文档库 最新最全的文档下载
当前位置:文档库 › 前沿新材料的介绍

前沿新材料的介绍

前沿新材料的介绍
前沿新材料的介绍

前沿新材料的介绍

前沿新材料的介绍新材料是指新出现或正在发展中的、具有传统材料所不具有的优异性能的材料。它主要包括电子信息、光电、超导材料;生物功能材料;能源材料和生态环境材料;高性能陶瓷材料及新型工程塑料;粉体、纳米、微孔材料和高纯金属及高纯材料;表面技术与涂层和薄膜材料;复合材料;智能材料;新结构功能助剂材料、优异性能的新型结构材料等。新材料的应用范围非常广泛,发展前景十分广阔,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。

综观全世界,新材料产业已经渗透到国民经济、国防建设和社会生活的各个领域,支撑着一大批高新技术产业的发展,对国民经济的发展具有举足轻重的作用,成为各个国家抢占未来经济发展制高点的重要领域。

一、新材料产业的主要特点

1、应用领域宽广、相互之间关联度小

新材料种类纷繁,涉及多个不同行业,不仅包括纳米材料,磁性材料等产品,还包括与能源结合紧密的新型能源材料,与信息产业紧密结合的光通讯材料,更有聚氨酯,氯化聚乙烯,有机氟材料等高分子材料;同时,生产这些产品的企业又分处不同行业,无论是设备、生产技术,还是销售市场均存在较大差异。

2、知识与技术密集度高

3、高投资、高风险、高收益

4、新材料产业与其他产业的关联度高

从新材料产业与其他产业的关系来说,具有先导性、基础性和带动性。新材料广泛应用于信息、能源、交通、医疗等各个领域,是其他高新技术及其产业发展的基础和先导;新材料与传统产业紧密结合,产业结构横向扩散。随着高技术的发展,传统材料产业向新材料产业发展。

二、前沿新材料介绍

1、纳米材料

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它

们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。目前纳米材料在很多方面都已投入应用:

1)、纳米磁性材料:在实际中应用的纳米材料大多数都是人工制造的。纳米磁性材料具有十分特别的磁学性质,纳米粒子尺寸小,具有单磁畴结构和矫顽力很高的特性,用它制成的磁记录材料不仅音质、图像和信噪比好,而且记录密度比γ-Fe2O3高几十倍。超顺磁的强磁性纳米颗粒还可制成磁性液体,用于电声器件、阻尼器件、旋转密封及润滑和选矿等领域。

2)、纳米陶瓷材料:传统的陶瓷材料中晶粒不易滑动,材料质脆,烧结温度高。纳米陶瓷的晶粒尺寸小,晶粒容易在其他晶粒上运动,因此,纳米陶瓷材料具有极高的强度和高韧性以及良好的延展性,这些特性使纳米陶瓷材料可在常温或次高温下进行冷加工。如果在次高温下将纳米陶瓷颗粒加工成形,然后做表面退火处理,就可以使纳米材料成为一种表面保持常规陶瓷材料的硬度和化学稳定性,而内部仍具有纳米材料的延展性的高性能陶瓷。

3)、纳米传感器:纳米二氧化锆、氧化镍、二氧化钛等陶瓷对温度变化、红外线以及汽车尾气都十分敏感。因此,可以用它们制作温度传感器、红外线检测仪和汽车尾气检测仪,检测灵敏度比普通的同类陶瓷传感器高得多。

4)、纳米倾斜功能材料:在航天用的氢氧发动机中,燃烧室的内表面需要耐高温,其外表面要与冷却剂接触。因此,内表面要用陶瓷制作,外表面则要用导热性良好的金属制作。但块状陶瓷和金属很难结合在一起。如果制作时在金属和陶瓷之间使其成分逐渐地连续变化,让金属和陶瓷“你中有我、我中有你”,最终便能结合在一起形成倾斜功能材料,它的意思是其中的成分变化像一个倾斜的梯子。当用金属和陶瓷纳米颗粒按其含量逐渐变化的要求混合后烧结成形时,就能达到燃烧室内侧耐高温、外侧有良好导热性的要求。

5)、纳米半导体材料:将硅、砷化镓等半导体材料制成纳米材料,具有许多优异性能。例如,纳米半导体中的量子隧道效应使某些半导体材料的电子输运反常、导电率降低,电导热系数也随颗粒尺寸的减小而下降,甚至出现负值。这些特性在大规模集成电路器件、光电器件等领域发挥重要的作用。利用半导体纳米粒子可以制备出光电转化效率高的、即使在阴雨天也能正常工作的新型

太阳能电池。由于纳米半导体粒子受光照射时产生的电子和空穴具有较强的还原和氧化能力,因而它能氧化有毒的无机物,降解大多数有机物,最终生成无毒、无味的二氧化碳、水等,所以,可以借助半导体纳米粒子利用太阳能催化分解无机物和有机物。

6)、纳米催化材料:纳米粒子是一种极好的催化剂,这是由于纳米粒子尺寸小、表面的体积分数较大、表面的化学键状态和电子态与颗粒内部不同、表面原子配位不全,导致表面的活性位置增加,使它具备了作为催化剂的基本条件。镍或铜锌化合物的纳米粒子对某些有机物的氢化反应是极好的催化剂,可替代昂贵的铂或钯催化剂。纳米铂黑催化剂可以使乙烯的氧化反应的温度从600 ℃降低到室温。

7)、医疗上的应用:血液中红血球的大小为6 000~9 000 nm,而纳米粒子只有几个纳米大小,实际上比红血球小得多,因此它可以在血液中自由活动。如果把各种有治疗作用的纳米粒子注入到人体各个部位,便可以检查病变和进行治疗,其作用要比传统的打针、吃药的效果好。使用纳米技术能使药品生产过程越来越精细,并在纳米材料的尺度上直接利用原子、分子的排布制造具有特定功能的药品。纳米材料粒子将使药物在人体内的传输更为方便,用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。使用纳米技术的新型诊断仪器只需检测少量血液,就能通过其中的蛋白质和DNA 诊断出各种疾病。通过纳米粒子的特殊性能在纳米粒子表面进行修饰形成一些具有靶向,可控释放,便于检测的药物传输载体,为身体的局部病变的治疗提供新的方法,为药物开发开辟了新的方向。

8)、纳米计算机:世界上第一台电子计算机诞生于1945年,它是由美国的大学和陆军部共同研制成功的,一共用了18 000个电子管,总重量30 t,占地面积约170 m,可以算得上一个庞然大物了,可是,它在1 s内只能完成5 000次运算。如果采用纳米技术来构筑电子计算机的器件,那么这种未来的计算机将是一种“分子计算机”,其袖珍的程度又远非今天的计算机可比,而且在节约材料和能源上也将给社会带来十分可观的效益。可以从阅读硬盘上读卡机以及存储容量为芯片上千倍的纳米材料级存储器芯片都已投入生产。计算机在普遍采用

纳米材料后,可以缩小成为“掌上电脑”。

9)、家电:用纳米材料制成的纳米材料多功能塑料,具有抗菌、除味、防腐、抗老化、抗紫外线等作用,可用为作电冰箱、空调外壳里的抗菌除味塑料。10)、环境保护:环境科学领域将出现功能独特的纳米膜。这种膜能够探测到由化学和生物制剂造成的污染,并能够对这些制剂进行过滤,从而消除污染。11)、纺织工业:在合成纤维树脂中添加纳米SiO2、纳米ZnO、纳米SiO2复配粉体材料,经抽丝、织布,可制成杀菌、防霉、除臭和抗紫外线辐射的内衣和服装,可用于制造抗菌内衣、用品,可制得满足国防工业要求的抗紫外线辐射的功能纤维。

12、机械工业:采用纳米材料技术对机械关键零部件进行金属表面纳米粉涂层处理,可以提高机械设备的耐磨性、硬度和使用寿命。

2、超导材料

超导材料指在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料,能够无损耗地传输电能。

超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。

3、智能材料

智能材料,是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料,是继天然材料、合成高分子材料、人工设计材料之后的第四代材

料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。一般来说智能材料具有七大功能,即传感功能、反馈功能、信息识别与积累功能、响应功能、自诊断能力、自修复能力和自适应能力。

在建筑方面,科学家正集中力量研制使桥梁、高大的建筑设施以及地下管道等能自诊其“健康”状况,并能进行行“医治疾病”的材料。在飞机制造方面,科学家正在研制具有如下功能的智能材料:当飞机在飞行中遇到涡流或猛烈的逆风时,机翼中的智能材料能迅速变形,并带动机翼改变形状,从而消除涡流或逆风的影响,使飞机仍能平稳地飞行。可进行损伤评估和寿命预测的飞机自诊断监测系统。在医疗方面,智能材料和结构可用来制造无需马达控制并有触觉响应的假肢。军事方面,在航空航天器蒙皮中植入能探测激光、核辐射等多种传感器的智能蒙皮,可用于对敌方威胁进行监视和预警。除上述几个方面外,智能材料的再一个重要进展标志就是形状记忆合金,或称记忆合金。这种合金在一定温度下成形后,能记住自己的形状。当温度降到一定值(相变温度)以下时,它的形状会发生变化;当温度再升高到相变温度以上时,它又会自动恢复原来的形状。

今后的研究重点包括以下六个方面:(1)智能材料概念设计的仿生学理论研究(2)材料智然内禀特性及智商评价体系的研究(3)耗散结构理论应用于智能材料的研究(4)机敏材料的复合-集成原理及设计理论(5)智能结构集成的非线性理论(6)仿人智能控制理论

4、生物材料

生物材料是用于人体组织和器官的诊断、修复或增进其功能的一类高技术材料,即用于取代、修复活组织的天然或人造材料,其作用药物不可替代。生物材料能执行、增进或替换因疾病、损伤等失去的某种功能,而不能恢复缺陷部位。

生物材料按特性可分为:血液相容性材料,如人工瓣膜、人工气管、人工心脏、血浆分离膜、血液灌流用吸附剂、细胞培养基材等;软组织相容性材料,如隐形眼睛片的高分子材料,人工晶状体、聚硅氧烷、聚氨基酸等,用于人工

皮肤、人工气管、人工食道、人工输尿管、软组织修补等领域;硬组织相容性材料,如医用金属、聚乙烯、生物陶瓷等,关节、牙齿、其它骨骼等;生物降解材料,如甲壳素、聚乳酸等,用于缝合线、药物载体、粘合剂等;高分子药物,如多肽,胰岛素、人工合成疫苗等,用于糖尿病、心血管、癌症以及炎症等。

5、电子信息材料

电子信息材料是指在微电子、光电子技术和新型元器件基础产品领域中所用的材料,主要包括单晶硅为代表的半导体微电子材料;激光晶体为代表的光电子材料;介质陶瓷和热敏陶瓷为代表的电子陶瓷材料;钕铁硼(NdFeB)永磁材料为代表的磁性材料;光纤通信材料;磁存储和光盘存储为主的数据存储材料;压电晶体与薄膜材料;贮氢材料和锂离子嵌入材料为代表的绿色电池材料等。这些基础材料及其产品支撑着通信、计算机、信息家电与网络技术等现代信息产业的发展。

6、新型高分子材料

高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。

1)高分子分离膜

高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。推广应用高分子分离膜能获得巨大的经济效益和社会效益。例如,利用离子交换膜电解食盐可减少污染、节约能源:利用反渗透进行海水淡化和脱盐、要比其它方法消耗

最新科技前沿

最新科技前沿——新颖材料 摘要: 随着科学技术的进步,开拓了新材料的范围,推动了新材料向更高、更新方向发展。本文首先对新材料的定义及发展前景进行分析,引出了超导体材料、高性能材料、高分子材料、复合型材料及金属材料的发展前景,最后对新颖材料在工业等领域发展进行展望。 关键词: 新材料,高性能材料,超导体材料,高分子材料,复合型材料

正文: 1最新材料技术 新材料技术的发展不仅促进了信息技术和生物技术的革命,而且对制造业、物资供应以及个人生活方式产生重大的影响。材料技术的进步使得“芯片上的实验室”成为可能,大大促进了现代生物技术的发展。新材料技术的发展赋予材料科学新的内涵和广阔的发展空间。 1.1新材料的定义 新材料是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料技术是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。新材料按材料的属性划分,有金属材料、无机非多属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料的使用性能性能分,有结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求;功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。新材料在国防建设上作用重大,例如,超纯硅、砷化镓研制成功,导致大规模和超大规模集成电路的诞生。隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现等等。 1.2最新材料的发展方向 目前,新材料技术正朝着研制生产更小、更智能、多功能、环保型以及可定制的产品、元件等方向发展纳米材料20世纪90年代,全球逐步掀起了纳米材料研究热潮。由于纳米技术从根本上改变了材料和器件的制造方法,使得纳米材料在磁、光、电敏感性方面呈现出常规材料不具备的许多特性,在许多领域有着广阔的应用前景。 专家预测,纳米材料的研究开发将是一次技术革命,进而将引起21世纪又一次产业革命。日本三井物产公司曾在去年末宣布该公司将批量生产碳纳米管,从2002年4月

新材料产业特点及国外重点企业介绍

新材料产业特点及国外重点企业介绍 摘要新材料产业具有先导性、基础性和带动性,世界新材料产业的主导者是美国、日本和欧洲。美国的通用电气公司、杜邦公司、MEMC公司,日本的TDK公司、信越化学公司,欧洲的巴斯夫、圣戈班、摩根等公司在基础研究、应用研究、技术商品化、生产制造等方面居世界领先地位。 关键词新材料;产业;研究;跨国公司 新材料是指新出现或正在发展中的、具有传统材料所不具有的优异性能的材料。新材料是其他高新技术发展的支撑和先导,其研究水平和产业化规模已成为衡量一个国家和地区经济发展、科技进步和国防实力的重要标志。新材料产业在发达国家已经成为一个具有技术和商业竞争力的支柱产业之一,其产出在国民经济中占有重要地位。新材料本身就是一个大市场,而由它带动而产生的新产品和新技术则是一个更大的市场。以美国为例,电子工业投入1美元的半导体材料,可以生产出10美元的电子设备系统;交通工业中材料的使用寿命延长1%,则可节约300亿美元。 1、新材料产业特点 先导性、基础性和带动性 新材料是其他高新技术及其产业发展的基础和先导,新材料广泛应用于信息、能源、交通、医疗等各个领域,处于其他高新技术产业链的上游。新材料的创新为下游产业的发展提供了机遇,并极大地带动了其他高技术产业的突破和发展,同时下游其他高技术产业的发展又能极大地刺激和推动新材料产业的发展。以信息材料为例,单晶硅和其他半导体材料的问世和应用,奠定了微电子技术的发展基础,同时随着信息技术的迅速发展,对材料技术不断提出

更高的要求,因而光电子材料将成为信息技术发展的核心基础。 新材料产业与上下游相关产业进一步融合,产业结构垂直扩散 新材料产业的发展依赖于上下游相关产业的发展,特别是下游用户的进一步创新开发,才能使新材料产品最终走向市场。随着元器件微型化的发展,新材料技术与器件技术的一体化趋势日趋明显,新材料产业与下游产业相互合作与融合更加紧密。如日本的很多电子材料厂家都在生产经营元器件或整机。此外,电子行业的整机厂家也在自行开发独具特色的元器件和新材料。企业由于减少了新材料产业化的中间环节,加快了新材料研究成果向最终产品的转化,因而研发与市场风险大大降低,有利于企业获得竞争优势,这对于新材料产业的整体发展也是有益的。 新材料与传统材料产业紧密结合,产业结构横向扩散 随着高新技术的发展,传统材料产业向新材料产业拓展。世界上很多著名的新材料企业以前是生产钢铁、化工、有色金属等原材料企业,利用积累的大规模生产能力和先进的生产技术,进入新材料行业。如美国的化学工业企业正在扩大产品品种,转向生物医用材料、电子信息材料和特种材料的生产,改变了化学工业“夕阳工业”面貌,成为美国多种高附加值新材料产品的生产者。同时美国生物医用材料工业的增长就是在化学工业的扶持下实现的。如日本住友金属公司,其主营业务是钢铁,但依靠先进的生产工艺和大量的研发投入,在全球硅片市场也获得了较为领先的地位。 2、国外新材料产业重点企业介绍 世界新材料产业的主导者是美国、日本和欧洲,无论在基础研究、应用研究、技术商品化、生产制造等各方面都居世界领先地位。从企业形态来说,不仅有大型跨国公司,还有众多的中小企业。尤其是许多大型跨国企业下有专门从事新材料产业的分支企业,这些分支企业依靠母公司的强大财力,研发制造的新型材料经常供本公司下游产品使用,如通用电气公司、

《广东省培育前沿新材料战略性新兴产业集群行动计划(2021-2025年)》

广东省培育前沿新材料战略性新兴产业 集群行动计划(2021-2025年) 为贯彻省委、省政府关于推进制造强省建设的工作部署,加快培育前沿新材料战略性新兴产业集群,促进产业迈向全球价值链高端,依据《广东省人民政府关于培育发展战略性支柱产业集群和战略性新兴产业集群的意见》(粤府函〔2020〕82号)等文件精神,制定本行动计划。 一、总体情况 前沿新材料是具有战略性、前瞻性和颠覆性的新材料,是未来产业发展的制高点,具有重要引领作用和重大应用前景。结合国家、省相关规划和我省新材料产业发展的现状,我省重点发展的前沿新材料产业包括智能、仿生与超材料,低维及纳米材料,高性能纤维,新型半导体材料,电子新材料及电子化学品,先进金属材料,新型复合材料,超导材料,增材制造材料,新能源材料,生物医用材料,材料先进研发、制备和检测、验证服务等领域。 (一) 发展现状。 “十三五”期间,我省前沿新材料产业发展迅速,2019年,我省前沿新材料产业营业收入接近500亿元,产业技术水平和综合实力位居全国前列。一是支撑前沿新材料的重大科技基础设施

带动创新要素快速集聚。大科学装置、省实验室和高水平新型研发机构的布局、建设,世界级科研创新平台集群正在形成,促进一大批院士、顶尖科学家和各类创新要素快速集聚,高起点开展碳纳米管、石墨烯、新型半导体、超导、非晶合金等前沿新材料基础研究和原始创新,新型科研体制和孕育世界级科技成果的创新链条渐具雏形。二是创新活跃,新技术发展迅猛。我省在石墨烯、超材料、新型显示、新能源材料、生物医用材料、先进半导体、材料基因工程等领域形成了较强优势,产出了一批优秀的科研成果和专利,单晶石墨烯的工业化制备、超材料的规模化生产、印刷显示、超宽禁带半导体材料等关键技术取得了重大突破。三是骨干企业带动作用凸显,产业集聚态势初步形成。“专精特新”“独角兽”“单项冠军”企业不断涌现,空间布局日趋合理,形成了梯次发展的良好格局,以广州、深圳、佛山、东莞、珠海等地市为核心,清远、惠州、韶关、江门、汕尾等地市快速发展,区域化聚集初步呈现;新能源材料、生物医用材料、新型显示、先进陶瓷材料等产业具有较为完整的产业链和完备的产业配套体系,产业集群效应明显。四是引领支撑高质量发展成效显著。前沿新材料对高科技产业的先导和基础作用日益突出,有力地支撑了新一代信息技术、高端装备制造业等战略性新兴产业的快速高质发展。 (二) 存在问题与面临的挑战。 我省前沿新材料产业仍处于培育发展阶段,一是材料创新系

材料技术前沿

1.人类历史的5次材料技术革命是什么?简述材料设计时代的特点。 答:1)石器时代---青铜器时代---铁器时代---合金化时代---合成材料时代---新材料设计与制备加工工艺时代。 2)材料设计时代的特点:资源-材料-制品界限的弱化与消失-按照使用要求来设计材料的性能;性能设计与工艺设计一体化要求-同时设计出可以获得其性能的可行的制备加工工艺。 2.简述材料加工技术的总体发展趋势以及主要发展方向。 答:发展趋势:概括为过程综合、技术综合、学科综合三个综合。过程综合包括两个方面:一是材料设计、制备、成形与加工的一体化;二是多个过程(如凝固与成形)的综合化。技术综合是指材料加工技术与计算机技术、信息技术、各种先进控制技术的综合。学科综合体现为三级学科(铸造、塑性加工、热处理)之间的综合、与材料物化、材料学等二级学科的综合,与计算机、信息环境过程工程等一级学科的综合。主要发展方向:常规材料加工工艺的短流程化和高效化;发展先进的成形加工技术,实现组织与性能的精确控制;材料设计、制备与成形加工一体化;开发新型设备与成形加工技术,发展新材料和新制品;发展计算机数值模拟与过程仿真技术,构筑完善的材料数据库;材料的智能制备和成形加工。 3.简述快速凝固的概念及用途。实现快速凝固的两种方法以及金属快速凝固的组织特征。答:快速凝固是指由液相到固相的相变过程进行得非常快,从而获得普通铸件和铸锭无法获得的成分、相结构和显微结构的过程。用途:获得新的凝固组织,开发新材料;制备难加工材料薄带、细小线材和块体材料;简化制备工序,实现近终形成形;提高产品质量,降低生产成本。实现方法:快速冷却和深过冷。组织特征:偏析形成倾向减小;形成非平衡相;细化凝固组织;析出相的结构发生变化;形成非晶态。 4.简述定向凝固的概念和现有工艺。简述连续定向凝固的基本原理。 答:定向凝固是指在凝固过程中采用强制手段,在凝固金属和未凝固金属熔体中建立起特定方向的温度梯度,从而使熔体沿着与热流相反的方向凝固,最终的到具有特定取向柱状晶的技术。现有工艺:发热剂法、功率降低法、高速凝固法、液态金属冷却法和连续定向凝固。连续定向凝固的基本原理:在连续定向凝固过程中对铸型进行加热,使它的温度高于被铸金属的凝固温度,并通过在铸型出口附近的强制冷却,或同时进行分区加热与控制,在凝固金属和未凝固熔体中建立起沿拉环方向的温度梯度,从而使熔体形核后沿着与热流(拉坯方向)相反的方向,按单一的结晶取向进行凝固,获得连续定向结晶组织(连续柱状晶),甚至单晶组织。 5.简述半固态加工的概念和特点;何谓触变成形?何谓流变成形? 答:半固态加工就是在金属凝固的过程中对其施以剧烈的搅拌作用,充分破碎树枝状的初生固相,得到一种液态金属母液中均匀地悬浮着一定球状初生固相的固液混合浆料,即流变浆料,利用流变浆料直接进行成形加工的方法称为半固态金属的流变成形。如果将流变凝固成锭,按需要将此金属锭切成一定大小,然后重新加热至金属的半固态温度区,利用金属的半固态坯料进行成形加工的方法称为触变成形。上述两种方法合称为半固态加工。特点:黏度比液态金属高,容易控制;流动应力比固态金属低;应用范围广,具有固液两相区的合金均可实现半固态加工。 6.连续驻扎的概念和工艺特点,列出3种目前咋生产的金属材料。影响铸轧过程稳定性的主要因素有哪些?保证铸轧正常进行的两个条件是什么?答:连续铸轧是直接将金属熔体“轧制”成半成品带坯或成品带材的工艺。显著的特点是:其结晶器为两个带水冷系统的旋转铸轧辊;熔体在辊缝间完成凝固和热轧两个过程;而且在很短的时间内(2~3s)完成。例子为铝带铸轧、硅钢、普碳钢、不锈钢。影响稳定性的因素:钢水的流动性;凝固行为;铸轧速度;侧封;铸轧力和辊缝;二次冷却和拉坯系统的影响。两个条件:1.基本条件:浇注系统预热温度、金属液面高度;热平衡条件:铸轧温度、铸轧速度、冷却强度。

新材料行业发展趋势

新材料行业发展趋势 与传统材料相比,新材料产业具有技术高度密集,研究与开发投入高,产品的附加值高,生产与市场的国际性强,以及应用范围广,发展前景好等特点,其研发水平及产业化规模已成为衡量一个国家经济,社会发展,科技进步和国防实力的重要标志,世界各国特别是发达国家都十分重视新材料产业的发展。下面是有关于新材料行业发展趋势的分析,一起来看看。 中国新材料产业发展前景分析新材料作为二十一世纪三大关键技术之一,是高新技术发展的基础和先导,已成为全球经济迅猛增长的源动力。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。结构材料主要是利用材料的力学和理化性能,以满足高强度、高刚度、高硬度、耐高温、耐磨、耐蚀、抗辐照等性能要求;功能材料主要是利用材料具有的电、磁、声、光热等效应,以实现某种功能,如半导体材料、磁性材料、光敏材料、热敏材料、隐身材料和制造原子弹、氢弹的核材料等。新材料在国防建设上作用重大。例如,超纯硅、砷化镓研制成功,导致大规模和超大规模集成电路的诞生,使计

算机运算速度从每秒几十万次提高到每秒百亿次以上;航空发动机材料的工作温度每提高100℃,推力可增大24%;隐身材料能吸收电磁波或降低武器装备的红外辐射,使敌方探测系统难以发现等等。 在新材料产业中分布情况 21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 信息材料是最活跃的新材料领域,微电子材料在未来10~15年仍是最基本的信息材料,集成电路及半导体材料将以硅材料为主体,化合物半导体材料及新一代高温半导体材料共同发展。光电子材料将成为发展最快和最有前途的信息材料,主要集中在激光材料、高亮度发光二极管材料、红外探测器材料、液晶显示材料、光纤材料等领域。 XX年,在“国家半导体照明工程”计划的推动下,我国半导体照明产业发展加速,关键技术取得突破,蓝光功率型LED芯片发光效率达到90mW,处于国际先进水平;封装的功率型白光LED发光效率超过30lm/W,达到国际先进水平。建立了上海、大连、厦门、南昌4个国家半导体照明产业化基地,民营资本投资近37亿元人民币,我国LED产业迎来了快速发展的时期。 XX年我国推出了激光电视样机,技术水平达到国际先进。

新材料概念上市公司简介

新材料概念上市公司简介 (新材料未来蓝海 一、碳纤维 中钢吉炭000928:分享碳纤维这块迅速成长的蛋糕 “密度是钢的1/4,强度比钢大4-5 倍,在3,000℃非氧化气氛下不熔化,在液氮温度下依旧很柔软。”这种神奇的高科技材料就是碳纤维。碳纤维从上世纪60 年代开始问世得到了广泛应用,不仅可用在火箭、飞机上,在高尔夫球杆、钓鱼杆和球拍中也得到了广泛应用。公司的全资子公司神舟碳纤维目前产能10 吨/年,主要生产1K、3K 的碳纤维。神舟碳纤维是在军委的支持下建立起来的,也是国防科工委唯一认证的碳纤维生产商。公司产品主要供给国防科工委,产品售价可达3,000 元/千克,毛利率可达40%左右。公司持股30%的江城碳纤维一期500 吨项目有望明年年初投产,将给公司业绩带来新增长点。 要点: 碳纤维是一种含碳量大于 90%的纤维材料,它既有碳素材料的特性,又具有纺织纤维的可加工性。碳纤维在国防、军工、体育、休闲及多个工业领域得到广泛应用,是支撑世界高技术产业发展的重要材料。 PAN 基碳纤维的生产工艺主要包括原丝生产和原丝碳化两个过程。目前,我国碳纤维发展的“瓶颈”在于PAN 原丝生产技术。原丝占总成本的50%-65%。原丝制约着碳纤维的生产成本和市场竞争能力。 2010 年1 月,科技部将吉林市认定为唯一的国家碳纤维高新技术产业化基地。基地的主要成员有三家公司。其中吉林化纤主要生产原丝,神舟碳纤维和江城碳纤维主要做碳化,而中油吉化既做原丝又做碳化。 我们预计公司 2010-2012年的每股收益分别为0.05元、0.06 元和0.12 元。公司主营业务乏善可陈,但其碳纤维值得关注,目前公司持有30%的江城碳纤维股权,公司有望从碳纤维迅速成长中分享利益。 主要风险: 江城碳纤维无法按时投产的风险。 石墨电极、碳纤维、原丝价格波动超预期的风险。 二、石墨烯 石墨烯的命名來自英文的graphite(石墨 + -ene(烯类的结尾,是一种从石墨材料中剥离出的一个碳原子厚度(0.335 纳米)的材料,也可叫单层石墨,是目前世界上最薄的材料。2004 年英国曼彻斯特大学的Andre K. Geim 等用透明胶将石墨一层一层剥开后得到石墨烯。石墨

新材料定义和分类

新材料定义:新材料是指那些新出现或已在发展中的、具有传统材料所不具备的优异性能和特殊功能的材料。新材料与传统材料之间并没有截然的分界,新材料在传统材料基础上发展而成,传统材料经过组成、结构、设计和工艺上的改进从而提高材料性能或出现新的性能都可发展成为新材料。 新材料按结构组成分,有金属材料、无机非金属材料、有机高分子材料、先进复合材料四大类。按材料性能分,有结构材料和功能材料。按照新材料的用途和性质,《中国新材料产品与技术指导目录》将新材料产品分为新型金属材料、新型建筑材料、新型化工材料、电子信息材料、生物医用材料、新型能源材料、纳米及粉体材料、新型复合材料、新型稀土材料、高性能陶瓷材料、新型碳材料、新材料制备技术与设备等十多类具体技术领域。 1、电子信息材料 (1)微电子材料:晶圆、封装料、光刻胶、金丝、浆料、电子化学品、IGBT、功率MOS (2)光电子材料:光棒光纤、光器件、光盘、磁记录材料 (3)平板显示材料:偏光片、滤光片、玻璃、液晶、PDP稀土荧光粉、OLED发光料 (4)固态激光材料:人工晶体、非线性光学材料、特种玻璃、镀膜材料 2、节能新材料 (1)半导体照明材料:衬底、外延片、MO源、高纯气体、封装料

(2)光伏电池材料:多晶硅、单晶硅、薄膜、玻璃 (3)新能源材料:燃料电池电极、固体氧化物、二次电池电极、膜、锂离子聚合物、储氢合金粉及其他储氢材料 3、纳米材料 4、先进复合材料 玻璃纤维、芳纶、碳化硅、石墨、硼纤维、钢纤维、晶须、人工合成耐磨材料、树脂基、金属基、陶瓷基复合材料、碳/碳复合材料、硬质合金刀片、摩擦材料、复合材质材料 5、先进金属材料 (1)超级钢:新普碳、超合金、复相、专用钢、耐高温耐磨耐腐蚀材料、特种材、非晶合金(金属玻璃) (2)贵金属与有色:高纯贵金属、铝镁钛轻合金及材、特种铜材 6、化工新材料 有机硅、有机氟、工程塑料及塑料合金、特种橡胶、特种纤维、特种涂料、制冷剂、精细化工产品 7、先进陶瓷材料 功能陶瓷(微波、瓷介电子元件、压电、敏感、透明)结构陶瓷(蜂窝、耐磨、高温、高韧、涂层、陶瓷基复合) 8、稀土材料 高纯稀土、助剂、催化剂、永磁、发光、储氢 9、磁性材料 软磁、永磁、磁记录材料、磁器件

前沿新工艺

太阳能电池的发展趋势 紧紧围绕提高光电转换效率和降低生产成本两大目标的各种新型太阳能电池的研究工作,一直在各发达国家及一些发展中国家积极进行。所谓新型太阳能电池,是指用新材料、新结构和新工艺制造的太阳能电池。目前晶体硅高效太阳能电池和各类薄膜太阳能电池是全球新型太阳能电池研究开发的两大热点和重点。高效单晶硅太阳能电池的光电转换效率已接近25%,高效多晶硅太阳能电池的光电转换效率已超过20%。薄膜太阳能电池的研究工作主要集中在非晶硅薄膜电池、CdTe系薄膜电池、CIS系薄膜电池和多晶硅薄膜电池上。非晶硅薄膜电池的研发,重点是研究解决电池的光致衰降和提高效率问题。经过努力,已有许多新的突破,实验室的稳定效率已达15%。CdTe系薄膜电池的实验室效率已达到16.4%,CIS系薄膜电池实验室效率已达到19.2%,并且都已建立了效率超过10%的中试规模的生产线。多晶硅薄膜电池的研究工作,自1987年以来发展迅速,目前实验室效率已超过17%,成为引起世界光伏界瞩目的新热点,前景看好。 下面对21世纪前20年期间世界太阳能电池的发展趋势作一简要预测。 高效率低成本晶体硅太阳能电池的研究开发 晶体硅太阳能电池在21世纪的前20年内仍将是居主导地位的光伏器件,在生产和应用总量中占首位,并将向效率更高、成本更低的方向发展。 制约晶体硅太阳能电池光电转换效率进一步提高的主要技术障碍有:①电池表面栅线遮光影响;②电池表面光反射损失;③光传导损失;④内部复合损失; ⑤表面复合损失等。针对这些障碍,近些年来研究开发了许多新技术、新工艺,

主要有:①双层减反射膜,②激光或机械刻槽埋藏栅线技术;③绒面技术;④背点接触电极克服技术;⑤高效反射器技术;⑥光吸收技术等。 降低硅材料的生产费用,是降低太阳能电池成本的关键。多晶硅电池的材料成本比单晶硅电池的材料成本低,应作为研究开发的重点。主要研发的问题有:①多晶硅材料制备的新技术;②快速掺杂表面处理技术;③提高硅片质量的新技术、新工艺等。 太阳能电池的短路电流、开路电压和填充因子都达到最大值时,可以得到最高的转换效率。但由于它们相互影响和制约,并受到材料内在质量的影响,同时提高三者是很困难的,一般情况下只能单独改善其中的某一项。提高短路电流可从光吸收和光谱响应两方面努力。在太阳光谱中短波光的能量很大,而常规硅电池的短波响应却很差。为展宽电池光谱响应的峰区,研制了具有浅结、密栅及“死层”薄特征的紫光电池。常规硅电池表面虽有减反射膜,但单层的减反射膜仍对波长有选择性。无反射电池即绒面电池,则由于表面不平整,可多次吸收入射光,并且没有对波长的选择性,因而在较宽波长范围内光能的吸收量增大,进一步提高了短路电流。提高电池的开路电压能提高电池的转换效率,而具有背面场的电池,开路电压、短路电流和填充因子都可得到提高。这些新工艺、新技术已在高效电池中得到应用,并取得了好的效果。当前的目标,是不但要研发新的工艺、新的技术和新的器件结构,而且也要研发向工业生产的转移问题、降低电池和组件的成本问题。 产品名称: 扩散炉Diffusion Furnace :产品商标: 七星华创 产品产地: 北京 产品描述: 该设备主要应用于太阳能电池片生产中的扩散 工艺。 产品代码: 002 最低订货量: FOB地点: 交货期限:

新材料前沿技术跟踪研究

江苏省 科学技术情报研究所 新材料前沿技术跟踪研究 江苏省科学技术情报研究所 2012年12月

江苏省科学技术情报研究所 新材料是指新出现或正在发展中的、具有传统材料所不具有的优异性能的材料。它主要包括电子信息、光电、超导材料;生物功能材料;能源材料和生态环境材料;高性能陶瓷材料及新型工程塑料;粉体、纳米、微孔材料和高纯金属及高纯材料;表面技术与涂层和薄膜材料;复合材料;智能材料;新结构功能助剂材料、优异性能的新型结构材料等。新材料产业包括新材料及其相关产品和技术装备。 与传统材料相比,新材料产业技术高度密集、更新换代快、研究与开发投入高、保密性强、产品的附加值高、生产与市场具有强烈的国际性、产品的质量与特定性能在市场中具有决定作用。新材料的应用范围非常广泛,发展前景十分广阔,其研发水平及产业化规模已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。 综观全世界,新材料产业已经渗透到国民经济、国防建设和社会生活的各个领域,支撑着一大批高新技术产业的发展,对国民经济的发展具有举足轻重的作用,成为各个国家抢占未来经济发展制高点的重要领域。主要发达国家都十分重视新材料产业投入和发展。在我国新材料产业发展过程中,国家给予了大力支持,极大地促进了新材料产业发展。 未来新材料技术将向材料的结构功能复合化、功能材料智能化、材料与器件集成化、制备和使用过程绿色化发展。突破现代材料设计、评价、表征与先进制备加工技术,在纳米科学研究的基础上发展纳米材料与器件,开发超导材料、智能材料、能源材料等特种功能材料,开发超级结构材料、新一代光电信息材料等新材料。本报告将就其中的碳纳米管材料、功能薄膜材料、复合材料等前沿技术给予重点介绍 一、碳纳米管 1、技术综述 1991年,日本NEC 公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是碳纳米管(Carbon nanotube )。 碳纳米管又称巴基管(Carbon Nanotube ),是一种具有特殊结构(径向尺寸为2—20nm 量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料,主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。碳纳米管按石墨烯片层数可分为单壁碳纳米管(Single-walled nanotubes ,SWNTs )和多壁碳纳米管(Multi-walled nanotubes ,MWNTs )。多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相比,单壁管是由单层圆柱型石墨层构成,其直径大小的分布范围小,缺陷少,具有更高的均匀一致性。 由于碳纳米管具有独特的金属和半导体导电性、极高的机械强度、贮氢能力、吸附能力、较强的微波吸收能力,因而被认为是纳米材料中的“乌金”,如:其独特的结构是理想的一维模型材料;巨大的长径比使其有望用作坚韧的碳纤维,其强度为钢的100倍,重量则只有钢的1/6;同时它还有望用作为分子导线、纳米半导体材料、催化剂载体、分子吸收剂和近场发射材料等。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。步入21世纪,伴随碳纳米管产业化制备技术的成熟,在复合材料、电子、场发射组件、能源/资源、量测/仪器、生物医药及平台等七个重点领域广泛的应用,已引起各国的高度关注。

新材料及其应用

第二章物质世界的尺度、质量和密度 第四节新材料及其应用 首都师范大学附属中学贾素珍 一、教学背景分析 本节教材主要介绍记忆合金、纳米材料、“绿色”能源等新材料及其应用,将其安排在学习密度这个物理量之后。密度是描述物质特性的,本节从形状、抗菌性、防污性、韧性、强度等角度介绍新材料在某一方面或多个方面的优越性能,介绍新材料的发展对人类生活和社会发展的影响,促进学生初步形成合理利用资源、保护环境的意识。本节内容可以培养学生多角度认识物质世界的意识,培养学生热爱科学的情感。 课程标准对本节内容的要求是:通过收集信息,了解一些新材料的特点及其应用。了解新材料的发展给人类生活和社会发展带来的影响。有合理利用资源、保护环境的意识。能在个人力所能及的范围内对社会的可持续发展有所作为。 学生已经学习了熔点、密度等描述物质性质的一些物理量,知道认识材料要从材料的物理特性入手。随着社会的发展,媒体的迅速传播,初二年级学生的视野和知识储备都有很大的进步,他们的表达能力、搜集信息的能力、使用网络的能力,都比过去的学生有很大的进步。但是学生刚开始系统地学习物理,专业的物理知识还比较欠缺,没有学习力学、电学,相关的化学、生物等知识也比较缺乏,所以对于新材料的特点及其应用,学生只需了解即可。学生的求知欲和新奇感很强,本节内容可以很好地激发学生的学习兴趣。 综上所述,本节课在设计上要体现学生的自主性,在知识上有深度,同时力图通过科学猜想培养学生的创新意识。 在提高学生学习的自主性方面,可以在课前布置预习任务,课堂上让学生就相关内容发表自己的理解,提出自己感兴趣或不懂的地方。这样在学习每一种新材料时,都可以让学生形成互动,有的提问,有的回答,很好地调动学生的积极性。教师自己也要有相关的知识储备,针对学生的疑惑进行适当的讲解。 对于学生不好理解的难点,如纳米材料为什么具有这样的特性、记忆合金为什么可以“记忆”形状,教师可通过讲解引导学生认识,以满足学生对知识原理

材料学科前沿讲座总结

材料学科前沿讲座总结 生物医用高分子 一.引言 生物医用功能材料即医用仿生材料,又称为生物医用材料。这类材料是用于与生命系统接触并发生相互作用,能够对细胞、组织和器官进行诊断治疗、替换修复或诱导再生的天然或人工合成的特殊功能材料。随着化学工业的发展和医学科学的进步,生物医用功能材料的应用越来越广泛。从高分子医疗器械到具有人体功能的人工器官,从整形材料到现代医疗仪器设备,几乎涉及到医学的各个领域,都有使用医用高分子材料的例子。医用高分子材料所用的材料种类已由最初的几种,发展到现在的几十种,其制品种类已有上千种。 目前,生物医用功能材料应用很广泛,几乎涉及到医学的各个领域。其大致可分为机体外使用与机体内使用两大类。机体外用的材料主要是制备医疗用品,如输液袋、输液管、注射器等。由于这些高分子材料成本低、使用方便,现已大量使用。机体内用材料又可分为外科用和内科用两类。外科方面有人工器官、医用黏合剂、整形材料等。内科用的主要是高分子药物。所谓高分子药物,就是具有药效的低分子与高分子载体相结合的药物,它具有长效、稳定的特点。 二.发展历史 生物医用高分子材料的发展经历了三个阶段,第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅橡胶的出现,随后又发展了聚羟基乙酸酯缝合线以及四种聚酯心血管材料,从此进入了以分子工程研究为基础的发展时期。该阶段的特点是在分子水平上对合成高分子的组成、配方和工艺进行优化设计,有目的地开发所需要的高分子材料。

目前的研究焦点已经从寻找替代生物组织的合成材料转向研究一类具有主动诱导、激发人体组织器官再生修复的新材料,这标志着生物医用高分子材料的发展进入了第三个阶段。其特点是这种材料一般由活体组织和人工材料有机结合而成,在分子设计上以促进周围组织细胞生长为预想功能,其关键在于诱使配合基和组织细胞表面的特殊位点发生作用以提高组织细胞的分裂和生长速度。 三.基本性能要求 1. 力学性能稳定 在使用期限内,针对不同的用途,材料的尺寸稳定性、耐磨性、耐疲劳度、强度、模量等应适当。比如,用超高分子量聚乙烯材料做人工关节时,应该用模量高、耐疲劳强度好、耐磨性好的材料。 2. 化学性能稳定 作为生物材料,化学性能必须稳定,对人体的血液、体液等无影响,不形成血栓等不良影响。人体是一个相当复杂的环境,血液在正常环境下呈现微碱性,胃液呈酸性,且体液与血液中含有大量的钾、钠、镁离子,含有多种生物酶、蛋白质、人体的环境易引起聚合物的降解、交联及氧化反应;生物酶会引起聚合物的解聚;体液会引起高分子材料中的添加剂析出;血液中的脂类、类固醇以及脂肪等会引起聚合物的溶胀,使得材料的强度降低。例如聚氨酯中含有的酰胺基极易水解,在体内会降解而失去强度,经过嵌段改性后,化学稳定性提高。 3. 与人体的组织相容性好 医用材料必须与人体的组织相容性好,不会引起炎症或其他排异反应材料,所引起的宿主反应应该能够控制在一定可以接受的范围之内。一些含有对人体有毒有害的基团是不能用作生物医用功能材料的,如有些添加剂对人体有害或有些残留单体对人体有不良影响等,这都应该引起极度的警惕。有些添加剂会随时间的变化,从材料内部逐渐迁移到表面与体液和组织发生作用,引起各种急性和慢性的反应。

2017年建材领域新材料产业发展前瞻

2017年建材领域新材料产业发展前瞻 可预见的跨越式发展 增强关键材料保障能力,发展和推广矿物功能材料,是《建材工业发展规划(2016-2020年)》中的重要内容,亦是落实《国务院办公厅关于促进建材工业稳增长调结构增效益的指导意见》(国办发[2016]34号)文所部署的有关转型升级任务的具体举措。 资本市场显示,年初至今,新材料市场板块活跃,多个上市企业表现强势,为进军新材料行业的企业间收购行为增多。不少企业和投资机构表示,看好新材料产业的发展前景,2017年各路资本有望大量涌入新材料产业,资本市场将助力新材料企业持续快速健康成长,实现跨越式发展。 “十三五”期间,新材料产业发展,将推动建材工业转型升级,对解决产能过剩、提升生产率大有裨益。 产业化曙光乍现 对建材工业而言,新材料、绿色建材是建材工业推进供给侧结构性改革、促进稳增长调结构增效益的重要抓手。 何为材料?两院院士师昌绪曾指出,材料是用来制造有用的构件、器件、装备的物质。材料与物质的区别在于材料强调应用――有用的物质才叫材料。

而新材料,指的是新出现的或正在发展中的具有传统材料所不具备的优异性能和特殊功能的材料;或指在传统材料基础上通过新技术(工艺、装备)处理所获得的性能明显提高或产生了新功能的材料。 新材料是有序?l展的战略性先导产业,是我国七大战略性新兴产业和“中国制造2025”重点发展的十大领域之一,是重要的基础性、先导性产业。 在建材领域,新材料关乎建材制造的品质,也决定着建材工业发展的后劲。长期以来,传统材料对建材工业做出了很大贡献。其量大面广,价格低廉,性价比高,至今仍显现出旺盛的生命力,但依然存在不少问题。 要转型发展,必须重视新材料的研发、产业化与应用。作为科学研究与工程技术相结合的产物,材料从成分设计到形成产业,是一个漫长的过程,需要相关人员团结合作,协同创新。如何把科技研究成果转换成材料进而形成产业,是建材业必须加强的环节。 新材料技术有望出现产业化曙光,更多传统企业将把目光转向新材料领域,探寻新的发展机遇。 市场培育拉开序幕 “十三五”期间,为了体现分类施策的概念,《指南》提出了三大重点发展方向,分别是先进基础材料、关键战略材料、前沿新材料。

材料学科前沿讲座论文

中国矿业大学 材料学科前沿讲座论文 班级:材料10-7 姓名:XXX 学号:XXX

学科前沿讲座——纳米材料在来矿大之前对材料没有多少认识,只知道他与物理化学联系较为紧密,是新世纪的主导学科!所以就选择了材料!在听教授们上完那个学科前沿讲座之后,我对自己的专业才有了一个初步的了解,尤其对纳米材料感触极深! 21世纪是高新技术的世纪,信息、生物和新材料代表了高新技术发展的方向。在信息产业如火如荼的今天,新材料领域有一项技术引起了世界各国政府和科技界的高度关注,这就是纳米科技。 处于新材料科技前沿的纳米科技,它的应用领域非常广泛。应用于制造业,现在已经造出只有米粒大小且能开动的汽车、只有蜜蜂大小的直升机。应用于生物医学,可以制出只有几毫米的人造手,帮助医生实施虚拟的现实手术。 有人预言,处于2l世纪高新技术前沿和核心地位的纳米科技所引起的世界性技术革命和产业革命对社会经济、政治、国防等所产生的冲击,将比以往的技术革命时代带来的影响更为巨大。纳米科技将会掀起新一轮的技术浪潮,领导下一场工业革命。人类将进入一个新的时代-----纳米科技时代。 1.纳米科技的基本概念和内涵 1959年,著名的理论物理学家、诺贝尔奖金获得者费曼曾预言:“毫无疑问,当我们得以对细微尺度的事物加以操纵的话。将大大扩充我们可能获得物性的范围。”在这里,通常界定为1—100nm的范围内纳米体系是细微尺度的事物的主角。 纳米科学技术是20世纪80年代末期刚刚诞生并正在崛起的新科技,他的基本涵义是在纳米尺寸(10-9—10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子创制新的物质。 早在1959年,美国著名的物理学家,诺贝尔奖获得者费曼就设想:“如果有朝一日人们能把百科全书存储在一个针尖大小的空间内并能移动原子,那么这将给科学带来什么!”这正是对纳米科技的预言,也就是人们常说的小尺寸大世界.纳米科技是研究由尺寸在1—100nm之间的物质组成的体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术.纳米科技主要包括: (1)纳米体系物理学;(2)纳米化学; (3)纳米材料学;(4)纳米生物学; (5)纳米电子学;(6)纳米加工学; (7)纳米力学。 这7个部分是相对独立的。隧道显微镜在纳米科技中占有重要的地位,它贯穿到7个分支领域中,以扫描隧道显微镜为分析和加工手段所做工作占有一半以上。 纳米科学所研究的领域是人类过去从未涉及的非宏观、非微观的中间领域,从而开辟人类认识世界的新层次,也使人们改造自然的能力直接延伸到分子、原子水平,这标志着人类的科学技术进入了一个新时代,即纳米科技时代。以纳米新科技为中心的新科技革命必待成为21世纪的主导。 纳米新科技诞生才几十年,就在几个重要的方面有了如下的重要进展: (1)美国商用机器公司两名科学家利用扫描隧道电子显微镜直接操作原子,成功地在Ni(镍)基板上,按自己的意志安排原子组合成“IBM”字样,日本科学家已成功地将硅原子堆成一个“金字塔”,首次实现了原子三维空间立体搬迁.1991年IBM的科学家还制造了超快的氙原子开关.专家们预计,这一突破性的纳米新科技研究工作将可能使美国国会图书馆的全部藏书存储在一个直径仅为0.3cm的硅片上.据英国《科学与共同政策》杂志报道,科学家们最近制造出一种尺寸只有4nm的复杂分子,具有“开”和“关”的特性,可由激

新材料领域未来发展方向

新材料领域未来发展方向 新材料是指新近发展或正在研发的、比传统材料性能更加优异的一类材料,是高技术产业发展的基础和先导,其研究水平和产业化规模已成为衡量一个国家和地区经济发展、科技进步和国防实力的重要标志,被视为21世纪最具发展潜力的领域之一,也是国家确立的优先培育发展的七大战略性新兴产业之一。新材料产业应用范围广、产业关联度高、经济带动力强、发展潜力大,是促进经济快速增长和提升企业地区竞争力的源动力。 新材料作为高新技术的基础和先导,应用范围极其广泛,它同信息技术、生物技术一起成为二十一世纪最重要和最具发展潜力的领域。同传统材料一样,新材料可以从结构组成、功能和应用领域等多种不同角度对其进行分类,不同的分类之间相互交叉和嵌套,目前,一般按应用领域和当今的研究热点把新材料分为以下的主要领域:高性能结构材料、新型功能材料、新能源材料、电子信息材料、纳米材料、先进复合材料、生态环境材料、生物医用材料、智能材料、化工新材料、新型建筑材料等。 1、高性能结构材料 结构材料指以力学性能为主的工程材料,它是国民经济中应用最为广泛的材料,从日用品、建筑到汽车、飞机、卫星和火箭等,均以某种形式的结构框架获得其外形、大小和强度。钢铁、有色金属等传统材料都属于此类。高性能结构材料一般指具有更高的强度、硬度、塑性、韧性等力学性能,并适应特殊环境要求的结构材料。包括新型金属材料、高 性能结构陶瓷材料和高分子材料等。当前的研究热点包括:高温合金、新型铝合金和镁合金、高温结构陶瓷材料和高分子合金等。 2、新型功能材料功能材料是指表现出力学性能以外的电、磁、光、生物、化学等特殊性质的材料。除前面介绍过的信息、能源、纳米、生物医用等材料外,新型功能材料主要还包括高温超导材料、磁性材料、金刚石薄膜、功能高分子材料等。当前的研究热点包括:纳米功能材料、纳米晶稀土永磁和稀土储氢合金材料、大块非晶材料、高温超导材料、 磁性形状记忆合金材料、磁性高分子 材料、金刚石薄膜的制备技术等。 多功能自行车

新材料产业发展现状及趋势

新材料产业发展现状及趋势 “十五”期间,在我国新材料产业发展过程中,国家给予了大力支持,初步形成了比较完整的新材料产业体系。“十五”期间发布的《国家计委关于组织实施新材料高技术产业化专项公告》,通过100多个产业化专项的实施.有力地推动了我国具有自主知识产权的新材料产业的发展,在电子信息材料、先进金属材料、电池材料、磁性材料、新型高分子材料、商性能陶瓷材料和复合材料等方面形成了一批高技术新材料核心产业。“十一五”期间又进一步加大了支持力度。按我国目前经济发展趋势预计,新材料需求增长速度将高于经济增长速度,按10%的增长速度计算,到2010年我国新材料市场可达6500亿元。新材料产业也已成为衡量一个国家经济社会发展、科技进步和国防实力的重要标志。 我国新材料产业的发展现状 当前,我国的新材料产业在国际产业布局中正处于由低级向高级发展的阶段,随着对外开放和与全球业界的广泛交流合作,我国新材料产业正呈现快速健康发展的良好状态,在一些重点、关键新材料的制备技术、工艺技术、新产品开发及节能、环保和资源综合利用等方面取得了明显成效,促进了一批新材料产业的形成与发展。 1.新一代钢铁结构材料 迄今为止,钢铁结构材料依然是国民经济各支柱产业和国防工业的重要支撑材料和应用范围最宽、使用量最大的材料,其生产和应用过程对全球资源、能源和人类生存环境有着不可忽视的影响,以去年为例: 2007年生产钢材46719.3万吨,比去年增长16.2%。同时,高技术含量、高附加值品种钢材产量大幅度增长。全年生产冷轧薄宽钢带1740.27万吨,同比增长31.8%;冷轧薄板1563.83万吨,同比增长25.2%;镀层板(带)1754.58万吨,同比增长37.9%;涂层板(带)317.21万吨,同比增长36.1%;电工钢板(带)415.57万吨。同比增长23.5%。以上5个品种钢材合计生产5791.487吨,比上年增长31.28%,高于钢材生产总量增幅8.59个百分点。全年生产不锈钢720.6万吨,比上年增加190.6万吨,增长35.96%,居世界第一位。其中,世界一流工艺装备的生产量达到70%,国内市场占有率达到75%,实现了重大的突破。全行业已基本形成以企业为主体、市场为导向、产学研相结合的技术创新和新产品研发体系,形成了科研基础设施建设加强、科技投入增加的良好格局。全行业在高效采选技术、钢铁冶炼技术、轧钢新技术、高端产品开发、大型冶金成套装备技术集成、节能节水和废弃物综合利用新技术等方面,都取得了新的成果和进步。 2007年宝钢试制成功X120管线钢,实现电镀锌机组全面无铬化生产,年产150万吨生铁的COREX3000熔融还原工艺装置投产;鞍钢继续完善冷连轧自主集成成套工艺技术,开发成功一批具有自主知识产权的核心技术,并在相关企业投入使用;武钢新一代取向硅钢、高效电机硅钢的研发和装备技术集成,高强度桥梁钢生产技术提高;太钢建成世界一流的现代化不锈钢生产基地;攀钢转炉铁水提钒和半钢炼钢连续工业性试生产成品钒渣等均取得了工艺技术的新突破。 2007年在研发和扩大生产市场需求的短缺产品方面,船用高强度宽厚板、高强度海洋结构用钢板、高档汽车用板和汽车零部件用钢、工程机械和高层建筑用高强度厚钢板、X80以上高等级管线钢板、百米在线热处理钢轨和时速350公里高速铁路钢轨、高速动车组用钢、高端压

新材料新工艺简介

新材料、新工艺在汽车上的应用 摘要:本文对目前主流的汽车新材料、新工艺应用情况进行了简要介绍,通过对具体车型零部件应用情况的展示,使读者能够对新材料、新工艺的应用有初步的了解。 关键词:新材料、新工艺 随着人们的环保意识逐步增强,以及国家汽车正碰、侧碰、排放等强制法规的相继推出,节能、环保和安全已成为汽车生产的必备要素,汽车轻量化与高强度是解决该问题的有效途径,而新材料与新工艺在汽车上的应用正是解决汽车轻量化与高强度的最佳方法。本文将分为新材料和新工艺这两部分进行简要介绍。第一部分:新材料在汽车上的应用 一、新材料——超高强钢的应用 汽车用钢板以屈服强度为标准大致分为普钢(软钢)、高强钢和超高强度钢三类(见图1),图中屈服强度为横坐标、板材伸长率为纵坐标,以这两项指标来综合评价汽车板材的性能。其中,屈服强度是指钢板抵抗永久变形的能力,屈服强度越大,钢板在受力时越不容易产生永久变形,使用在汽车上会增加其整体的强度。而伸长率是描述钢板成形性能的重要参数,伸长率越大钢板的可成形性能越好,也越容易加工出形状复杂的零部件。 在超高强度钢出现以前,屈服强度和伸长率这两项性能指标是相对立的,即屈服强度高必然导致伸长率下降,也就是板材成形性下降。导致某些形状较复杂的零件加工不出。而超高强钢的出现恰恰解决了这两个看似对立的性能。超高强度钢板不同于普钢和高强度钢板的最大特点就是兼备了良好的成形性和极高的强度,即在屈服强度升高的情况下,相对于同等强度的高强钢其伸长率还有较大幅度的提升。

图一 汽车用钢的强度分类 超高强钢能够满足减轻汽车质量和提高碰撞安全性能的双重需要,超高强度钢能够大幅增加零件的抗变形能力,提高能量吸收能力,最终提升汽车的安全性能。图二中显示了高强度钢(HSS )和超高强钢(UHSS )在白车身(BIW )上应用比例对整车碰撞性能的影响,其中高强度钢应用越多的车型其碰撞安全性越高。 图2 高强度钢(HSS)应用的多少直接决定了汽车的安全性能 此外,超高强度钢应用于汽车零件上,可以在保持甚至提升零部件原有性能的前提下,通过减薄零件厚度来减轻车身质量实现汽车的轻量化。当钢板厚度分

相关文档
相关文档 最新文档