书面证明

Pure Mathematics 理论数学, 2019, 9(8), 949-960 Published Online October 2019 in Hans. https://www.wendangku.net/doc/9b13479443.html,/journal/pm https://https://www.wendangku.net/doc/9b13479443.html,/10.12677/pm.2019.98121 Tait’s Conjecture Continue —The Proof of the Four-Color Theorem Wenzhen Han Jincheng Energy Co. Ltd., Jincheng Shanxi Received: Sep. 30th, 2019; accepted: Oct. 22nd, 2019; published: Oct. 29th, 2019 Abstract The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this pa-per, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is in-evitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given. Keywords Four Colors Enough, Two-Color Dyeable Continuous Line, 3-Regular Plane, Maximum Graph, Even Ring Elimination Method 泰特猜想的延续 ——四色定理的书面证明 韩文镇 晋城能源有限责任公司,山西晋城 收稿日期:2019年9月30日;录用日期:2019年10月22日;发布日期:2019年10月29日 摘要 四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终

六大定理互相证明总结讲课讲稿

六大定理互相证明总 结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件:(1)后一个区间在 前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又Θ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1]

证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n > N 时,有N n y y ≥,从而n y >εβ-.也就是说:当n >N 时,有 n y -≤β0<ε 所以 β→n y 2 单调有界原理 2.1 单调有界原理 单调有界数列有极限. 2.2 单调有界原理证明致密性定理 在证明定理之前,我们要先证明一个引理:任意一个数列{}n x 必存在单调子数列. 证明:⑴若{}n x 中存在递增子序列{}k n x ,则引理已证明; ⑵若{}n x 中无递增子序列,那么?1n >0,使n >1n ,恒有1n x >n x .同样在{}n x (n >1n )中也无递增子序列. 于是又存在2n >0,使2n >n ,恒有2n x <n x <1n x .如此无限进行下去便可得到一严格递减子序列{}k n x . 引理得证. 下面证明定理:由引理知,有界数列必有有界单调子数列.又由单调有界原理知,该有界单调子数列必有极限,即该子数列是收敛的.故有界数列必有收敛子列. 2.3 单调有界原理证明区间套定理[1] 由定理的条件立即知道{}n a 是单调增加有上界的数列,{}n b 是单调递减有下界的数列.根据定理,则n n a ∞ →lim 存在,且极限等于{}n a 的上确界.同样,n n b ∞ →lim 也存 在,且极限等于{}n b 的下确界.亦即对任何正整数k ,有

拉格朗日中值定理证明中的辅助函数的构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

四色猜想的证明

四色猜想的证明 吴道凌 (广东省广州市,510620) 摘要:四色猜想至今未得到书面证明。根据其定义的国家概念和着 色要求,揭示了无限平面或球面上任意国家及其邻国的构成和着色规 律,从而给四色猜想一个书面证明。 关键词:四色;猜想;证明;国家;着色 中图分类号:O157.5 文献标识码:A 1852年,英国学者弗南西斯·格思里(Francis Guthrie)提出,“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,这就是后来数学上著名的四色猜想。对此猜想,一百多年来曾有无数学者予以研究,但人工验证均无功而返。1976年,美国数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)利用电子计算机,作了大量判断,对四色猜想进行了机器证明,但这一证明不能由人工直接验证,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任,因此并不被人们普遍接受。 本文拟根据四色猜想定义的国家概念和着色要求,研究无限平面或球面上国家的构成及其着色规律,寻找对四色猜想的书面证明。 1 四色猜想相关定义及表述方法 四色猜想所指的国家,是指连续的区域,可为单连通区域,也可为多连通区域,不连续的区域不属一个国家。共同边界指相邻国家有无数个共同点,四个或四个以上的国家不交于一点,或者说,这种交点不认为是共同边界, 只有这种交点的国家不需区分着色。 四色猜想并未限制地图范围,地图可定义在球面或无限平面 上。在球面上的任何国家,将存在一个外边界,由一条简单闭曲线 构成,在无限平面上的国家,一般也由一条简单闭曲线构成外边界, 个别国家也许在某些区间不存在边界(即区域无限延伸),其外边 界将由若干段曲线构成,对于这种情况,我们可在其无限远处虚拟 若干个国家若干段边界,与实在的若干段边界构成一条简单闭曲线 边界,这种做法实际上提高了这些国家的着色要求,因此不影响本 命题的论证。如为单连通区域,国家里边将不存在内边界,如为多 连通区域,国家里边将存在若干由简单闭曲线构成的内边界。因此,为使命题具有普遍性,把国家定义为具有一个外边界和若干内边界的区域,每 一边界均为该国与若干邻国的共同边界构成的简单闭曲线,如图1 示。下面把构成一条这种共同边界闭曲线的若干邻国称为一个邻国 圈。 用小圆圈表示邻国,两国相邻时,用线条连接两个小圆圈, 一个邻国在共同边界多处出现时,各处分别用小圆圈表示,并用线 条连接各处表示连通。把一个国家表示为由其若干邻国圈构成的闭 合圈围闭的区域,如图2示。其中,外闭合圈之外,一些邻国可能 跨越闭合圈上的一个或多个邻国与其它一个或多个邻国相邻,一些 邻国也可能多处出现在闭合圈上,这些情况将使闭合圈外存在若干

2016考研数学中值定理证明思路总结

2016考研数学中值定理证明思路总结中值定理这块一直都是很多考生的“灾难区”,一直没有弄清楚看到一个题目到底怎么思考处理,因此也是考研得分比较低的一块内容,如果考生能把中值定理的证明题拿下,那么我们就会比其他没做上的同学要高一个台阶,也可以说这是一套“拉仇恨”的题目。下面小编就和大家来一起分析一下这块内容。 1.具体考点分析 首先我们必须弄清楚这块证明需要的理论基础是什么,相当于我们的工具,那需要哪些工具呢? 第一:闭区间连续函数的性质。 最值定理:闭区间连续函数的必有最大值和最小值。 推论:有界性(闭区间连续函数必有界)。 介值定理:闭区间连续函数在最大值和最小值之间中任意一个数,都可以在区间上找到一点,使得这一点的函数值与之相对应。 零点定理:闭区间连续函数,区间端点函数值符号相异,则区间内必有一点函数值为零。 第二:微分中值定理(一个引理,三个定理)

费马引理:函数f(x)在点ξ的某邻域U(ξ)内有定义,并且在ξ处可导,如果对于任意的x∈U(ξ),都有f(x)≤f(ξ) (或f(x)≥f(ξ) ),那么f'(ξ)=0。 罗尔定理:如果函数f(x)满足: (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 在区间端点处的函数值相等,即f(a)=f(b), 那么在(a,b)内至少有一点ξ(a<ξ 柯西中值定理:如果函数f(x)及F(x)满足 (1)在闭区间[a,b]上连续 (2)在开区间(a,b)内可导 (3)对任一x∈(a,b),F'(x)≠0 那么在(a,b) 内至少有一点ξ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ξ)/F'(ξ)成立。 第三:积分中值定理: 如果函数f(x) 在积分区间[a, b]上连续,则在[a, b]上至少存在一个点ξ,使下式成立

简洁破解四色猜想——“1+3”证明与“3+1”充要条件模型证明——

简洁破解四色猜想 ——“1+3”证明与“3+1”充要条件模型证明—— 李传学 四色猜想与费马猜想、哥德巴赫猜想,是数学界三大难题。本文利用“1+3”、“3+1”链锁思维方式,并结合计算机逻辑判断方式,给予地球四色猜想的有、且只有数学方法与应用方法的两种证明。并在实践中,使链锁着色,直至组成四色猜想的(△)网状平面整(总)体地图。 一、四色猜想简洁证明的提出。 随着计算机运算速度的加快、人机对话智能的出现,极大加快了对四色猜想研究、证明的步伐。1976年6月,美国哈肯与阿佩尔编制程序,利用1200个小时,分别在两台计算机上,作了100亿次判断,终于完成了四色猜想的证明。到目前为止,仍是世界上唯一被认可的证明方法。但是,由于计算机证明方法过程深长,不符合人的逻辑思维判断过程,缺乏简洁性,无法令人信服。 二、“四色”是地球“四方八位”的客观存在。 “四方八位”是个动态概念,存在于“天、地、人合一”的地球万物运动的整个过程中。同样,数学界三大难题之一的四色猜想,也离不开这一客观规律。 地球,蕴育了万物。天圆地方、“四方八位”、四面八方、东西南北、五湖四海是人类认识地球的思维方式。远在史前人类整体文明时期,就有文物记载了地球上有关“四方八位”的许多概念。如半坡人鱼盆、人网盆、含山玉版、澄湖陶罐、八角星陶豆、良渚陶璧、古埃及金字塔,以及其他图形、符号记载的伏羲八卦图、彝族八卦图、河图、洛书、五行属性,也都应用了“四方八位”概念。 四色绚丽的地球生生不息,是“天人合一”的赋予。地球的天圆地(四)方是阴阳学说的核心和精髓,又是阴阳学说的具体体现,具有朴素的辩证法色彩,是古代人类认识世界的思维方式。 阴阳五行中的五色、四方位:即,木有青、东,金有白、西,火有红、南,水有黑、北,土有黄、中,以及罗盘定位、经纬仪、四季、纳米四大光波(红、蓝、绿、黄)、四色光谱仪都与地球上的“四方八位”寓意紧密相关。当然,“四色猜想”也不例外,也只能有、且只有在地球图上的客观存在。 三、四色猜想的数学语言定义。 任何一张平面地图,只要用四种不同颜色就能使具有共同边界的国家,着上不同颜色,称之为四色猜想。 四色猜想的数学语言定义:将平面任意地细分为不相重叠的区域,每一区域总可以用1、2、3、4这四个数字之一来进行标记,且不会使相邻的两个区域得到相同的数字。这里的相邻区域,是指有一整段(非点)边界是公共的边界(注:据网络“科普中国”)。 四、四色猜想的数学证明。

定理与证明(一)

定理与证明(一) 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 教学建议 (一)教材分析 1、知识结构 2、重点、难点分析 重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性. 难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出最优的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.(二)教学建议 1、四个注意 (1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.

(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等. (4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由. 2、逐步渗透数学证明的思想: (1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.(2)提高学生的“图形”能力,包括利用大纲允许

关于高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值 f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

初一常用几何证明的定理总结

初一常用几何证明的定理总结

平面直角坐标系各个象限内和坐标轴的点的坐标的符号规律: (1)x 轴将坐标平面分为两部分,x 轴上方的纵坐标为正数;x 轴下方的点纵坐标为负数。即第一、二象限及y 轴正方向(也称y 轴正半轴)上的点的纵坐标为正数;第三、四象限及y 轴负方向(也称y 轴负半轴)上的点的纵坐标为负数。 反之,如果点P (a ,b )在x 轴上方,则b >0;如果P (a ,b )在x 轴下方,则b <0。 (2)y 轴将坐标平面分成两部分,y 轴左侧的点的横坐标为负数;y 轴右侧的点的横坐标为正数。即第二、三象限和x 轴的负半轴上的点的横坐标为负数;第一、四象限和x 轴正半轴上的点的横坐标为正数。 (3)规定坐标原点的坐标为(0 ,0) (4 (5) 对称点的坐标特征: (1)关于x 轴对称的两点:横坐标相同,纵坐标互为相反数。如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于x 轴对称,则12 12 x x y 0y ??+=?=反之也成立。如P (2 ,-3)与Q (2 ,3)关于x 轴对称。 (2)关于y 轴对称的两点:纵坐标相同,横坐标互为相反数。如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于y 轴对称,则12 120 y x x ??+=?=y 反之也成立。如P (2 ,-3)与Q (-2 ,-3)关于y 轴对称。 (3)关于原点对称的两点:纵坐标、横坐标都互为相反数。如点P (x 1 ,y 1)与Q (x 2 ,y 2)关于原点对称,则1212 x + x 0 y 0y =??+=?反之也成立。如P (2 ,-3)与Q (-2 ,3)关于原点对称。

六大定理互相证明总结

六大定理的相互证明总结 XXX 学号 数学科学学院 数学与应用数学专业 班级 指导老师 XXX 摘要 在《数学分析》中第二部分极限续论中提到的实数的基本定理一共提到六大定理,其中包括确界定理,单调有界原理,区间套定理,致密性定理,柯西收敛定理,有限覆盖定理.该六大定理在闭区间上连续函数性质的证明起着同等重要的作用.本文总结了六大定理的相互证明. 关键词 确界定理、单调有界原理、区间套定理、致密性定理、柯西收敛定理、有限覆盖定理 1 确界定理 1.1 确界定理 有上界的非空数集必有上确界,有下界的非空数集必有下确界. 1.2 确界定理证明区间套定理 证明:设一无穷闭区间列{[,n a ] n b }适合下面两个条件: (1)后一个区间在前一个区间之内,即对任一正整数n ,有1+≤n n a a <n n b b ≤+1,(2)当n ∞→时,区间列的长度{(-n b ) n a }所成的数列收敛于零,即()0lim =-∞ →n n n a b . 显然数列{}n a 中每一个元素均是数列{}n b 的下界,而数列{}n b 中每一个元素均是数列{}n a 的上界.由确界定理,数列{}n a 有上确界,数列{}n b 有下确界. 设{}{}.sup ,inf n n a b ==βα显然n n n n b a b a ≤≤≤≤βα,. 又 ()0lim =-∞ →n n n a b ∴βα= 即{}n a 及{}n b 收敛于同一极限ξ,并且ξ是所有区间的唯一公共点. 1.3 确界定理证明单调有界原理[1] 证明:我们只就单调增加的有界数列予以证明.因{}n y 有界,则必有上确界 {}n y sup =β.现在证明β恰好是{}n y 的极限,即β→n y . 由上确界的定义有:⑴β≤n y (3,2,1=n …),⑵对任意给定的ε>0,在{}n y 中至少有一个数N y ,有N y >εβ-.但由于{}n y 是单调增加数列,因此当n >N 时,

第五讲中值定理的证明分析

第四讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值 定理。掌握这四个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(')(') ()()()(ξξg f a g b g a f b f =--

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 )())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中10)1()()!1()()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公 式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ?f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++=ΛΛ212211)()()()(ξ 例2、设)(,0x f a b >>在[a,b]上连续、单调递增,且0)(>x f ,证明存在),(b a ∈ξ 使得 )(2)()(222ξξf a f b b f a =+ 例3、设)(x f 在[a,b]上连续且0)(>x f ,证明存在),(b a ∈ξ使得 ???==b b a a dx x f dx x f dx x f ξξ )(2 1)()(。 例4、设)(),(x g x f 在[a,b]上连续,证明存在),(b a ∈ξ使得

罗尔中值定理的内容及证明方法

罗尔中值定理的内容及证明方法 (一)定理的证明 证明:因为函数)(x f 在闭区间[]b a ,上连续,所以存在最大值与最小值,分别用M 和m 表示,现在分两种情况讨论: 1.若m M =,则函数)(x f 在闭区间[]b a ,上必为常数,结论显然成立。 2.若m M >,则因为)()(b f a f =使得最大值M 与最小值m 至少有一个在()b a ,内某点ξ处取得,从而ξ是)(x f 的极值点,由条件)(x f 在开区间()b a ,内可导得,)(x f 在ξ处可导,故由费马定理推知:0)('=ξf 。 (二)罗尔中值定理类问题的证明 罗尔中值定理在微分学解题中有着广泛的应用,下面我们就对罗尔中值定理的应用作深入的研究,归纳出证题技巧。 1.形如“在()b a ,内至少存在一点ξ,使k f =)('ξ”的命题的证法。 (1)当0=k 时,一般这种情况下,我们只需验证)(x f 满足罗尔定理的条件,根据罗尔定理来证明命题。在证明过程中,我们要注意区间的选取,有时候所需验证的条件并不是显而易见的。 例1 设)(x f 在闭区间[]1,0上连续,开区间()1,0内可导,?=1 32 )(3)0(dx x f f 。 证明:()1,0∈?ξ,使0)('=ξf 分析:由于所需验证的罗尔中值定理的条件并不是显而易见的,而且这个问题涉及到定积分,所以我们考虑运用积分中值定理的知识,尝试在()1,0中找到一个区间()η,0,在()η,0中运用罗尔中值定理去证明。 证:因为??????∈=-==?1,32,)()()321(3)(3)0(1 3 2ηηηf f dx x f f 显然)(x f 在闭区间[]η,0上连续,在开区间()η,0内可导 根据罗尔定理,()1,0∈?ξ,使0)('=ξf (2)当0≠k 时,若所证明的等式中不出现端点值,则将结论化为:0)('=-k f ξ的形式,构造辅助函数)(x F ,我们就可以运用(1)中的方法证明命题。我们在构造辅助函数时,可用观察法、积分法、递推法,常数k 法等等。

证明四色猜想

证明四色猜想 本文用递推的方法,分别用点和线代替平面图形及平面图形相交,则三个平面图形两两相交时,构成一个三角形的封闭空间。通过讨论第四个点与此三角形的关系,简明地证明了四色猜想。 四色猜想最先是由一位叫古德里的英国大学生提出来的。高速数字计算机的发明,促使更多数学家对“四色问题”的研究。就在1976年6月,哈肯和与阿佩尔合在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍有不少数学家和数学爱好者在寻找更简洁的证明方法。 证明 将平面图形抽象极限成成点或线,当然在这一点或线的基础上可以任意发出一些线(这些射线可以任意扩展为面)。这些射线都属于这个点。 首先,A,B两个面相交看成点A发出的射线和点B发出的射线相遇于点Pab,如图1。第三点C要和A,B两两相交,则构成一个三角形ABC的封闭空间,如图2。 这时点D要和A、B、C两两相交则有两种情况: (1)D在ABC之内和ABC相交 当D和和A、B、C中任意两者相交都将构成新封闭三角形。第五点E继续相交时就和D与A、B、C相交的情况一样。 假设D和A,B,C分别相交于Pad,Pbd和Pcd。Pbd在P到B点间,Pad 在Pac到A点间,Pcd在Pac到C点间。这样即使A,B,C内部还有剩余空间也被分成了3部分如图3。尽管这三个图形不一定都是三角形但都是封闭的,都可以简化成三角形。所以无论第五点E在哪部分都是点与三角形关系。(见图3) (2)D在ABC之外和ABC相交 D可以完全将ABC包围或者将ABC一部分包围。但无论怎样ABC三者至少有一者完全在D的图形内。 若D将ABC一部分包围。那么ABC至少有一点完全被D包围。如图5 若E在D外就不能和A、B同时相交。

中值定理的证明题

第五讲 中值定理的证明技巧 一、 考试要求 1、 理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定 理),并会应用这些性质。 2、 理解并会用罗尔定理、拉格朗日中值定理(泰勒定理),了解并会用柯西中 值定理。掌握这三个定理的简单应用(经济)。 3、 了解定积分中值定理。 二、 内容提要 1、 介值定理(根的存在性定理) (1)介值定理 在闭区间上连续的函数必取得介于最大值 M 与最小值m 之间的任何值. (2)零点定理 设f(x)在[a 、b]连续,且f(a)f(b)<0,则至少存在一点,c ∈(a 、b),使得f(c)=0 2、 罗尔定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 (3))()(b f a f = 则一定存在),(b a ∈ξ使得0)('=ξf 3、 拉格朗日中值定理 若函数)(x f 满足: (1))(x f 在[]b a ,上连续 (2))(x f 在),(b a 内可导 则一定存在),(b a ∈ξ,使得))((')()(a b f a f b f -=-ξ 4、 柯西中值定理 若函数)(),(x g x f 满足: (1)在[]b a ,上连续 (2)在),(b a 内可导 (3)0)('≠x g 则至少有一点),(b a ∈ξ使得)(') (') ()()()(ξξg f a g b g a f b f = --

5、 泰勒公式 如果函数)(x f 在含有0x 的某个开区间),(b a 内具有直到1+n 阶导数, 则当x 在 ),(b a 内时, )(x f 可以表示为0 x x -的一个n 次多项式与一个余项)(x R n 之和,即 ) ())((!1 ))((!21))(()()(00)(200000x R x x x f n x x x f x x x f x f x f n n n +-+???+-''+-'+= 其中1 0)1()()!1() ()(++-+=n n n x x n f x R ξ (ξ介于0x 与x 之间). 在需要用到泰勒公式时,必须要搞清楚三点: 1.展开的基点; 2.展开的阶数; 3.余项的形式. 其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式. 而基点和阶数,要根据具体的问题来确定. 6、 积分中值定理 若f(x)在[a 、b]上连续,则至少存在一点c ∈[a 、b],使得 b a ? f(x)dx=f(c)(b-a) 三、 典型题型与例题 题型一 、与连续函数相关的问题(证明存在ξ使0)(=ξf 或方程f(x)=0有根) 方法:大多用介值定理 f(x)满足:在[a,b]上连续;f(a)f(b)<0. 思路:1)直接法 2)间接法或辅助函数法 例1、设)(x f 在[a,b]上连续,),,2,1(0,21n i c b x x x a i n ΛΛ=><<<<<,证明存在],[b a ∈ξ ,使得 n n n c c c x f c x f c x f c f ++++++= ΛΛ212211) ()()()(ξ

四色定理的简单证明

四色定理的简单证明 虽然现在已经有不少人用不同方法证明出了四色定理,但我认为四色定理的证明还是有点复杂,所以给出以下证明。(注:图形与图形的位置关系可分为相离、包含、内向接、内向切、外向接、外向切,在此文中由于题意关系不妨重新分为以下关系:1 把包含、内向接、内向切,统一划分为包含关系。2 把外向接单独划分为相接关系。3把相离、外相切统一划分为相离关系。) 此证明过程中把图的组合形式按照其位置关系而抽离出了以下四种基本有效模式: 1 若要存在只需用一种颜色便能彼此区分开来的地图,则该图中所有图形必定满足彼此相离。如下图: 图(1) 分析:这是最简单的一种图形关系模式暂且称为模式a。 2 若要存在只需用两种颜色便能彼此区分开来的地图,则该图中的所有图形必定满足最多只存在两个图形的两两相交的图形。各种有效图形关系如下图:

图(2) 分析:两个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之一。由于图(1)存在包含关系,被包含的图形是对外部无影响的,所以图(1)仍属于模式a。所以两个图形的两两相交只有图(2)的相交关系模式的图形有效的,我们暂且称之为模式b。 3 若要存在只需用三种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在三个图形的两两相交图形。各种有效图形关系如下图: 图(3) 分析:三个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之一。由于图(2)属于存在包含关系,同理整体回归于模式a。所以三个图形的两两相交只有图(1)的相接关系模式的图形是有效图形模式,我们暂且称之为模式c。 4 若要存在只需用四种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在四个图形的两两相交图形。各种有效图形关系如下图: 图(4)

四色定理证明

四色定理的证明 一、四色定理的介绍 地图四色定理最先是由一位叫古德里的英国大学生提出来的。 四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2, 3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。1976年美国数 学家阿佩尔与哈肯宣告借助电子计算机获得了四色定理的证明,又为用计算机证明数学定理开拓了前景。 二、四色定理的证明 通过四色定理的介绍,我们可以知道如果两个图形相邻,则需要用不同的颜色将它们区分。反之,若两个图形不相邻则可以用一种颜色。由此得出,如果一张地图不能用四种颜色将它们分开,则必然存在五个两两相邻的图形。所以,只需证明是否存在五个两两相邻的图形即可。 1.把一个图形X 分成2个小图形的情况共有两种。分别如下: 图 2 说明:a.图形X 的选取是任意的(在这里举的是一个圆)。 b.将图1的分法叫线切法,点M,N 为交点,其特点是两个图形都只共用自己的一部分 边界。将图2的分法叫内取法,其特点是其中一个图形所有边界与另一个图形共用。内取法的性质是里面的图形B 只能与图形A 相邻,称图形B 为内取图形。 2.将一个图形X 分成3个小图形的情况共有6种,方法是先把一个图形分成两个,再把其中 一个分成两个。对图1因其分成的两个图形是等价的所以共有2种(如图3和图4),对图2的继续分共有4种(如图5到图8)。分别如下: 图5 图6 图8 从中我们可以看出,只有图3、图5和图7是满足两两相邻的。 3.将一个图形X 分成4个小图形两两相邻的情况。方法是先把图形X 分成2个小图形A 和 B ,再把B 分成3个小图形B1、B2和B3。又因为分成3个图形满足两两相邻的只有图3、图5和图7三种分法,图5和图7有内取图形无法与图形A 相邻,故要想满足4个图形两两相邻只能采取图3这种分法。 P

相关文档
相关文档 最新文档