文档库 最新最全的文档下载
当前位置:文档库 › 变频器的基本控制原理

变频器的基本控制原理

变频器的基本控制原理
变频器的基本控制原理

变频调速的基本原理

变频器多段速度控制 1.变频调速的原理 异步电机的转速n可以表示为 式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变电源频率就可以改变同步转速和电机转速。 频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近似正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 2.电机调速的分类 按变换的环节分类 (1)交-直-交变频器,则是先把工频交流通过整流器变成直流,然后再把直流变换成频率电压可调的交流,又称间接式变频器,是目前广泛应用的通用型变频器。

(2)可分为交-交变频器,即将工频交流直接变换成频率电压可调的交流,又称直接式变频器 按直流电源性质分类 (1)电压型变频器 电压型变频器特点是中间直流环节的储能元件采用大电容,负载的无功功率将由它来缓冲,直流电压比较平稳,直流电源内阻较小,相当于电压源,故称电压型变频器,常选用于负载电压变化较大的场合。 (2)电流型变频器 电流型变频器特点是中间直流环节采用大电感作为储能环节,缓冲无功功率,即扼制电流的变化,使电压接近正弦波,由于该直流内阻较大,故称电流源型变频器(电流型)。电流型变频器的特点(优点)是能扼制负载电流频繁而急剧的变化。常选用于负载电流变化较大的场合。 按主电路工作方法 电压型变频器、电流型变频器 按照工作原理分类 可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等 按照开关方式分类 可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器 按照用途分类 可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。此外,变频器还可以按输出电压调节方式分类,按控制方式分类,按主开关元器件分类,按输入电压高低分类。 按变频器调压方法 PAM变频器是一种通过改变电压源Ud 或电流源Id的幅值进行输出控制的。 PWM变频器方式是在变频器输出波形的一个周期产生个脉冲波个脉冲,其等值电压为正弦波,波形较平滑。

矢量控制变频器工作原理

矢量控制是20世纪70年代由前西德Blaschke等人首先提出来的对交流电动机的一种新的控制思想和控制技术,也是交流电动机的一种理想的调速方法。矢量控制的基本思想是将异步电动机的定子电流分为产生磁场的电流分量(励磁电流)和与其相垂直的产生转矩的电流分量(转矩电流)并分别加以控制。由于在这种控制方式中必须同时控制异步电动机定子电流的幅值和相位,即控制定子电流矢量,因此这种控制方式称为矢量控制方式。 矢量控制方式使对异步电动机进行高性能的控制成为可能。采用矢量控制方式的交流调速系统不仅在调速范围上可以与直流电动机相匹敌,而且可以直接控割异步毫乏t产生的转矩。所以已经在许多需要进行精密控制的领域得到了应用。 由于在进行矢量控制时需要准确地掌握对象电动机的有关参数,这种控制有式芝云主要用于厂家指定的变频器专用电动机的控制。但是,随着变频调速理论和技术的发曩以及现代控制理论在变频器中的成功应用,目前在新型矢量控制变频器中已经增加了自调整(autotuning)功能。带有这种功能的变频器在驱动异步电动机进行正常运转之前可以自动地对电动机的参数进行辨识并根据辨识结果调整控制算法中的有关参数,从而使得对普通的异步电动机进行有效的矢量控制也成为可能。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/9b6541262.html,/

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

变频调速的基本原理

变频调速的基本原理 1.电机调速的类型 通常,家用电器用得最多的是单相异步电动机,靠电容或电阻来分相。电机在工作时常处于短时重复状态(开/停),如空调、冰箱等。这样势必带来起动频繁、噪声大、电机寿命短、温度稳定性差以及能耗高等一系列弊端。变频调速技术的应用不但给这些家电产品带来功能的增加、性能的改善,而且具有明显的节能效果和降噪效果,同时使整机寿命较传统家电有明显提高。 异步电机调速有许多方法,如变极调速、变转差率调速和变频调速等。前两种转差损耗大,效率低,对电机特性来说都有一定的局限性。变频调速是通过改变定子电源的频率来改变同步频率实现电机调速的。在调速的整个过程中,从高速到低速可以保持有限的转差率,因而具有高效、调速范围宽(10~100%)和精度高等性能,节电效果可达到20~30%。 变频调速有两种方法:一是交-直-交变频,适用于高速小容量电机;二是交-交变频。适用于低速大容量拖动系统。 变频空调器按照其室内风扇电机、室外风机及压缩机的类型,可分为3A和3D变频空调器。对于室内、室外风机和变频压缩机均为交流(AC)形式的变频空调器,一般称之为3A变频空调器;而对于室

内、室外风机和变频压缩机均为三相直流无刷电机(DCBLM)形式的变频空调器,一般称之为3D变频空调器。后者价位远高于前者,仅物料成本就高于同功率的3A变频空调器近300元,而且开发难度较大,空调系统和控制器的配合复杂度较高。 2.变频调速的原理 异步电机的转速n可以表示为 式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变电源频率就可以改变同步转速和电机转速。 频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维持磁通不变,这亦由频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速。 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、

变频器常用的几种控制方式

变频器常用的几种控制方 式 Prepared on 22 November 2020

变频器常用的几种控制方式 变频调速技术是现代电力传动技术的重要发展方向,而作为变频调速系统的核心—变频器的性能也越来越成为调速性能优劣的决定因素,除了变频器本身制造工艺的“先天”条件外,对变频器采用什么样的控制方式也是非常重要的。本文从工业实际出发,综述了近年来各种变频器控制方式的特点,并展望了今后的发展方向。 1、变频器简介 变频器的基本结构 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU 以及一些相应的电路。 变频器的分类 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM 控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 2、变频器中常用的控制方式 非智能控制方式 在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。

(1) V/f控制 V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。 V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制性能,而且,在低频时,必须进行转矩补偿,以改变低频转矩特性。 (2) 转差频率控制 转差频率控制是一种直接控制转矩的控制方式,它是在V/f控制的基础上,按照知道异步电动机的实际转速对应的电源频率,并根据希望得到的转矩来调节变频器的输出频率,就可以使电动机具有对应的输出转矩。这种控制方式,在控制系统中需要安装速度传感器,有时还加有电流反馈,对频率和电流进行控制,因此,这是一种闭环控制方式,可以使变频器具有良好的稳定性,并对急速的加减速和负载变动有良好的响应特性。 (3) 矢量控制 矢量控制是通过矢量坐标电路控制电动机定子电流的大小和相位,以达到对电动机在d、q、0坐标轴系中的励磁电流和转矩电流分别进行控制,进而达到控制电动机转矩的目的。通过控制各矢量的作用顺序和时间以及零矢量的作用时间,又可以形成各种PWM波,达到各种不同的控制目的。例如形成开关次数最少的PWM波以减少开关损耗。目前在变频器中实际应用的矢量控制方式主要有基于转差频率控制的矢量控制方式和无速度传感器的矢量控制方式两种。 基于转差频率的矢量控制方式与转差频率控制方式两者的定常特性一致,但是基于转差频率的矢量控制还要经过坐标变换对电动机定子电流的相位进行控制,使之满足一定的条件,以消除转矩电流过渡过程中的波动。因此,基于转差频率的矢量控制方式比转差

交流变频调速技术发展的现状及趋势

交流变频调速技术发展的现状及趋势 概述 交流电动机变频调速技术是在近几十年来迅猛发展起来的电力拖动先进技术,其应用领域十分广泛。为了适应科技的发展,将先进技术推广到生产实践中去,交流变频调速技术已成为应用型本科、高职高专电类专业的必修或选修课程。 变频调速技术概述,常用电力电子器件原理及选择,变频调速原理,变频器的选择,变频调速拖动系统的构建,变频技术应用概述,变频器的安装、维护与调试和变频器的操作实验。 在理论上以必需、够用为原则;精心选材,努力贯彻少而精、启发式的教学思想; 变频调速技术是一种以改变交流电动机的供电频率来达到交流电动机调速目的的技术。大家知道,从大范围来分,电动机有直流电动机和交流电动机。由于直流电动机调速容易实现,性能好,因此,过去生产机械的调速多用直流电动机。但直流电动机固有的缺点是,由于采用直流电源,它的滑环和碳刷要经常拆换,故费时费工,成本高,给人们带来不少的麻烦。因此人们希望,让简单可靠价廉的笼式交流电动机也能像直流电动机那样调速。这样就出现了定子调速、变极调速、滑差调速、转子串电阻调速和串极调速等交流调速方式;由此出现了滑差电机、绕线式电机、同步式交流电机。但其调速性能都无法和直流电动机相比。直到20世纪80年代,由于电力电子技术、微电子技术和信息技术的发展,才出现了变频调速技术。它的出现就以其优异的性能逐步取代其他交流电动机调速方式,乃至直流电动机调速系统,而成为电气传动的中枢。 要学习交流电动机的变频调速技术,必须有电力拖动系统的知识。因此,先温习电力拖动系统的基础知识。电力拖动系统由电动机、负载和传动装置三部分组成。描写电力拖动系统的物理量主要是转速,n和转矩T(有时也用电流,因转矩和电动机的电枢电流成正比)。两者之间的关系式称为机械特性。 交流电动机是电力拖动系统中重要的能量转换装置,用来实现将电能转换为机械能。长期以来人们一直在寻求对电动机转速进行调节和控制的方法,起初由于直流调速系统的调速性能优于交流调速系统,直流调速系统在调速领域内长期占居主导地位。 变频调速是通过变频器来实现的,对于变频器的容量确定至关重要。合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三 种 对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器——整流子。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优

变频器控制电路的工作原理

变频器控制电路的工作原理? 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器,变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变?

r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适和改变该值来调整电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,该问题就非常突出。为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压,例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器调速工作原理

变频器调速工作原理 目前交流调速电气传动已经上升为电气调速传动的主流,在电气传动领域内,由直流电动机占统治地位的局面已经受到了猛烈的冲击。 现在人们所说的交流调速传动,主要是指采用电子式电力变换器对交流电动机的变频调速传动,除变频以外的另外一些简单的调速方案,例如变极调速、定子调压调速、转差离合器调速等,由于其性能较差,终将会被变频调速所取代。交流调速传动控制技术之所以发展的如此迅速,和如下一些关键性技术的突破性进展有关,它们是电力电子器件(包括半控型和全控型器件)的制造技术、基于电力电子电路的电力变换技术、交流电动机的矢量变换控制技术、直接转矩控制技术、PWM(Pulse Width Modulation)技术以及以微型计算机和大规模集成电路为基础的全数字化控制技术等。 1变频器的发展 近二十年来,以功率晶体管GTR为逆变器功率元件、8位微处理器为控制核心、按压频比U/f控制原理实现异步机调速的变频器,在性能和品种上出现了巨大的技术进步。其一,是所用的电力电子器件GTR以基本上为绝缘栅双极晶体管IGBT所替代,进而广泛采用性能更为完善的智能功率模块IPM,使得变频器的容量和电压等级不断地扩大和提高。其二,是8位微处理器基本上为16位微处理器所替代,进而有采用功能更强的32位微处理器或双CPU,使得变频器的功能

从单一的变频调速功能发展为含有逻辑和智能控制的综合功能。其三,是在改善压频比控制性能的同时,推出能实现矢量控制和转矩直接控制的变频器,使得变频器不仅能实现调速,还可进行伺服控制。其发展情况可粗略地由以下几方面来说明。 1.容量不断扩大80年代采用BJT的PWM变频器实现了 通用化。到了90年代初BJT通用变频器的容量达到600KV A,400KV A 以下的已经系列化。前几年主开关器件开始采用IGBT,仅三四年的时间,IGBT变频器的单机容量已达1800KV A,随着IGBT容量的扩大,通用变频器的容量将随之扩大。 2.结构的小型化变频器主电路中功率电路的模块化、控 制电路采用大规模集成电路(LSI)和全数字控制技术、结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。 3.多功能化和高性能化电力电子器件和控制技术的不断 进步,使变频器向多功能化和高性能化方向发展。特别是微机的应用,以其简练的硬件结构和丰富的软件功能,为变频器多功能化和高性能化提供了可靠的保证。由于全数字控制技术的实现,并且运算速度不断提高,使得通用变频器的性能不断提高,功能不断增强。 4.应用领域不断扩大通用变频器经历了模拟控制、数模 混合控制直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。目前其应用领域得到了相当的扩展。如搬运机械,从反抗性负载的搬运车辆,带式运输机到位能负载的起重机、提升机、立体仓库、立体停

变频驱动与控制技术介绍.

变频驱动技术 绪论 以交流(直流电动机为动力拖动各种生产机械的系统我们称之为交流(直流调速系统,也称交流(直流电气拖动系统。变频调速技术是交 流电气传动系统的一种。 目的 根据设备和工艺的要求通过改变电动机速度或输出转矩改变终端设备的速度或输出转矩。 意义 序号意义有代表意义的行业或设备 1节能风机、水泵、注塑机 2提高产品质量机床、印刷、包装等生产线 3改善工作环境电梯、中央空调 注:并不是所有的设备使用调速装置后都可以节能 调速系统构成 中间传动机构 交流电源输入 终端机械 交流电机

直流调速装置 直流输出 皮带轮、齿轮箱等风机、泵等 直流电机 交流调速装置 交流输出 执行机构 变频器 交、直流调速系统的特点 直流调速系统特点: ●控制对象:直流电动机 ●控制原理简单,一种调速方式●性能优良,对硬件要求不高●电机有换向电刷(换向火化●电机设计功率受限 ●电机易损坏,不适应恶劣现场●需定期维护交流调速系统特点: ●控制对象:交流电动机 ●控制原理复杂,有多种调速方式●性能较差,对硬件要求较高 ●电机无电刷,无换向火化问题●电机功率设计不受限 ●电机不易损坏,适应恶劣现场●基本免维护

国内调速技术现状 (1晶闸管交流器和开关断器件(DJT、IGBT、VDMOS斩波器供电的直流调速设备。 随着交流调速的发展,该设备在缩减,但由于我国旧设备改造任务多,以及它在几百至一千多kW范围内价格比交流调速低得多,所以在短期内有一定市场。国产设备能满足需要,部分出口。自行开发的控制器多为模拟控制,近年来主要采用进口数字控制器配国产功率装置。 (2IGBT等逆变器供电的交流变频调速设备。这类设备的市场很大,总容量占的比例不 大,但台数多,增长快,应用范围从单机扩展到全生产线,从简单的V/f控制到高性能的矢量控制。约有50家工厂和公司生产,其中合资企业占很大比重。 (3负载换流式电流型晶闸管逆变器供电的交流变频调速设备。这类产品在抽水蓄水能电

变频器的远程控制及调速原理.

变频器远程控制及调速原理 -----唐玉龙 一、变频器的远程控制 什么是变频器远程控制器在许多变频器的应用现场,电机与操作室距离较远。如将变频器安装在现场,不便于工人的观察与操作;如安装在操作室内,则动力线拉的距离太远,成本高,且对变频器本身及系统中其他设备造成干扰。针对上述应用情况,我们开发研制了变频器远程控制器产品。变频器远程控制器是一种实现变频器远程操作的智能仪表,通过RS485网络远程控制变频器的启动、停止、加速、减速、正反转,并实时显示变频器的工作频率、转速等运行状态信息。单机通讯距离可达1200米(9600bps),有效减少变频器的干扰。这样就可将变频器安装在电动机附近,通过屏蔽通讯线接到远端操作室内仪表盘上的变频器远程控制器上,在操作室内就能观察和操作变频器的运行状态。另外,变频器远程控制器还可接外置操作按钮,有手动/自动切换及监听等功能,可接入计算机控制系统,便于工程使用。二、变频器远程控制器的种类和功能我们研发的变频器远程控制器根据变频器的不同可分为标准型和加强型;根据通讯方式的不同可分为有线通讯、无线通讯;根据不同的通讯协议也分别有相应的产品。如果没有通讯接口或无法知道其通讯协议的变频器,可在变频器一端接上我们的远端转换器,将模拟信号和开关信号通过485网络传送到远程控制器上。这样对没有通讯口或无法知道通讯协议的变频器也都能使用,真正实现变频器万能远程控制器的功能。 二、交流异步电动机变频调速原理 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

PWM变频控制技术

PWM 变频控制技术 变频调速原理 变频器工作原理:变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。在诸多交流异步电动机调速技术中,如调压调速、变极调速、串级调速、滑差调速、变频调速等,其中由于变频调速具有的优点: (1)调速时平滑性好,效率高; (2)调速范围较大,精度高; (3)起动电流低,对系统及电网无冲击,节电效果明显; (4)易于实现过程自动化; 因此,变频调速技术是当前应用最广泛的一种调速技术。在中小功率的变频调速系统中使用最多的变压变频调速,简称U/F 控制,相应的变频调速控制器为电压源型变频调速器(VSI )。由电机学知识可知异步电动机的转速与电源频率有以下关系: )1(60s p f n -= (2-1) 式中:n —电机的转速(r/min ); p —磁极对数; s —转差率(%); f —电源频率(Hz )。 从式(2-1)可以看出,改变电源频率就可以改变电机转速。另外,根据的电势公式知道,外加电压近似地与频率和磁通的乘积成正比。即 φf C E U 1≈∝ (2-2) 式中C 1为常数。因此有: f U f E =∝φ (2-3) 若外加电压不变,则磁通随频率而改变,如频率下降,磁通会增加,造成磁路饱和,励磁电流增加,功率因数下降,铁心和线圈过热,显然这是不允许的。为此,要在降频的同时还要降压,这就要求频率与电压协调控制。此外,在很多场合为了保持在调速时,电动机产生最大转矩不变,也需要维持磁通不变,这亦由频率和电压协调控制来实现。通过改变异步电动机的供电频率,从而可以任意调节电机转速,实现平滑的无级调速。 SPWM 模式下交直交变频器工作原理 SPWM 波形就是在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲的宽度一也最大,而脉冲间的间隔则最小。反之,当正弦值较小时,脉冲的宽度也小,而脉冲间的间隔则较大,如图所示。这样的电压脉冲系列可以使负载电流中的谐波成分大为减小,

(完整版)变频器原理与应用试卷

变频器原理及应用试卷 一.选择题 1.下列选项中,按控制方式分类不属于变频器的是(D )。A.U/f B.SF C.VC D.通用变频器 2.下列选项中,不属于按用途分类的是(C )。 A.通用变频器B.专用变频器C.VC 3.IPM是指( B )。 A.晶闸管B.智能功率模块C.双极型晶体管D.门极关断晶闸管 4.下列选项中,不是晶闸管过电压产生的主要原因的是(A )。 A.电网电压波动太大B.关断过电压 C.操作过电压D.浪涌电压 5.下列选项中不是常用的电力晶体管的是(D )。A.单管B.达林顿管C.GRT模块D.IPM 6.下列选项中,不是P-MOSFET的一般特性的是(D )。A.转移特性B.输出特性C.开关特性D.欧姆定律

7.集成门极换流晶闸管的英文缩写是(B )。A.IGBT B.IGCT C.GTR D.GTO 8.电阻性负载的三相桥式整流电路负载电阻 L R上的平均电 压 O U为(A )。 A.2.34 2 U B.2U C.2.341U D.1U 9.三相桥式可控整流电路所带负载为电感性时,输出电压 平均值 d U为为(A ) A.2.34 2cos U B.2U C.2.341U D.1U 10.逆变电路中续流二极管VD的作用是(A )。 A.续流B.逆变C.整流D.以上都不是11.逆变电路的种类有电压型和(A )。 A.电流型B.电阻型C.电抗型D.以上都不是 12.异步电动机按转子的结构不同分为笼型和(A )。A.绕线转子型B.单相C.三相D.以上都不是 13.异步电动机按使用的电源相数不同分为单相、两相和(C )。 A.绕线转子型B.单相C.三相D.以上都

交流及变频调速技术试卷及答案

交流及变频调速技术 一、选择题;(20分) 1、正弦波脉冲宽度调制英文缩写是(A )。 A:PWM B:PAM C:SPWM D:SPAM 2、对电动机从基本频率向上的变频调速属于( A)调速。 A:恒功率 B:恒转矩 C:恒磁通 D:恒转差率 3、下列哪种制动方式不适用于变频调速系统( C)。 A:直流制动 B:回馈制动 C:反接制动 D:能耗制动 4、对于风机类的负载宜采用( A)的转速上升方式。 A:直线型 B:S型 C:正半S型 D:反半S型 5、N2系列台安变频器频率控制方式由功能码(C )设定。 A:F009 B:F010 C:F011 D:F012 6、型号为N2-201-M的台安变频器电源电压是( A)V。 A: 200 B:220 C:400 D:440 7、三相异步电动机的转速除了与电源频率、转差率有关,还与(B )有关系。 A:磁极数 B:磁极对数 C:磁感应强度 D:磁场强度 8、目前,在中小型变频器中普遍采用的电力电子器件是(D )。 A:SCR B:GTO C:MOSFET D:IGBT 9、IGBT属于(B )控制型元件。 A:电流 B:电压 C:电阻 D:频率 10、变频器的调压调频过程是通过控制( B)进行的。 A:载波 B:调制波 C:输入电压 D:输入电流 二:填空题(每空2分,20分) 1.目前变频器中常采用 IGBT 作为主开关器件。 2.三相异步电动机拖动恒转矩负载进行变频调速时,为了保证过载能力和主磁通不变,则U1应 随f1 U1\F1=常数按规律调节。 3.矢量控制的规律是 3/2变换、矢量旋转变换、坐标变换。 4.变频调速系统的抗干扰措施有: 合理布线,消弱干扰源,隔离干扰,准确接地 三:判断题(10分) ( 对 )1. 变频器的主电路不论是交-直-交变频还是交-交变频形式,都是采用电力电子器。( 错 )2.电流型变频器多用于不要求正反转或快速加减速的通用变频器中。 ( 对 )3. 变频器调速主要用于三相异步电动机。

变频器原理与维修

变频器原理与维修 一、变频器原理介绍 变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装臵。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。 整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM 波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型; 如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。 对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装臵时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加 二、变频器常见故障的分析与处理 1 变频器参数设臵类故障 在使用过程中变频器能否满足用户系统的要求,其参数设臵非常重要,如果参数设臵不

正确,变频器便不能正常工作。 1.1 变频器的参数设臵 生产厂在进行变频器出厂调试时,对变频器的每一个参数都设有一个默认值,这些默认参数值一般被称作工厂值。当用户使用的变频器是在这些参数值下工作时,则用户能以面板操作方式使变频器正常运行。但是,实际情况往往是面板操作并不能完全满足大多数用户传动系统的要求。所以,用户在正确使用变频器之前,必须要对变频器参数的默认值进行如下几个方面的辨识和重新设臵: 1)确认电机的功率、电流、电压、转速、最大频率等参数(这些参数可以从电机铭牌中查得)是否与默认值相符,如果不符时则要对默认值进行重新设臵; 2)确认变频器采取的控制方式(即速度控制、转矩控制、PID 控制或其他控制方式)后,一般还需要根据控制精度进行静态或动态辨识; 3)设定变频器的启动方式,一般变频器在出厂调试时设定为面板启动,用户可以根据实际情况选择自己的启动方式,可以用面板、外部端子、通讯等方式; 4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定等,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式的综和。 当正确设臵以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。 1.2 变频器参数设臵类故障的处理 一旦发生了参数设臵类故障时,变频器都不能正常运行,这时可根据产品说明书对参数设臵进行修改。如果修改后仍不行,则最好是把所有参数恢复到出厂值,然后按上述步骤重新设臵,注意每一个公司的变频器其参数恢复方式也不尽相同。 2 过电压故障及处理

PID技术在变频控制系统中的应用

PID技术在变频控制系统中的应用 摘要:目前我国随着城市规模发展,居民生活用水,工业生产用水量逐步增大,城镇自来水厂及污水处理厂的建设占市政建设的比重也越来越大。在污水处理厂中,由于每座污水处理厂都有收集污水的泵站,而提升泵又是收集污水的主要工 艺设备,其耗电量占厂内总耗电量很大的比重,所以提升泵运控制过程好坏对于 污水设备管理有着重要的意义。目前我国大多数污水处理厂对于提升泵的运行管 理还是采用的是人工调频,及定频后通过高液位关、低液位开的自动控制方式。 这两重方式很大成度上都存在这各自的不足。为了解决这个问题我们采用PID控 制方式,PID(比例积分微分)英文全称为Proportion Integration Differentiation, 它是一个数学物理术语。目前工业自动化水平已成为衡量各行各业现代化水平的 一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和 智能控制理论三个阶段。自动控制系统可分为开环控制系统和闭环控制系统。一 个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的 输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、 执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的 传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已 经很多,产品已在工程实际中得到了广泛的应用,有各种各样的能实现PID控制 功能的可编程控制器(PLC)。可编程控制器(PLC) 是利用其闭环控制模块来实现PID 控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现 PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直 接与ControlNet相连,利用网络来实现其远程控制功能。 关键词:提升泵;PID;变频器;液位计;流量计;水量;水位;PLC;梯形 图 一:前言 泵在工作原理上可分为容积式泵和叶轮式泵,和其它类型泵。 容积泵是靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体, 并靠工作部件的挤压而直接使液体的压力能增加。根据运动部件运动方式的不同 又分为:往复泵和回转泵两类。根据运动部件结构不同有:活塞泵和柱塞泵,有 齿轮泵、螺杆泵、叶片泵和水环泵。 叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。 根据泵的叶轮和流道结构特点的不同叶轮式又可分为: 1)离心泵(centrifugal pump) 2)轴流泵(axial pump) 3)混流泵(mixed-flow pump) 4)旋涡泵(peripheral pump) 在水厂及污水处理厂提升泵主要以叶轮泵为主,泵性能参数主要有流量和扬程。所以提升泵的控制对于流量及水位的控制就尤为重要。在水泵的电气控制系 统中,主要以软启动及变频起动为主。软启动器是一种集电机软起动、软停车、 轻载节能和多种保护功能于一体的新颖电机控制装置。它的主要构成是串接于电 源与被控电机之间的三相反并联闸管及其电子控制电路。运用不同的方法,控制 三相反并联闸管的导通角,使被控电机的输入电压按不同的要求而变化,就可实 现不同的启动功能。变频器是应用变频技术与微电子技术,通过改变电机工作电

变频器原理图讲解

系列原理图简介 一.机型简介 整个30X系列包括以下几个类型,同功率的机型在硬件上的区别就是控制板的功能上有优化,驱动板都是相同的。不同功率段的硬件设计模式上,15KW以下包括15KW采取驱动板带整流桥+单管IGBT+DSP板的模式,30KW~45KW采用可控硅+驱动板45DRV不带整流部分+IGNT模块+DSP板的模式,55KW~75KW 采用可控硅+驱动板55POWER不带整流部分+55DRV+IGNT模块+DSP板的模式,90KW以上的结构和55KW不同之处在于55DRV不同。 二.系统框图 三.4KW驱动板 驱动板按功率段分,15KW以下的驱动板模式和18.5KW以上驱动板模式。这里主要以4KW小功率机型和45KW大功率机型为例讲解。先以4KW为例进行介绍。 驱动板主要包括整流滤波+软启动+开关电源+电源指示灯+UVW电流检测 +PWM光耦隔离+电平转换+故障保护电路+母线电压检测,下面分别介绍: 3.1软启动+母线电压检测 左图母线电压检测是变压器副边输出经过电阻分压后Udc信号给DSP,标准是母线电压为530V时Udc=1.50v;右图为软启动电路,刚通电瞬间电容相当于短路,母线电流很大,通过电阻R92限流来消耗能量,到电容充好电后通过继电器将R92短路,这里设定的是母线电压为400V继电器动作.右图中还有电源指示灯电路通过电阻分压方式设计. 3.2开关电源 单端反激式开关电源由反激式变压器+UC3844电源控制芯片+MOS管,单端反激工作原理: MOS管导通,母线电压加在变压器原边线圈,副边线圈为上负下正,二极管反向,副边绕组没有电流;MOS管截止,副边线圈为上正下负,绕组中储存的能量向负载释放.根据IN=I'N',在MOS管导通期间储存的能量在截止期间有多少释放,取决于截止时间. UC3844电源管理器主要是控制MOS管的脉冲占空比,根据IF,VF,+15V三个反馈信号调整输出脉冲占空比,IF>1v,VF>15V,+15V>15V,三种情况下都会自动调节.标准是+15V误差为±0.02V; 电感的作用,滤除占波开关电流中的脉动成份。从滤波效果看,电感量越大,效果越明显;但电感过大,会使滤波器的电磁时间常数变大,使输出电压对占空

变频器定义及工作原理概述

变频器定义及工作原理概述 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS 控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 VVVF:改变电压、改变频率 CVCF:恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中 n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性

相关文档
相关文档 最新文档