文档库 最新最全的文档下载
当前位置:文档库 › 纤维前处理用精练助剂研究进展

纤维前处理用精练助剂研究进展

纤维前处理用精练助剂研究进展
纤维前处理用精练助剂研究进展

碳纤维吸波材料的研究进展_吴红焕

碳纤维吸波材料的研究进展 吴红焕,王晓艳,张 玲,朱冬梅,周万城 (西北工业大学凝固技术国家重点实验室,西安710072) 摘要 通过对碳纤维在复合材料中吸波性能的研究,得出通过控制碳纤维的长度和含量,以及采用化学掺杂或异型截面是得到频带宽、厚度薄、质量轻、吸收强结构吸波材料的有效方法,同时大力开展螺旋碳纤维和碳纳米管的研究是加快进展的新方向。 关键词 碳纤维 吸波材料 碳纳米管 化学掺杂 中图分类号:TQ342+.742 文献标识码:A Present Development of Absorbing Composites Containing C arbon Fibers WU Honghuan,WAN G Xiaoyan,ZHAN G Ling,ZHU Dongmei,ZHOU Wancheng (State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi’an710072) Abstract The characteristic and transforming methods of short carbon fibers are discussed in this paper,in2 cluding additive lengths,contents,adulteration and non2circular section.Controlling the length and content of carbon fibers and exploiting adulteration and non2circular section are effective methods to get“wide,thin,light,strong”structure absorbing materials.At the same time,coiled carbon fibers and carbon nano2pipes are the new direction to ac2 celerate development. K ey w ords carbon fiber,absorbing material,CN Ts,chemical adulteration   0 前言 雷达吸波材料是指能吸收、衰减入射的电磁波,并将电磁能转换成热能而耗散掉,或使电磁波因干涉相消的一类材料。它由吸收剂与能透过雷达波的基体材料复合而成,经历了由单一纤维到混杂纤维、由次承力件到主承力件、由热固性树脂到热塑性树脂的发展过程[1~3]。除一般的吸波材料外,隐身用的特种碳纤维是制造吸波材料的关键。碳纤维结构吸波材料具有承载和减少雷达比反射面的双重功能,是功能与结构一体化的优良微波吸收材料。与其它吸波材料相比,它不仅具有硬度高、高温强度大、热膨胀系数小、热传导率高、耐蚀、抗氧化等特点,还具有质轻、吸收频带宽的优点。通过研究碳纤维的吸波性能和吸波机理,并对纤维吸收剂进行改性和结构设计,研制出高性能的碳纤维复合材料是现在研究的热点课题[4,5]。但目前国内对碳纤维吸波材料的理论研究与实际应用之间仍存在一定差距,亟需进一步突破。由于连续碳纤维对雷达波易产生强反射作用,而短切碳纤维在材料中随机分布,改善了这方面的性能,对雷达波有较好的吸收性能。本文从短切碳纤维的吸波性能出发,总结了碳纤维的吸波特性及改性措施。 1 短切碳纤维的吸波机理及影响因素 1.1 短切碳纤维的吸波性能及频响机理 连续碳纤维对雷达波产生强反射作用,主要是因为电磁场在碳纤维中形成了较大的连续传导电流。而短碳纤维在基体当中的吸波机理目前基本存在两种解释[6],一是认为短切碳纤维在吸波材料中起半波谐振子的作用。在短切碳纤维的近区存在似稳感应场,此感应场激起耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其他形式的能量,主要为热能。另一说法认为在含短切碳纤维的吸波材料中,可以把短切碳纤维作为偶极子。短切碳纤维偶极子在电磁场的作用下会产生极化耗散电流,在周围基体作用下,耗散电流被衰减,从而使雷达波能量转换为其它形式的能量。 碳纤维吸波材料是一种介电型吸波材料,与磁性吸收剂相比,介电常数控制是吸收剂研究的重点和难点,而介电常数频散效应的控制则是宽频带吸收所必须追求的目标。因此,研究碳纤维吸波材料频响效应的机理至关重要。频响效应就是随着频率的增加,介电参数的实部、虚部下降,损耗增加的现象。其本质是在频率变化的过程中,电极化出现了极化的惯性或滞后性,以至于在不同频率电场中极化来不及响应电场的变化而出现的现象。根据电磁波理论,随着频率的增加,当电磁波在碳纤维导体表面产生涡流时,在导线截面上的电流分布将越来越向导线表面集中,即产生趋肤效应现象。趋肤效应越明显,产生的涡流损耗越相应地增加,从而导致电磁波的消耗。电磁波在碳纤维之间传播时,除了涡流损耗外,在每束碳纤维之间的部分电磁波还会经散射发生类似相位对消现象引起损耗增加[7]。 1.2 添加最佳长度和含量的探索 邢丽英等[8]研究了掺混短碳纤维的复合材料在电磁波作用下某些宏观物理量的响应特性。结果表明,调整纤维长度及含量可在很宽范围内改变材料的电磁参数与衰减量;不同长度的短碳纤维在介质中的最佳填充量不同,当纤维的长度接近传输  吴红焕:女,1982年生,硕士,主要从事碳纤维结构吸波材料研究 Tel:029********* E2mail:whh—8278@https://www.wendangku.net/doc/9013570397.html,

纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究 摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理; 0引言 纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。 1 纤维素酶的性质 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。 纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。 2 纤维素酶的作用原理 (1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。 (2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。 (3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。 (4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

碳纤维的发展与现状

人员分工情况 资料收集:蔡煜简江婷婷宋爽韵周晓楠张领中英文摘要:蔡煜张领周晓楠 内容编写:发展部分简江婷婷宋爽韵 现状与差距部分蔡煜张领周晓楠排版校对:简江婷婷宋爽韵 宋爽韵 20110815023 简江婷婷 20110815036 蔡煜 20110815045 周晓楠 20110815047 张领 20110815050

碳纤维的发展与现状 学生:蔡煜简江婷婷宋爽韵周晓楠张领指导老师:秦文峰 摘要:简要介绍了碳纤维的性能、发展历史以及在航空航天领域中的应用,同时分析了国内外碳纤维的发展差距,给出了对我国碳纤维发展的建议。 关键词:碳纤维;碳纤维复合材料;应用领域;发展差距;发展建议 Abstract:The brief introduction of the performance and development history and application in the aviation&aerospace field of carbon fiber ,the analysis of the development gap of carbon fiber between home and abroad ,the advises of carbon fiber’s development to our country are given in this paper. Key words:carbon fiber;carbon fiber composites;application territory; development gap;development advises

真菌与细菌纤维素酶研究进展_高凤菊 (1)

第27卷第2期 唐山师范学院学报 2005年3月 Vol. 27 No.2 Journal of Tangshan Teachers College Mar. 2005 ────────── 收稿日期:2004-10-20 作者简介:高凤菊(1978-),女,河北乐亭人,四川农业大学生命科学学院硕士研究生。 - 7 - 真菌与细菌纤维素酶研究进展 高凤菊1,李春香2 (1.四川农业大学 生命科学学院,四川 雅安 625014;2.唐山师范学院 生物系,河北 唐山 063000) 摘 要:对分解纤维素真菌及细菌的种类,纤维素酶的组成和分类,分子结构、作用机理,纤维素酶基因工程及研究展望进行了综述。 关键词:真菌;细菌;纤维素酶 中图分类号:Q556+.2 文献标识码:B 文章编号:1009-9115(2005)02-0007-04 资源和环境问题是人类在21世纪面临的最主要的挑战。生物资源是可再生性资源,地球上每年光合作用的产物高达1.5×1011~2.0×1011t ,是人类社会赖以生存的基本物质来源。其中90%以上为木质纤维素类物质,[1]其中的纤维素是地球上最丰富 的多糖物质, [2] 这类物质是植物细胞壁的主要成分,也是地球上最丰富、最廉价的可再生资源。我国的纤维素资源极为丰富,每年农作物秸秆的产量 达5.7×108t , 约相当于我国北方草原年打草量的50倍。目前这部分资源尚未得到充分的开发利用,主要用于燃料,畜牧饲料与积肥,不仅利用率低,还 对环境造成一定的污染。 [3] 随着世界人口迅速增长、粮食、矿产资源日渐枯竭,开发高效转化木质纤维素类可再生资源的微生物技术,利用工农业废弃物等发酵生产人类急需的燃料、饲料及化工产品,即化工原料的“绿色化”,具有极其重大的现实意义和光明的发展前景。 在自然界中,许多霉菌[4]和细菌[5]都能产生纤维素酶,但有关细菌纤维素酶的报道很少。由细菌所产生的纤维素酶一般最适中性至偏碱性,因为这类酶制剂对天然纤维素的水解作用较弱,长期以来没有得到足够的重视。近十几年来,随着中性纤维素酶和碱性纤维素酶在棉织品水洗整理工艺及洗涤剂工业中的成功应用,细菌纤维素酶制剂已显示出良好的使用性能和巨大的经济价值。[6][7][8] 1 纤维素分解微生物 1.1 纤维素分解性细菌 (cellulose decomposingbacteria ) 纤维素分解性细菌是能分解纤维素的细菌。由于纤维素酶等的作用,纤维素可一直被分解到葡萄糖为止,有时在分解过程中会积累纤维二糖。这类 细菌多见于腐植土中。好氧性细菌如纤维单胞菌属(Cellulomonas )、纤维弧菌属(Cellvibrio )、噬胞菌属(Cytophaga )等能分解纤维素;但在好氧条件下土壤中纤维素的分解,主要是纤维素分解真菌在起作用。而在厌氧条件下纤维素的分解,一些厌氧性的芽孢梭菌属(Clostridium )的细菌具有重要作用。纤维素分解细菌亦可栖息于草食动物的消化道、特别是反刍动物的瘤胃中。它们在其中进行分解纤维素的活动,这些细菌是厌氧性细菌,例如产琥珀酸拟杆菌(Bacteroides succinogenes )、牛黄瘤胃球菌(Ruminococcus flavefaciens )、白色瘤胃球菌(R.albus )、溶纤维丁酸弧菌(Butyrivibrio fibrisolvens )(程光胜 译)等。细菌纤维素酶多数结合在细胞膜上,菌体细胞需吸附在纤维素上才能起作用,使用很不方便,酶的分离提取也较困难。但是细菌主要产生中性纤维素酶和碱性纤维素酶。碱性纤维素酶由于在洗涤剂工业中有良好的应用价值,也成为研究热点,其产生菌主要集中在芽孢杆菌属[9]。由于酶的耐热性在生产中具有现实意义,所以耐热细菌也是研究的热点。 1.2 纤维素分解性真菌 真菌类有黑曲霉、血红栓菌、卧孔属、疣孢漆斑菌QM460、绳状青霉、变幻青霉、变色多空霉、乳齿耙菌、腐皮镰孢、绿色木霉、里氏木霉、康氏木霉、嗜热毛壳菌QM9381和嗜热子囊菌QM9383等[10];丝状真菌产生的纤维素酶一般在酸性或中性偏酸性条件下水解纤维素底物。真菌纤维素酶通常是胞外酶,酶被分泌到培养基中,用过滤和离心等方法就可较容易地得到无细胞酶制品。目前饲用纤

超声诊断肝纤维化的研究进展

超声诊断肝纤维化的研究进展 天津市天和医院超声科肖菁 [摘要] 肝硬化是慢性肝病肝纤维化发展的必然结果,而早期肝硬化经过临床有效的干预治疗,部分病例可以发生逆转。所以准确判断肝纤维化分期尤其是早期肝硬化,对指导临床治疗及判断疗效有重要的意义。目前,诊断肝纤维化分期仍以肝脏穿刺病理检查为金标准。但由于肝组织的纤维化情况在肝内分布不均,肝组织穿刺所取的肝组织仅占全肝的百万分之一,不可避免地存在诊断性误差;并且肝脏穿刺有创,且费用高,会给患者带来一定的痛苦,所以在临床上普及开展肝组织活检,还存在一定的困难。超声以其无创、价格低廉,易于重复进行等优点,成为目前肝脏影像学诊断常规和首选的检查方法。本文分别从高频超声的应用、对门静脉的研究、对肝静脉的研究、超声组织定征、超声弹性成像、超声造影六个方面对超声诊断肝纤维化的研究进展进行综述,为临床诊断肝纤维化提供重要诊断指标。 [关键词] 超声肝纤维化 肝硬化是慢性肝病肝纤维化发展的必然结果,而早期肝硬化经过临床有效的干预治疗,部分病例可以发生逆转。所以准确判断肝纤维化分期尤其是早期肝硬化,对指导临床治疗及判断疗效有重要的意义。 目前,诊断肝纤维化分期仍以肝脏穿刺病理检查为金标准。根据2000年西安全国病毒性肝炎病理诊断标准[1],将肝纤维化程度分为:

S0-S4期;S0期为无纤维化;S1期为汇管区纤维化扩大,局限窦周及小叶内纤维化;S2期为汇管区周围纤维化,纤维间隔形成;S3期为纤维间隔伴小叶结构紊乱,但此时还没有形成肝硬化,纤维条索还没有完全包绕;S4期为早期肝硬化。 由于肝组织的纤维化情况在肝内分布不均,肝组织穿刺所取的肝组织仅占全肝的百万分之一,不可避免地存在诊断性误差;并且肝脏穿刺有创,且费用高,会给患者带来一定的痛苦,所以在临床上普及开展肝组织活检,还存在一定的困难。 超声是应用较高频率超声作为信息载体,从人体内部获得声学参数的信息后,形成图像,用以分析诊断疾病。其无创、价格低廉,易于重复进行等优点,成为目前肝脏影像学诊断常规和首选的检查方法。本文就超声诊断肝纤维化的研究进展作一综述。 一、高频超声的应用 近年来,慢性肝病二维声像图指标综合积分法用于早期肝硬的诊断陆续有报道,慢性肝病相邻肝纤维化分期病理组织变化的差别小,低频超声不能准确区分,孟繁坤等[2]利用高频超声高分辨率的特性,通过观察肝包膜、肝边缘角、肝实质回声及肝静脉壁形态四项指标的改变特点,对肝纤维化分期进行半定量研究。肝包膜形态按光滑纤细(1分),不光滑增厚或断续状(2分)、浅波纹(3分)、深波纹状或锯齿状(4分)记录;肝边缘角按锐利(1分)、稍钝(2分)、圆钝(3分)记录;实质的形态按细颗粒或较粗颗粒(1分)、粗颗粒(2分)、窄条纹(3分)、宽条纹或网格状(4分)记录;肝静脉壁

碳纤维发展现状及其发展趋势

碳纤维发展现状及其发展趋势 0 引言 高性能纤维是指耐热好、质量轻、强度高、高模量的特种纤维材料。作为高性能纤维的一种,碳纤维既有碳材料的固有本征,又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有 十分优异的力学性能,是目前已大量生产的高性能 纤维中具有最高的比强度和最高的比模量的纤维,特 别是在2000℃以上的高温惰性环境中,碳材料是唯 一强度不下降的物质,是其他主要结构材料(金属及 其合金)所无法比拟的。除了优异的力学性能外, 碳纤维还兼具其他多种优良性能,如低密度、耐高 温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、 电及热传导性高、热膨胀系数低、光穿透性高,非磁 体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 1国内外碳纤维的发展现状1.1 国外碳纤维的发展现状 碳纤维的起源可追溯到19世纪后期,美国人爱迪生(Edson)用碳丝制作灯泡的灯丝,从而发明了电灯,给人类社会带来了光明。但是在20世纪初期,美国通用电器公司的库里基(Coolidge)发明了用钨丝取代碳丝作为灯丝,并

2020全球肝纤维化研究新进展(全文)

2020全球肝纤维化研究新进展(全文) 2020年11月21日,首都医科大学附属北京友谊医院贾继东教授主持亚太肝脏研究学会(APASL)肝病网络研讨会第4次会议,主题为“肝纤维化”,美国西奈山伊坎医学院Scott Friedman教授进行了精彩演讲。Friedman教授是国际知名肝病专家、国际肝纤维化研究的奠基人、2009年美国肝病研究学会(AASLD)主席,他在肝纤维化的发生机制、诊断和治疗领域有卓越成就。 NASH是导致肝纤维化的重要病因 肝纤维化是各种不同病因慢性肝病所致的共同通路。在亚洲及西方国家和地区,肝纤维化的常见病因包括病毒性肝炎、非酒精性脂肪性肝炎(NASH)、酒精性肝病、遗传代谢性肝病、药物性肝损伤、胆汁淤积性肝病和自身免疫性肝病等,其中,NASH是近年来流行率显著增加的慢性肝病。 非酒精性脂肪性肝病(NAFLD)患者多数为单纯肝脂肪变(NAFL),有20%为NASH,伴不同程度的肝纤维化。NAFLD活动度评分包括脂肪变、小叶炎症、气球样变和纤维化等4个组分,可用于评估NASH 的疾病严重度。NASH肝纤维化患者进展至肝硬化或肝细胞癌(HCC)的风险显著增加。

对NAFLD患者随访300个月的一项研究结果表明,进展期(≥3期)肝纤维化患者的肝脏相关死亡率显著增加,其中,4期肝纤维化患者的肝脏相关死亡率达到50%左右。在NASH的各个病理特征中,肝纤维化分期与肝病所致死亡的独立相关性最强。近二十年来,在美国导致HCC的各种肝病病因中,NASH是增长最快的肝病。 肝纤维化发生机制研究进展 肝星状细胞(HSC)激活是肝纤维化的核心事件。正常肝脏的HSC位于Disse腔,紧贴着肝窦内皮细胞和肝细胞,处于静止状态。肝损伤时,HSC被激活,参与肝纤维化的形成和肝内结构的重建。 在启动阶段,肝实质细胞受到损伤,邻近的肝细胞、库普弗细胞、肝窦内皮细胞和血小板等通过旁分泌作用,可分泌多种细胞因子,作用于HSC,使HSC激活,导致细胞增殖和细胞外基质合成增加。 激活后的HSC可自分泌细胞因子,使活化得以持续,在持续(perpetuation)阶段,HSC受自分泌和旁分泌的双重调节,维持激活状态,表现为增殖活性增加、收缩作用、纤维形成、基质降解改变、趋化聚集和释放炎性信号等。如果肝损伤消退,HSC可能由激活状态

碳纤维的研究现状与发展

碳纤维的研究现状与发展 摘要:碳纤维主要是由碳元素组成的一种特种纤维,分子结构界于石墨和金刚石之间,含碳体积分数随品种而异,一般在0.9以上。 关键词:碳纤维复合材料性能与应用 正文 一、碳纤维的性能 1.1分类 根据原丝类型分类可分为聚丙烯腈(PAN)基、沥青基和粘胶基3种碳纤维,将原丝纤维加热至高温后除杂获得。目前,PAN碳纤维市场用量最大;按力学性能可分为高模量、超高模量、高强度和超高强度4种碳纤维;按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维,其中小丝束初期以1K、3K、6K(1K为1000根长丝)为主,逐渐发展为12K和24K,大丝束为48K以上,包括60K、120K、360K和480K等。 1.2性能碳纤维的主要性能:(1)密度小、质量轻,密度为1.5~2克/立方厘米,相当于钢密度的l/4、铝合金密度的1/2;(2)强度、弹性模量高,其强度比钢大4-5倍,弹性回复l00%; (3)具有各向异性,热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂;(4)导电性好,25。C时高模量纤维为775μΩ/cm,高强度纤维为1500μΩ/cm;(5)耐高温和低温性好,在3000。C非氧化气氛下不融化、不软化,在液氮温度下依旧很柔软,也不脆化;(6)耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀。此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。 通常,碳纤维不单独使用,而与塑料、橡胶、金属、水泥、陶瓷等制成高性能的复合材料,该复合材料也具有轻质、高强、耐高温、耐疲劳、抗腐蚀、导热、导电等优良性质,已在现代工业领域得到了广泛应用。 1.3应用领域 由于碳纤维具有高强、高模、耐高温、耐疲劳、导电、导热等特性,因此被广泛应用于土木建筑、航空航天、汽车、体育休闲用品、能源以及医疗卫生等领域。此外,碳纤维在电子通信、石油开采、基础设施等领域也有着广泛的应用,主要用于放电屏蔽材料、防静电材料、分离铀的离心机材料、电池的电极,在生化防护、除臭氧、食品等领域种也有出色的表现。碳纤维复合材料片。碳纤维复合材料片是采用常温固化的热固性树脂(通常是环氧树脂)将定向排列的碳纤维束粘结起来制成的薄片。把这种薄片按照设计要求,贴在结构物被加固的部位,充分发挥碳纤维的高拉伸模量和高拉伸强度的作用,来修补加固钢筋混凝土结构物。日本、美国、英国将该材料用于加固震后受损的钢筋混凝土桥板,增强石油平台壁及耐冲击性能的许多工程上,获得了突破性进展。碳纤维复合材料片具有轻质(比重是铁的1/4~1/5),拉伸模量比钢高10倍以上,耐腐蚀性能优异,可以手糊,工艺性好等优点。因此,碳纤维复合材料片在修补加固已劣化的钢筋混凝土结构物(约束裂纹发展、防止混凝土削落)和提高结构物耐力以及对用旧标准设计建成的钢筋混凝土结构物的补强、加固应用将越来越多。 二、生产工艺

纤维素酶的基因克隆研究进展

纤维素酶的基因克隆研究进展 摘要:纤维素酶是一种高活性生物催化剂,具有广阔的开发和应用前景。本文对纤维素酶的特性、研究进展、应用以及纤维素酶基因克隆等方面进行了综述,并对今后的研究趋势作了预测和展望。 关键词:纤维素酶;分子生物学;基因克隆;前景展望 前言 纤维素是植物细胞壁的主要成分,约占植物干重的1/3—1/2,它是地球上分布最广、含量最丰富、生成量最高的有机化合物。纤维素的利用与转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义。利用纤维素酶将纤维素彻底水解是纤维素的有效利用途径。纤维素酶(cellulase)是指能水解纤维素β—l,4葡萄糖苷键,使纤维素变成纤维二糖和葡萄糖的一组酶的总称,它不是单一酶,而是起协同作用的多组分酶系。近年来对纤维素酶的基础研究,包括酶的氨基酸序列、基因的克隆与表达、酶蛋白的空间结构与功能以及酶蛋白的基因调控等诸多方面,并且均取得了显著进展。由于纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 1.1 纤维素酶的组成 纤维素酶是由许多高协同作用的水解酶组成的,根据其催化反应功能的不同可分为内切葡聚糖酶(1,4-β-D-glucan glucanohydrolase或endo-1,4-β-D-glucanase,EC3.2.1.4,即C1酶),来自真菌的简称EG,来自细菌的简称Cen、外切葡聚糖酶(1,4-β-D-glucan cellobilhydrolase或exo-1,4-β-D-glucannase,EC.3.2.1.91),来自真菌的简称CBH,来自细菌的简称Cex) 和β-葡聚糖苷酶(β-1,4- glucosidase,EC.3.2.1.21)简称BG。 (1)外切葡聚糖酶,这类酶作用于纤维素分子的末端,一次从纤维素分子中切下纤维二糖,它可以作用于纤维素分子内的结晶区、无定形区和羧甲基纤维素。对于外切纤维素酶,传统上认为是从纤维素链的非还原端切下纤维二糖。可是,从一些微生物的外切酶的研究中发现了另一种纤维素酶,它们优先从纤维素分子的还原末端切下纤维二糖。这些研究说明存在两种不同功能的外切酶,它们分别从还原端和非还原端水解纤维素分子[ 1 ]。 (2)内切葡聚糖酶,这类酶是纤维素酶中最重要的酶,可作用于纤维素分子内的无定形区,随机水解糖苷键,将长链纤维素分子截短,产生大量的小分子纤维素,即纤维素末端。

经方治疗肝纤维化研究进展

经方治疗肝纤维化研究进展 曹春辉1,潘 玲1,冯广帅1,冯全生2 (1.成都中医药大学2011级硕士研究生,四川 成都610075; 2.成都中医药大学基础医学院,四川 成都610075) [中图分类号]R256.497.57 [文献标识码]A [文章编号]1004-2814(2013)11-970-03 [基金项目]“十二五”国家科技重大专项项目(2012ZX10005001);国家自然科学基金资助项目(81072718);四川省科技支撑计划资 助项目(2010SZ0047)。[通讯作者]冯全生 肝纤维化(hepatic fibrosis)是肝脏对慢性损伤的修复反应,其化学本质是合成增加和(或)降解减少所导致的细胞外基质过度沉积,是肝硬化形成的病理阶段[1]。许多慢性肝脏疾病均可引起肝纤维化,常见的有病毒性肝炎、脂肪性肝病、胆汁淤积、自身免疫性肝病、遗传和代谢性肝病、化学或药物性肝损伤等[2]。 肝纤维化属中医“胁痛”、“黄疸”、 “臌胀”、“癥瘕”、“积聚”、“痞证”等范畴。正虚血瘀作为肝纤维化的病理特点成为共识[3]。小柴胡汤、四逆散、大黄虫丸、鳖甲煎丸是目前治疗肝纤维化的常用方剂,综述如下。1 临床研究1.1小柴胡汤 小柴胡汤治疗肝纤维化有疏肝利胆,调畅三焦气机的作用[4],且小柴胡汤可和表解里,调和肝脾,可达调和阴阳的目的[5]。陈丹丹等[6]将常规护肝治疗的120例慢性乙型肝炎肝纤维化患者随机分为对照组(A 组)、大黄虫丸组(B 组)和小柴胡汤组(C 组),3组均治疗4个月。结果3组肝功能和血清肝纤维化指标均有明显改善,但C 组改善更明显,说明小柴胡汤治疗慢性乙型肝炎肝纤维化疗效确切。江山等[7]对照观察小柴胡汤治疗慢性乙型肝炎肝纤维化40例,亦得出相同结论。邓子德等[8]观察改良小柴胡汤对81例慢性肝病患者血清肝纤维化标志物的影响,发现改良小柴胡汤可使血清透明质酸和Ⅲ型前胶原肽明显下降。1.2四逆散 四逆散有疏肝理气、透达郁阳功效,主治肝脾气滞、阳郁致厥证[9]。张光华等[10]认为四逆散为治疗泄泻肝郁乘脾之方,且治疗肝郁胁痛效果理想,而肝郁是肝纤维化常见的证型。现代多用四逆散加味治疗肝纤维化,用原方的报道罕见。郭晓萍等[11]对照观察复方四逆散(四逆散加三七、黄芪、丹参)治疗慢性肝炎肝纤维化30例,发现复方四逆散可明显降低血清肝纤维化标志物水平,减轻肝纤维化程度,促进肝内增生的纤维组织降解和阻止慢性肝炎肝纤维化的进展,且复方四逆散尚有一定的抑制炎症反应、保护肝细胞的作用。王付等[12]观察四逆散加味治疗肝纤维化的临床疗效,治疗组和对照组均予常规保肝治疗,治疗组加用四逆散加味。结果3个月后治疗组与对照组总有效率分别为96%、81%,两组比较有极显著性差异(P <0.01),肝功能、肝纤维化指标及肝脾B 超等指标治疗组较对照组改善更明显(P <0.05或P <0.01)。孙守才等[13]发现加味四逆散能使肝纤维化过程中升高的PC-Ⅲ、HA、LN 含量明显下降,并能修复肝损害,保护肝细胞,减轻肝纤维化 的程度,改善肝功能。1.3大黄虫丸 大黄虫丸有缓攻瘀血,祛瘀生新作用,用于虚劳而内有干血的治疗[14]。余晶[15]观察大黄虫丸治疗慢性肝炎的有效性和对肝纤维化的影响,治疗组给予大黄虫丸3g、每日3次,对照组予常规保肝治疗。治疗12周后两组肝纤维化及肝功能指标均有不同程度好转,与治疗前比较,治疗组有极显著性差异(P <0.01),对照组无显著性差异(P >0.05),而两组间比较有极显著性差异(P <0.01)。邓丽宁等[16]发现大黄虫丸联合恩替卡韦治疗乙型肝炎肝纤维化疗效优于单用大黄虫丸或单用恩替卡韦治疗。1.4鳖甲煎丸 鳖甲煎丸能行气化瘀,除痰消癥,攻补兼施[8]。且其适应症“癥瘕”为肝纤维化常见临床指征[17]。陈瑞玉等[18]将慢性乙型肝炎118例随机分为治疗组60例和对照组58例,两组均予常规保肝降酶治疗,治疗组加用鳖甲煎丸治疗。检测两组治疗前及治疗6个月后肝功能及肝纤维化指标。结果总有效率治疗组86.7%,对照组60.3%,两组比较有显著性差异(P <0.05)。两组治疗后肝功能、肝纤维化各项指标比较有显著性差异(P <0.05或P <0.01)。谢鸿昌等[19]观察鳖甲煎丸治疗血吸虫病肝纤维化疗效,发现鳖甲煎丸结合西药常规治疗的效果优于单用西药治疗组。还有报道鳖甲煎丸用于肝癌介入治疗后所致的肝纤维化有确切疗效[20]。2 实验研究2.1小柴胡汤 马跃荣等[21]为探讨小柴胡汤对大鼠肝纤维化的作用,预防和治疗性用小柴胡汤,结果显示小柴胡汤可明显防止肝维生素A 丢失和促进其含量恢复,降低肝组织胶原含量,抑制肝前α-1型胶原的基因表达,减少肝脏组织Ⅰ、Ⅲ型胶原的沉积和α-平滑肌原纤维阳性的伊东细胞的数目。帅峰[22]研究发现小柴胡汤有防治大鼠肝纤维化的作用,可能是通过下调TMP-1mRNA 的表达而发挥作用。有研究显示,小柴胡汤有抑制大鼠的肝星形细胞活化及增殖,使细胞质内维甲类化合物含有的脂肪滴减少,抑制α-SMA 的表达及Ⅰ型胶原产生,活化IFN-γ,降低自由基活性的作用,通过抗氧化反应提高机体的防御能力,发挥对细胞的保护作用[23]。2.2四逆散 党全伟等[24]研究发现,四逆散加味(四逆散加丹参、桃仁、当归等)水煎后浓缩剂可以降低肝纤维化大鼠的死亡率,显著降低肝纤维化大鼠血清的ALT、ALP、

纤维素酶的研究进展及应用前景

纤维素酶的研究进展及应用前景 摘要 我国近年来在纤维素酶研究应用领域取得了很大进展。纤维素酶是一组能够分解纤维素产生葡萄糖的酶的总称,按照功能可以分为内切葡糖聚酶,外切葡糖聚酶和β-葡聚糖苷酶。它在纺织,酿酒,食品与饲料行业的市场潜力是巨大,受到国内外业内人士的看重。本文综述了纤维素酶的组成,结构,分类,理化性质与作用机理,阐明了生产纤维素酶的微生物种类,纤维素酶的发酵工艺及高效分解菌。介绍了纤维素酶的特性,重要意义,在各领域的应用,并对其未来研究趋势进行了展望。 关键字:纤维素酶研究应用 前言:因为资源枯竭、能源短缺及环境污染等问题日益加剧,世界各国都在寻找开发新能源。纤维素类物质是自然界中分布最广泛、含量最丰富、生成量最高的有机化合物,也是自然界中数量最多的可再生类质。但这些纤维素大部分没有被开发,造成巨大的资源浪费和环境污染。近年来关于纤维素酶的基础研究获得了显著的进展,主要包括酶的组成部分和结构、发生降解的机理、基因的克隆和表达、酶的发酵和生产、应用等方面。由此可见生产纤维素酶对人类生存环境的改善和可持续发展有着举足轻重的地位。 1,纤维素酶的来源和分类 纤维素酶的最主要来源是微生物,用其生产是最为有效和方便的。不同微生物合成的纤维素酶在组成上差异明显。对纤维素的降解能力也不尽相同。细菌与放线菌生产的纤维素酶产量均不高,在工业上很少应用。而真菌具有产酶的诸多优点:产酶能力强,产生的纤维素酶为胞外酶,便于酶的分离和提取,且产生纤维素酶的酶系结构较为合理;酶之间有强烈的协同作用,降解纤维素的效率高。纤维素酶是一类能够把纤维素降解为低聚葡萄糖、纤维二糖和葡萄糖的水解酶。根据纤维素酶的结构不同,可把纤维素酶分为两类:纤维素酶复合体和非复合体纤维素酶。纤维素酶复合体是一种超分子结构的多酶蛋白复合体,由多个亚基构成。由四个部分构成:脚手架蛋白、凝集蛋白和锚定蛋白结合体、底物结合区域和酶亚基。非复合体纤维素酶主要由好氧的丝状真菌产生,如子囊菌纲和担子菌纲等的一些种属。它是由不同的三种酶所构成的混合物,即内切葡聚糖酶、外切葡苷糖酶和B一葡萄糖苷酶。 2,纤维素酶的组成与结构 因为种类和来源的不同,纤维素酶的结构存在较大差异,但是通常均具有2

纤维素酶研究进展及固定化技术

纤维素酶研究进展及固定化技术 摘要: 纤维素酶是一类能够水解纤维素的β-D-糖苷键生成葡萄糖的多组分酶的总称。传统上将其分为3类:内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶。纤维素酶属于糖苷水解酶类,近年来,根据氨基酸序列的同源性以及纤维素酶结构的相似性,将其分成不同的家族。本文介绍了纤维素酶的研究进展,主要包括纤维素酶的性质及作用机理,应用与发展趋势,来源及生产技术,分离纯化方法,最后介绍几种常用的纤维素酶固定化方法。 关键词: 纤维素酶;研究进展;固定化 引言: 纤维素是地球上分布最广、蕴藏量最丰富的生物质,也是最廉价的可再生资源。纤维素酶是一类能够将纤维素降解为葡萄糖的多组分酶系的总称,它们协同作用,分解纤维素产生寡糖和纤维二糖,最终水解为葡萄糖。自1906年Seilliere在蜗牛的消化液中发现纤维素酶至今已有一百余年了,随着在工业上的广泛应用,特别是在纺织工业、能源工业上的应用,纤维素酶已成为最近十几年酶工程研究的一个焦点。近年来有关纤维素酶的研究,包括酶的氨基酸序列、基因的克隆与表达、酶蛋白的空间结构与功能,以及酶蛋白的基因调控等诸多方面都取得显著进展。到目前为止,登记在Swiss-Protein数据库的纤维素酶的氨基酸序列有649条,基因序列有433条。我国对纤维素酶的研究始于上世纪50年代,迄今已有50多年的历史。在纤维素酶的菌种开发、发酵培养、基因的克隆与表达、纤维素酶的固定化,以及纤维素酶在纺织、能源等方面的应用都取得较大进展。 1 纤维素酶的性质及作用机理 纤维素酶分子的大小因来源不同而不尽相同,三大类酶分子量一般在23Kda~146Kda之间。多数真菌和少数细菌的纤维素酶都受糖基化,糖基与蛋白之间以共价键结合,或呈可解离的络合状态。糖基化作用在一定程度上保护酶免受蛋白酶的水解,而纤维素酶正是由于糖基化,使其所含碳水化合物的比率在不同酶之间发生差异,导致酶的多形式和分子量的差别。通过比较分析,人们发现许多不同纤维素酶间表现出一定的同源性,且纤维素酶分子普遍具有类似的结构。由球状的催化结构域(CD)、连接桥和纤维素结合结构域(CBD)三部分组成。(1)连接桥,可能是保持CD和CBD之间的距离,也可能有助于不同酶分子间形成较为稳定的聚集体;(2)纤维素结合结构域,它对酶的催化活力是非必需的,但它执行调节酶对可溶性和非可溶性底物专一性活力的作用,其结合纤维素的作用机理目前尚不十分清楚;(3)催化结构域,它体现酶的催化活性及对特定水溶性底物的特异性。尽管不同来源纤维素酶的分子量大小差别很大,但它们催化区的大小却基本一致。 研究表明,EG和CBH能引起纤维素的分散和脱纤化。纤维素酶通过打乱纤维素的结晶结构,使其变形,深入纤维素分子界面之间,从而使纤维素孔壁、腔壁和微型隙壁的压力增大,水分子的介入又使纤维素分子之间的氢键被破坏,产生部分可溶性的微结晶,利于进一步被降解。(1),对纤维素分子的吸附作用:纤维素酶对纤维素的降解,一般首先吸附到纤维素上,但并不是吸附的越好催化效果约好。纤维素酶的吸附不仅与酶本身性质有关,也与底物的特性密切相关。其吸附能力大小与酶的含糖量和疏水性均有关联。此外,纤维素酶的吸附机理并未弄清,仍需做进一步研究。(2),单一纤维素酶的作用机制:纤维素酶的断键机理

碳纤维生产现状

碳纤维生产现状及发展趋势 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料 (金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1 生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。 碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。 根据产品规格的不同,碳纤维目前被划分为宇航级(aerospace—grade)和工业级(commercial—grade)两类,亦称为小丝束(small—strand tow或small tow)和大丝束

纤维素酶的检测方法新

纤维素酶的检测方法 摘要:本文主要介绍了纤维素酶的降解原理,通过实验比较了四种常用纤维素酶的检测方法的稳定性,以及纤维素酶的发展前景,为纤维素酶的应用提供了进一步的参考价值。 关键词:纤维素酶酶活测定葡萄糖回归方程 一、纤维素酶及其降解原理 纤维素是高等植物细胞壁的主要成分,占植物总干重的30%-50%,是地球上分布最广,含量最丰富的可再生性碳源化合物,占地球总生物量的40%。据报道,我国每年光作物秸秆,稻梗等含纤维素较丰富的物质就有5亿吨之多,全球每年通过光合作用产生的植物物质高达1.55X109吨,其中尚有89%未被人们利用,而大量的秸秆,稻梗等含纤维素丰富的物质的利用率也很低。大多采用燃烧的方式来处理,这样就造成了环境污染,破坏了土壤的理化性质和丧失了有机质成分。所以,纤维素的充分利用与有效的转化对于解决当前的能源危机,粮食短缺,环境污染等有重大意义。 纤维素酶是分解纤维素的一类酶,它能将纤维素分解为葡萄糖,充分的利用了纤维素。自1906年Sellieres 在蜗牛消化液中发现纤维素酶以来,纤维素酶的研究和应用受到了国内外学者的极大关注,取得了很大进展。目前,国内外学者通过筛选产酶菌株来发酵产酶,再应用纤维素酶到食品,医药,饲料,洗涤等工业中,不仅解决了纤维素的再利用问题还取得了很可观的经济效益。 纤维素酶是由许多具有高协同作用的水解酶组成的。习惯上将纤维素酶分成三种主要成分:内切酶(内切β-1,4-葡萄糖酶,也称Cx酶)、外切酶(外切β-1,4葡萄糖酶,也称C1酶)、β -1,4葡萄糖酶(即为纤维二糖酶)[1]。C1酶主要作用于天然纤维素,使之转变为非结晶的纤维素。Cx酶又分为Cx1酶和Cx2酶。Cx1酶是一种内断型纤维素酶,它从水合非结晶纤维素分子内部作用于β-(1,4)糖苷键,生成纤维糊精和纤维二塘。Cx2酶是一种外断型纤维素酶,它从水合性纤维素分子的非还原端作用于β-(1,4)糖背键,逐步切断β-(1,4)糖节键生成葡萄糖。纤维二糖酶则作用于纤维二糖,生成葡萄糖。 纤维素酶在降解纤维素过程中的作用机理至今还不是很清楚。目前关于Cx酶、C1酶和β -1,4葡萄糖酶这3种酶的作用机理的假说比较公认的是以下3种,其中协同理论最为广泛接受。(1)C1-Cx假说。该理论认为首先由C1酶作用于纤维素酶的结晶区,再由外切酶和β-葡萄糖苷酶联合作用产生二糖和葡萄糖。其水解模式如图1所示。

纤维素酶在反刍动物饲料中的应用研究进展

纤维素酶在反刍动物饲料中的应用研究进展 摘要:纤维素酶(Cellulase)作为一种绿色饲料添加剂,能提高饲料的转化率以及动物的生产性能,从而为养殖业提供相当数量的饲料来源。本文章主要从纤维素酶的分类、作用机理、在反刍动物饲料生产中的应用及其应用前景等方面作了论述,以期为生产实践提供理论依据。 关键词:纤维素酶;反刍动物;应用 纤维素在植物体中的含量最多,约占植物干重的1/2,是自然界数量最大的可再生自然资源。纤维素是由2000~10000个葡萄糖分子组成的长链大分子,除反刍动物借瘤胃微生物可以利用纤维素外,其他高等动物几乎不能消化和利用纤维素,饲料资源匮乏阻碍了我国畜牧业的发展,因此,成功开发这一潜在饲料资源显得尤为迫切和重要。纤维素酶作为一种绿色饲料添加剂,能将饲料中的纤维素降解成可消化吸收的还原糖(如:二糖或葡萄糖),提高饲料的营养价值。目前,纤维素酶在反刍动物生产应用中取得了良好的生产效益和巨大的经济效益。 本文从纤维素酶的分类、作用机理和在反刍动物中的应用现状等方面进行了论述,以期为生产实践提供理论基础。 1 纤维素酶的分类和来源 1.1 纤维素酶的种类 纤维素酶包括多种水解酶,纤维素酶是指能降解纤维素的一类酶的总称。是由多种水解酶组成的复杂酶系,主要来自于真菌和细菌。根据纤维素酶的不同功能,可分为三大类:内切纤维素酶、外切纤维素酶和β-葡萄糖苷酶。还有分解纤维素的其他酶类,如木聚糖酶(Xylase)和果胶酶。 1.1.1 葡聚糖内切酶 又称为Cl酶,这类酶作用于纤维素内部的非结晶区,随机水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量带非还原性末端的小分子纤维素。葡聚糖内切酶相对分子质量介于23~146ku,如真菌的异构酶ECI为54ku,EGIII约为49.8ku,而纤维粘菌EG有两种菌的内切酶相对分子质量只有6.3ku。 1.1.2 葡聚糖外切酶 这类酶作用于纤维素线状分子末端,水解l,4-β-D糖苷键,每次切下1个纤维二糖分子,故又称为纤维二糖水解酶(Cellobio-hydrolase,CBH),外切酶的

相关文档