文档库 最新最全的文档下载
当前位置:文档库 › SiO_2气凝胶干燥技术现状

SiO_2气凝胶干燥技术现状

SiO_2气凝胶干燥技术现状
SiO_2气凝胶干燥技术现状

天然气汽车的发展现状

天然气汽车的发展现状 Prepared on 22 November 2020

海量免费资料尽在此 数据库浏览中国经济新闻库中国资讯行提供 正文显示:在线词典 【行业分类】汽车/燃料 【地区分类】中国 【时间分类】 【文献出处】国家机械工业局机经网 【标题】中国天然气汽车的发展现状(1548字) 【正文】 在我国,环境问题日益受到中央及各地方政府的重视。1996年国务院确定国家科委牵头,成立了“全国天然气汽车协调领导小组”;各大城市纷纷成立了“推广双燃料汽车领导小组”。 据不完全据计,截至1997年底,我国已拥有CNG汽车近5000辆(四川4000辆,新疆156辆,大庆油田182辆,中原油田110辆等),CNG加气站近40座(四川31座,新疆6座);LPG 汽车1300多辆(新疆62辆,哈尔滨300辆,北京100辆,上海110辆,深圳50辆,广州43辆,香港30辆,西安75辆);LPG加气站近20座(新疆6座,哈尔滨4座,北京和上海各2座)。近两年,随着我国都市环境污染的加剧,燃气汽车技术的推广步伐也在加快。 四川省1988年开始引进技术,目前天然气管网覆盖全省一半,拥有天然气汽车4000辆,加气站30余座。其起始阶段以三个为主:“城市为主”、“客车为主”、"改车为主”。目标是:建立一个国家级天然气汽车检测中心,近期改装车1万辆,2000年建加气站100座,生产万辆,改装万辆天然气汽车;2001年以后每年改装1万辆;2005年建200座气站,生产和改装天然气汽车能力分别达35万辆和2万辆。 重庆在2010年各类车型使用天然气普及率达80%以上,推广天然气汽车9万辆,建CNG 气站450座。 哈尔滨1995年起,实施推广LPG汽车。目前已有LPG汽车600辆,其中300辆为出租车。2000年计划建LPG气站60座,CNG气站10座,新制、改制LPG汽车2万辆,CNG汽车500辆。 北京从1994年起开始改装车并建气站。目前正在营运的天然气汽车有400辆。到1999年底建气站50-60座,改装或生产燃气汽车1万辆;到2000年以前,全市4000辆公共汽车基本全部改装完毕。 西安从1996年起,已正式和航天工业总公司合作,共同研究开发天然气汽车项目。计划目标是:到2000年,改装汽车1000辆,建成或改建气站10座。到2010年改装车达到3万辆(包括全市内出租车、公交客车、政府机关用车和部分企事业单位用车);建成加气站150座,形成

排水采气工艺技术现状及新进展样本

排水采气工艺技术现状及新进展 防水治水方法综述 当前国内外治水措施归纳起来有三大类: 控气排水、水井排水和堵水。控气排水是经过控制气井产量, 即抬高井底回压来减小水侵压差入而减缓了水侵。其实质是控气控水, 现场有时也称为”控水采气”。排水采气则是利用水井主动采水来消耗水体能量, 经过减小气和水的压差控制水侵, 从而保护气井稳定生产。堵水则是经过注水泥桥寒或高分于堵水剂堵塞水侵通道, 以达到控制水侵的目的。 三种措施虽方式不同, 但基本原理都是尽可能降低或消除水侵压差、释放水体能量域增加水相流动阻力。控气排水主要是以气井为实施对象, 着眼点是气; 水井排水则以水为实施对象, 着眼点是水。堵水以体现气水压差的介质条件为实施对象, 着眼点是渗滤通道。控气排水是一种现场常见的方法。在出水初期水侵原因不明时常常采用股资省.便于操作.但不利于提高气藏采速和开采规模; 水井排水的实施对象巳转至水, 工艺要求相对较高俱有更积极、更主动的意义; 堵水常常受技术条件限制, 当前实际应用很少。不论哪种措施, 其目的都是为了提高采收率, 都应针对不同的水侵机理、方式, 依据经济效盖来选择和确定。 一、现状综述 中国的气藏大多属于封闭性的弹性水驱气藏, 在开发中都不同程度地产地层水。由于地层水的干扰, 使气田在采出程度还不高的情况下就提前进入递减阶段, 甚至造成气井水淹停产, 影响气田最终采收率, 因此如何提高有水气藏的采收率, 是国内外长期以来所致力研究和解决的重要课题之一。中国经过十几年的实践和发展, 以四川气田为代表, 已形成了一定生产能力、比较成熟的下列工艺技术。 当前排水采气工艺技术评价

气凝胶(应用)

世界上第一个气凝胶产品是1931年制备出的。当时,美国加州太平洋大学(College?of?the?Pacific)的Steven.S.?Kistler提出要证明一种具有相同尺寸的连续网络结构的固体“凝胶”,其形状与湿凝胶一致。证明这种设想的简单方法,是从湿凝胶中驱除液体而不破坏固体形状。如按照通常的技术路线,很难做到这一点。如果只是简单地让湿凝胶干燥,凝胶将会收缩,常常是原来的形状破坏,破裂成小碎片。也就是说,这种收缩经常是伴随着凝胶的严重破裂。Kistler推测:凝胶的固体构成是多微孔的,液体蒸发时的液一气界面存在较大的表面张力,该表面张力使孔道坍塌。此后,Kistler发现了气凝胶制备的关键技术(Kistler,??1932)。?????Kistler研究的第一个凝胶是通过硅酸钠的酸性溶液浓缩制备的SiOZ凝胶。然而,他试图通过把凝胶中的水转变成超临界流体的方式来制备气凝胶却没有成功。Kistler再尝试首先用水充分洗涤二氧化硅凝胶(从凝胶中去掉盐),然后用乙醇交换水,通过把乙醇变成超临界流体并使它跑掉,第一个真正的气凝胶形成了。Kistler的气凝胶与现在制备的二氧化硅气凝胶类似,是具有相当大的理论研究价值的透明、低密度、多孔材料。在之后的几年时间里,Kistler详尽地表征了他的二氧化硅气凝胶的特性,并制备了许多有研究价值的其它物质的气凝胶材料,包括:A1203?,?W03?,?Fe203?,?Sn02、酒石酸镍、纤维素、纤维素硝酸盐、?明胶、琼脂、蛋白、橡胶等气凝胶。? 后来,Kistler离开了太平洋大学,到Monsanto公司供职。Monsanto公司很快就开始生产商品化的气凝胶产品,Monsanto公司的产品是粒状的Si02材料,虽然其生产工艺无人知晓,但人们推断应当是Kistler的方法。Monsanto公司的气凝胶当时是被用来作化妆品及牙膏中的添加剂或触变剂。在以后的近30年中,有关气凝胶的研究几乎没有什么进展。直到20世纪60年代,随着价格便宜的“烟雾状的(fumed)”Si02的研制开发,气凝胶的市场开始萎缩,Monsant。公司停止了气凝胶的生产。? 从此,气凝胶在很大程度上被人淡忘了。直到20世纪70年代后期,法国政府向Claud?Bernard大学的Teichner教授寻求一种能储存氧气及火箭燃料的多孔材料。之后所发生的事情,在从事气凝胶研究的人员中有一种传说。Teichner让他的一个研究生来制备气凝胶并研究其应用,然而,使用Kistler的方法,包括两个耗时、费力的溶剂萃取步骤,他们的第一个气凝胶花了数周时间才制备出来。然后,Teichner告诉这个学生,要完成他的学位论文,将需要大量的气凝胶样品;该学生意识到,如按照Kistler的方法制备,这要花许多年才能完成,他精神崩溃地离开了Teichner的实验室;经过一段短暂地休息、思考,他又回到了实验室,有一种强烈的动机,激发他去寻找一种更好的Si02气凝胶的合成工艺。经过不懈地努力探索,该学生成功地应用溶胶一凝胶化学法制备出Si02气凝胶,这使气凝胶科学研究前进了一大步。这种方法用正硅酸甲酷(TMOS)代替Kistler所使用的硅酸钠,在甲醇溶液中通过TMOS水解一步产生凝胶(称为“醇凝胶”),这消除了Kistler方法中的两个缺点,即醇水替换步骤及凝胶中存在无机盐,在超临界甲醇条件下干燥这些醇凝胶,就制备出高质量的Si02气凝胶。后来,Teichner的研究组及其他人使这种方法扩展,制备了多种金属氧化物气凝胶产品。?

6常压干燥制备SiO2气凝胶的研究

常压干燥制备SiO2气凝胶的研究 吕鹏鹏赵海雷刘欣 (北京科技大学材料学院,北京100083) 摘要为解决超临界干燥法制备气凝胶的缺点,以水玻璃为硅源,经常压干燥制备了SiO2气凝胶。研究老化工艺条件和置换溶剂种类对SiO2气凝胶结构和性能的影响,并通过表面改性制备出具有良好疏水性的SiO2气凝胶。制得的气凝胶密度可低达0.123g/cm3,孔隙率为94.79%,比表面积为360.50 m2/g。 关键字SiO2气凝胶常压干燥老化溶剂置换表面改性 气凝胶是一种由原子团簇交联形成三维纳米多孔骨架、并在孔隙中充满气态分散介质的一种高分散固态材料[1]。由于其独特的三维纳米多孔结构,气凝胶具有低密度、高孔隙率、高比表面积、低热导率、低光折射率和低声传播速度[2-6]等性能,因此在光学、热学、电学、声学和力学等领域具有十分巨大的应用潜力。 气凝胶的制备过程分为溶胶-凝胶过程和湿凝胶的干燥过程。硅源前驱体通过水解形成含硅溶胶,调节pH使溶胶胶粒发生缩聚形成凝胶,凝胶骨架间充满了液态溶剂,通过超临界干燥法将骨架间隙的溶剂抽出,同时保持纳米多孔网络骨架不变,形成密度低、气孔率高的气凝胶材料。 但是运用超临界干燥法制备气凝胶的条件很苛刻,制备周期耗时长,对设备要求高,能耗大,操作危险性高,制备工艺复杂,使得气凝胶的生产成本非常高,这些严重制约了气凝胶的工业化大规模生产。 因此常压下干燥制备气凝胶引起了大家广泛的关注,采用常压干燥新工艺制备SiO2气凝胶已成为气凝胶趋向实际应用的关键。同时,一般SiO2多是采用有机硅为硅源(正硅酸乙酯或正硅酸甲酯),这样的硅源价格昂贵,成本高,也限制了SiO2的广泛应用。本文利用廉价的水玻璃为硅源,通过常压干燥制备了SiO2气凝胶粉体。研究了老化工艺条件、置换溶剂种类以及表面改性对材料结构和性能的影响。 1 常压干燥法 1.1常压干燥机理 通过溶胶-凝胶法制得的湿凝胶是由三维多孔的纳米SiO2骨架和充填于其中的溶剂组成的半固态物质,在湿凝胶的干燥过程中,由于微小孔隙中弯液面会产生一定的毛细管压力作用,使得当液体从孔隙蒸发时凝胶骨架会发生收缩;当应力超过网络的强度时,凝胶就会碎裂。因此,在干燥过程中,只有当湿凝胶孔隙液体蒸发时凝胶结构不发生塌陷,且

塑料制品现状及未来发展

本文摘自再生资源回收-变宝网(https://www.wendangku.net/doc/9b7446975.html,) 塑料制品现状及未来发展 一、我国塑料制品行业市场规模情况 经过数十年的快速发展,我国塑料制品行业发生了巨大的变化。在“十二五”期间,我国塑料制品行业在产业结构调整、转型和升级中不断发展。近年来,我国塑料制品行业保持快速发展的态势,产销量都位居全球首位,其中塑料制品产量占世界总产量的比重约为20%。根据统计,2017年,我国塑料加工业规模以上企业由2011年的12963家增加15350家,市场竞争加剧的同时,行业集中度得到进一步提升;同期,规模以上企业主营业务收入从15584亿元增长至22800亿元以上,年复合增长率为7.93%。 2018年1-8月,塑料制品生产企业累计主营业务收入12426.3亿元,同比增长6.5%;实现利润总额624.9亿元,同比增长0.8%。 二、我国塑料制品行业进出口情况 近年来,受益于我国“稳外贸”政策的提振作用,国内塑料制品出口保持良好的增长态势。根据统计数据显示,2011年-2017年,中国塑料制品出口量从795万吨增长至1173万吨;同期,塑

料制品出口额从234.68亿美元增长至398.1亿美元。总体看来,在政策利好的作用下,我国塑料制品行业出口将呈稳定增长的趋势。 2018年3-6月中国塑料制品出口量呈上升趋势,2018年6月中国塑料制品出口量为118.5万吨,同比增长11.8%。2018年7月中国塑料制品出口量下降,2018年8-9月中国塑料制品出口量回升;2018年9月中国塑料制品出口量为118.3万吨,同比增长23.2%。 2018年1-3月中国塑料制品出口金额明显减少,2018年3月中国塑料制品出口金额为25.30百万美元,同比下降22.5%。2018年4-6月中国塑料制品出口金额呈增长趋势,2018年6月中国塑料制品出口金额为39.67百万美元,同比增长14.3%。2018年7-9月中国塑料制品出口金额回升,2018年9月中国塑料制品出口金额为38.89亿美元,同比增长18.5%。 三、我国塑料制品行业地区分布情况 我国塑料制品行业的区域集中度较高,并逐步形成了以华东地区、华中地区以及华南地区为核心产区,其他区域快速发展的格局。我国塑料制品产量前六个省市(浙江、广东、河南、湖北、江苏、四川)的市场占比超过全国市场的一半。其中,浙江省塑料制品产量为1,072.97万吨,占全国塑料制品市场产量的13.90%,位居全国第一。未来,随着汽车、消费电子、医疗等行

我国天然气利用现状与发展趋势(DOC)

我国天然气利用现状和发展趋势 摘要:随着国产天然气的不断上产、大型基础设施的日益完善,特别是西气东输一线、二线等大型长输管道的建设,天然气消费量快速增长,我国的天然气利用步入了新的发展时期。预计未来随着供气气源的多元化,供气管网的网络化,天然气的覆盖面积和利用领域将更加宽广,将在节能减排中发挥更大作用。 关键词:天然气利用市场 1总论 天然气作为一种优质、高效、清洁的化石燃料,已经被广泛地应用于国民生活和生产的各个领域,有专家认为21世纪将是天然气的时代。目前天然气在世界能源消费结构中所占比重约为24%。根据《bp世界能源统计2009》,2008年全世界天然气产量为30656亿立方米,消费量为30187亿立方米。预计,全球天然气产业在未来仍将持续发展。 与国际平均水平相比,我国的天然气普及率还比较低,我国天然气工业基础相对比较薄弱,天然气在国内能源消费结构中的比例长期在3%左右徘徊。有专家认为,我国天然气市场发育过程和国外其它发达国家的天然气市场发展过程一样,也将经过启动期、发展期和成熟期三个阶段。2004年月12月30日西气东输管道工程正式商业运作,标志着我国天然气市场发育阶段由启动期向发展期迈进,预计这一阶段将持续到2030年。在此期间,我国的天然气管网、储气库等基础设施建设将不断加快,逐步形成全国天然气统一骨干管网;国内各大气田的天然气产能建设和产量将迅速增长,进口天然气渠道将不断拓宽,非常规天然气也将得到快速发展,从而形成多元化的供气格局。在此基础上,我国的天然气消费量将保持快速增长势头,在我国能源结构中所占比例持续提高。 2我国天然气利用现状 2.1天然气消费量快速增长 近年来,我国经济的快速增长促进了各行业对各类能源的巨大需求。1999

采气工艺技术.

第九章采气工艺技术 天然气是指在不同地质条件下生成、运移,并以一定压力储集在地下岩层中的气体。有的与原油伴生称为伴生气,有的单独存在称为非伴生气。非伴生的天然气藏大约占60%。天然气的主要成分是气态烃类,还含有少量非烃类气体。通式C n H2n+2是目前已发现的大部分天然气的主要成分,其中以甲烷(CH4)为主。在四川已发现的气藏中,甲烷含量均在80%以上。在常压下,20℃时,甲烷、乙烷、丙烷、丁烷为气态,戊烷以上为液态,直至固态。在天然气中,庚烷(C7H16)以上的烷烃含量极少。除烃类外,天然气中还含有非烃类气体,如二氧化碳、氮气、硫化氢、氦气和氩气。一般非烃类气体含量很低,但也有的天然气非烃类气体含量很高,在我国已发现一些以二氧化碳为主的天然气藏。 天然气在世界上仅次于石油和煤,为第三大能源。进入90年代以来,随着剩余石油资源日趋减少和由于使用石油能源造成的环境污染问题,世界各国越来越重视开发、利用天然气资源,从而使得天然气在能源结构中的地位不断上升。 天然气的主要用途是工业和民用燃料,再就是化工原料。随着科学技术的发展,天然气产量中用作化工原料的比例正在增大 我国已发现的天然气藏的地质特点和储层特性给天然气开发、开采带来很大困难。目前已探明的以中小型气田居多(南海西部、塔里木、陕甘宁的一些大气田的发现使这一情况正在改变),这一特点决定了我国天然气开发的分散性和复杂性。我国已探明气田的埋藏深度大多在3000~6000m之间。气层偏老,埋藏又深,四川二叠系以下地层天然气探明储量占总储量的70.04%,深层气藏开发占主导地位,其开发、开采的难度必然增大。我国天然气储层大多属于中、低渗透储层,而且低渗、特低渗储层占了相当的比例,这些储层非均质明显,孔隙度低、连通性差,水敏、酸敏性突出,水锁贾敏效应严重,自然产能低,要达到经济而有效地开发,必须进行气层改造。水驱气田已投入开发的气田中占相当的比重,这一问题四川气田尤为突出,据已投入的73个气田的不完全统计,水驱气田占总数的85%,出水井数在44%以上。 第一节概述 一、天然气开发发展前景 多年来,有三个数字长期压在我国天然气工作者的心头,这就是:中国天然气在能源构成、能源消费中不到2%;中国油气当量产量比为10:1;中国天然气勘探程度不到7%。现在天然气的快速发展,已引起了人们高度的重视。从改善我国能源结构、减轻大气污染,以及开发大西北的长远利益出发,天然气将是各集团公司新的经济增长点,“西气东输”将列为中国石油天然气集团公司的重点发展战略,这是极为必要的,也是可行的。因为: 1、天然气以改善能源结构,是国内外能源发展的大趋势。从20世纪70年代初到90年代初的20年间,全世界天然气储量、产量快速增长,天然气储量在1991年已超过原油,天然气产量增幅达64%,大大超过原油8%的增幅。据世界权威机构预测,到2015年,世界天然气在总能源构成中将达到29%~30%,超过煤炭和石油,成为世界第一大能源。 目前我国一次能源中煤炭石75.3%,原油17.5%,水电5.3%,天然气仅为1.9%。由于我国能源长期依赖煤炭,加上城市机动车辆急速增加,造成相当一部分大中城市大气环境质量恶化。为彻底改善这种状况,改善能源结构,提高居民生活环境质量,大力发展洁净的天然气能源,将成为本世纪的一个极其重要的战略任务。据初步调查,仅长江三角洲地区、环渤海湾地区、中南地区、中西部地区和川渝等地,到2010年天然气需求总量将达6553108m2,全国则高达10003108m3。广阔的市场交带来良好的发展机遇。 2、天然气资源探明程度低,储量增长潜力大。预计在今后一个时期内,天然气储量将处于

排水采气工艺技术

排水采气工艺技术

故在液体中的气泡总是很快上升至液面,使液体以泡沫的方式被带出,达到排出井内积液的目的。 该工艺适用于弱喷、间喷的产水气井,井底温度≤120℃,抗凝析油的泡排剂要求凝析油量在总液量中的比例不超过30%,其最大排水能力<100 m3/d,最大井深<3500m。泡排的投入采出比在1:30以上,经济效益十分显著。 3 柱塞气举排水采气技术 柱塞气举是一种用于气井见水初期的排水采气工艺。它是将柱塞作为气、液之间的机械截面,依靠气井原有的气体压力,以一种循环的方式使柱塞在油管内上、下移动,从而减少液体的回落,消除了气体穿透液体段塞的可能,提高了间歇气举举升效率。柱塞的具体工作过程是:关井后柱塞在自身重力的作用下沉没到安装在生产管柱内的弹簧承接器顶部,关井期间柱塞下方的能量得以恢复,即油气聚集;开井后,在柱塞上下两段压差作用下,柱塞和其上方的液体被一同向上举升,液体举出井口后,柱塞下方的天然气得以释放,完成一个举升过程;柱塞到达井口或延时结束后,井口自动关闭,柱塞重新回落到弹簧承接器顶部,再重复上述步骤。如果井筒内结蜡、结晶盐或垢物,则在柱塞上下往复运行过程中将会得到及时清除。 该工艺设备简单,全套设备中只有一个运动件——柱塞,柱塞作为设备中唯一的易损件,可在井口自动捕捉或极易手工捕捉,容易从一口井起出转向另一口井,不需立井架,检查、维修或更换都很方便。另外,井下所有设备可用钢丝绳起出,不需起油管,作业比较简单,运行费用低。 该工艺适用于弱喷或间喷的小产水量气井,最大排水能力<50m3/d,气液比>700~1000m3/ m3,柱塞可下入深度(卡定器位置)<3000m,一般应用于深度2500m左右,对斜井或弯曲井受限。 柱塞在运行的同时还可消除蜡、水化物及砂等的沉积堵塞问题,而且柱塞每循环举升液量可在很大的范围内进行调整,从而达到了稳定产量和提高举升效率的目的。 4 气举排水采气技术 气举排水采气技术是通过气举阀,从地面将高压天然气注入停喷的井中,利用气体的能量举升井筒中的液体,使井恢复生产能力。气举可分为连续气举和

2017年气凝胶行业发展前景展望报告

2017年气凝胶行业发展前景展望报告 (此文档为word格式,可任意修改编辑!) 201年8月

正文目录 一、什么是气凝胶? (4) 二、气凝胶的分类 (5) 三、气凝胶的制备 (6) (一) 气凝胶的制备过程 (7) (二) 气凝胶的制备技术 (7) (三) 气凝胶改性 (12) 四、气凝胶的产品形式及应用 (12) (一)气凝胶的产品形式 (12) (二) 气凝胶的应用领域 (14) (三) 气凝胶的应用现状 (17) 五、气凝胶的应用市场 (17) (一)气凝胶全球市场分析 (17) (二) 气凝胶国内市场分析 (18) 六、全球主要气凝胶生产厂商 (21) (一)国外主要气凝胶企业 (21) (二)国内主要气凝胶企业 (23)

图目录 图1:气凝胶 (5) 图2:按成分分类的气凝胶 (6) 图3:气凝胶的制备过程 (7) 图4:无机气凝胶溶胶-凝胶技术 (8) 图5:RF气凝胶的制备过程 (9) 图6:CRF气凝胶制备 (10) 图7:SiO2气凝胶的产品形式 (13) 图8:与传统保温材料导热系数对比 (15) 图9:气凝胶全球市场规模 (18) 图10:全球绝热材料和气凝胶市场规模对比 (18) 图11:2014年和2015年国内气凝胶产量情况 (19) 图12:国内气凝胶市场规模预测 (20) 图13:2019年国内气凝胶应用占比预测 (21) 表目录 表1:气凝胶的特性及应用 (4) 表2:常见气凝胶的基本性能 (6) 表3:Aspen产品信息 (22) 表4:CABOT气凝胶产品分类 (23) 表5:埃力生产品信息 (23) 表6:纳诺科技产品信息 (24) 表7:纳诺科技气凝胶发展历程 (25)

天然气行业发展概况

天然气行业发展概况 天然气产业链可以分为上游天然气勘探开采、中游仓储运输以及下游分销应 用。上游主要是对天然气进行勘探和开采,国内主要由中石油、中石化和中海油 实施。中游仓储运输主要包括长距离管道运输、LNG 船舶/槽车运输、LNG 接收 站、储气库等。下游主要是天然气的分销应用,向终端用户或燃气分销商销售天 然气。 (1)全球天然气概况 ①全球天然气探明储量情况 根据《2018 年BP 世界能源统计年鉴》,到2017 年底,全球已探明剩余天然 气可采储量为193.5 万亿立方米,储产比为52.6:1。

天然气在全球范围内分布不均,主要集中在中东国家。根据《2018 年BP 世 界能源统计年鉴》,到2017 年底,中东国家天然气储量为79.1 万亿立方米,占 比为40.9%。天然气探明储量排在前三的国家分别是俄罗斯、伊朗和卡塔尔,其 探明储量占全世界的份额分别为18.1%、17.2%和12.9%,合计占比为48.2%。

②全球天然气产量和消费量情况 全球天然气产量和消费量除2009 年受金融危机影响出现大幅下跌外,2007-2017 年总体稳步增长,供需整体较为均衡,并逐步呈现宽松趋势。根据《2018 年BP 世界能源统计年鉴》,2017 年全球天然气产量为3.68 万亿立方米,同比增 速为3.68%;全球天然气消费量为3.67 万亿立方米,同比增速为2.69%。

从2007-2017 年各地区的产量和消费量来看,北美洲一直以来都是位列全球 第一。根据《2018 年BP 世界能源统计年鉴》,2017 年北美洲产量和消费量占全 球的比重分别为25.9%和25.7%。从全球来看,中东国家和亚太地区的天然气产 量和消费量增长较快。总体而言,天然气的生产和消费具有较强的区域性特征, 2007-2017 年,亚太地区的供需比一直是低于1 的水平,需求缺口有逐步扩大的 趋势,反映了亚太地区天然气短缺的问题。近年来,我国天然气的供需比一直低 于亚太地区的供需比,表明我国天然气短缺问题更加严峻,对外依存度较高。

排水采气工艺技术及其发展趋势

国内外排水采气工艺技术及其发展趋势 一、国内排水采气技术 1、泡沫排水采气工艺 泡沫排水采气工艺是将表面活性剂注入井内,与气水混合产生泡沫,减少气水两相垂直管流动的滑脱损失,增加带水量,起到助排的作用。由于没有人工给垂直管举升补充能量,该工艺用于尚有一定自喷能力的井。 泡沫排水采气机理 a.泡沫效应

在气层水中添加一定量的起泡剂,就能使油管中气水两相管流流动状态发生显著变化。气水两相介质在流动过程中高度泡沫化,密度显著降低,从而减少了管流的压力损失和携带积液所需要的气流速度。 b.分散效应 气水同产井中,存在液滴分散在气流中的现象,这种分散能力取决于气流对液相的搅动、冲击程度。搅动愈激烈,分散程度愈高,液滴愈小,就愈易被气流带至地面。气流对液相的分散作用是一个克服表面张力作功的过程,分散得越小,作的功就越多。起泡剂的分散效应:起泡剂是一种表面活性剂,可以使液相表面张力大幅度下降,达到同一分散程度所作的功将大大减小。 c.减阻效应 减阻的概念起源于“在流体中加少量添加剂,流体可输性增加”。减阻剂是一些不溶的固体纤维、可溶的长链高分子聚合物及缔合胶体。减阻剂能不同程度地降低气水混合物管流流动阻力,提高液相的可输性。 d.洗涤效应 起泡剂通常也是洗涤剂,它对井筒附近地层孔隙和井壁的清洗,包含着酸化、吸附、润湿、乳化、渗透等作用,特别是大量泡沫的生成,有利于不溶性污垢包裹在泡沫中被带出井口,这将解除堵塞,疏通孔道,改善气井的生产能力。 1.1)起泡剂的组成及消泡原理 起泡剂由表面活性剂、稳定剂、防腐剂、缓蚀剂等复配而成。其主要成分是表面活性剂,一般含量为30%~40%。 表面活性剂是一种线性分子,由两种不同基团组成,一种是亲水基团,与水分子的作用力强,另一种是亲油基团,与水分子不易接近。当表面活性剂溶于水中后,根据相似相溶原理,亲水基团倾向于留在水中,而亲油基团倾向于分子在液体表面上整齐地取向排列形成吸附层,此时溶液表面张力大幅降低,当有气体进入表面活性剂溶液时,亲水基团定向排列在液膜内,亲油基团则定向排列在液膜内外两面,靠分子作用力形成稳定的泡沫。 1.2)起泡剂的注入方式 起泡剂一般从油套环空注入,水呈泡沫段塞状态从油管与气一同排出后,在地面进行分离。注起泡剂的方式有便携式投药筒、泡沫排水专用车、井场平衡罐及电动柱塞计量泵等多种,需根据井场条件选择。 1.3)性能要求

气凝胶的制备

气凝胶具有超轻、低密度、纳米微孔,特征是,具有超细蜂窝孔尺寸和多孔结构,由相互连接的聚合链连接而成。孔径一般低于 100 nm,气凝胶颗粒尺寸通常小于 20nm。它可以由无机材料(如二氧化硅、氧化铝等),有机材料(如聚酰亚胺、碳等),或混合材料(如凝胶玻璃等)而制得。 气凝胶是世界上最轻的固体材料,因其颜色呈现出淡蓝色,因此也被称为“蓝烟”,也有人将其称为“固体空气”。这也被列入了基尼斯世界纪录。复合气凝胶密胺海绵气凝胶毯具有柔软﹑易裁剪﹑密度小、防火阻燃﹑绿色环保等特性,其可替代玻璃纤维制品、石棉保温毡、硅酸盐纤维制品等不环保、保温性能差的传统柔性保温材料。 气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔洞率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003-0.500 g/cm-3范围内可调。(空气的密度为0.00129 g/cm-3)。 气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为

气凝胶。在90年代中后期,随着常压干燥技术的出现和发展,90年代中后期普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。 气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。在溶胶凝胶过程中,通过控制溶液的水解和缩聚反应条件,在溶体内形成不同结构的纳米团簇,团簇之间的相互粘连形成凝胶体,而在凝胶体的固态骨架周围则充满化学反应后剩余的液态试剂。 为了防止凝胶干燥过程中微孔洞内的表面张力导致材料结构的破坏,采用超临界干燥工艺处理,把凝胶置于压力容器中加温升压,使凝胶内的液体发生相变成超临界态的流体,气液界面消失,表面张力不复存在,此时将这种超临界流体从压力容器中释放,即可得到多孔、无序、具有纳米量级连续网络结构的低密度气凝胶材料。

气凝胶研究现状

气凝胶 1、简介 气凝胶,英文aerogel又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。 按其组分,可分为单组分气凝胶,如SiO2,Al2O3,TiO2,炭气凝胶(有机气凝胶炭化后得到)等;多组分气凝胶,如SiO2/Al2O3,SiO2/TiO2等。最典型的研究最多的气凝胶是单组份的SiO2气凝胶和炭气凝胶(有机气凝胶)。 气凝胶,英文aerogel又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。如下图所示。 图1气凝胶 按其组分,可分为单组分气凝胶,如SiO2,Al2O3,TiO2,炭气凝胶(有机气凝胶炭化后得到)等;多组分气凝胶,如SiO2/Al2O3,SiO2/TiO2等。最典型的研究最多的气凝胶是单组份的SiO2气凝胶和炭气凝胶(有机气凝胶)。 2、气凝胶的特点 (1)孔隙率很高,可高达99.8%;科学家们表示,因为它有数百万小孔和皱摺,所以如果把1立方厘米的气凝胶拆开,它会填满一个有足球场那么大的地方。它的小孔不仅能像一块海绵一样吸附污染物,还能充当气穴。研究人员认为,一些形式的由铂金制成的气凝胶能用于加速水解及氢的产生。这样的话,气凝胶就能用来生产以氢为基础的燃料。

(2)纳米级别孔洞(~20nm)和三维纳米骨架颗粒(2~5nm); (3) 高比表面积,可高达1000m2/g; (4) 低密度,可低至0.003g/cm3。 (5) 气凝胶独特的结构决定了其具有极低的热导率,常温下可以低至0.013W/(m·K),比空气的导热系数还低。下图为不同材料的导热系数对比图。 图2 气凝胶与传统材料导热系数对比图 (6) 强度低,脆性大,由于其比表面积和孔隙率很大,密度很低,导致其强度很低。如SiO2气凝胶杨氏模量不到10MPa,抗拉强度只有16KPa,断裂韧度只有0.8kPa·m1/2)孔隙率很高,可高达99.8%;科学家们表示,因为它有数百万小孔和皱摺,所以如果把1立方厘米的气凝胶拆开,它会填满一个有足球场那么大的地方。它的小孔不仅能像一块海绵一样吸附污染物,还能充当气穴。研究人员认为,一些形式的由铂金制成的气凝胶能用于加速水解及氢的产生。这样的话,气凝胶就能用来生产以氢为基础的燃料。 3、气凝胶应用

我国天然气资源发展现状

我国的天然气资源现状 我国天然气的勘探、开发和利用都相对比较落后,已探明可采储量仅占世界的1.2%,目前年产量200亿立方米,预计到2000年达到250亿立方米/年。我国天然气地质资源量估计超过38万亿立方米,可采储量前景看好,按国际通用口径,预计可采储量7-10万亿立方米,可采95年,在世界上属资源比较丰富的国家。陆上资源主要集中在四川盆地、陕甘宁地区、塔里木盆地和青海,海上资源集中在南海和东海。此外,在渤海、华北等地区还有部分资源可利用。1.四川盆地的天然气是我国开采较早、储量较丰富的资源,基本可在满足四川省和重庆直辖市需求的同时,通过管道外送部分剩余气量。主要市场是武汉,预计可供气20-30亿立方米/年。2.陕甘宁气田是我国陆上最大的天然气整装资源,可采储量超过3000亿立方米,目前主要通过北京、西安和银川三条管线外送。输气能力分别为:北京方向660mm900km,30亿立方米/年,供北京、天津、河北;西安426mm480km,8-9亿立方米/年,银川426mm300km,3-4亿立方米/年。该资源已具备建设第二条东送管道的条件,今后市场主要可能是北京、天津和河北以及华东地区。3.塔里木盆地和青海的天然气资源十分丰富,具有较好的开采前景,预计可采储量与陕甘宁气田相当,今后主要靠管道经兰州、西安东送,主要市场为长江三角洲地区。4.南海天然气资源蕴藏品质最佳,气田储量集中,单井产量大。现已通过海底管道年输香港29亿立方米,主要用于发电。还有部分天然气送海南岛三亚的一座100MW燃机电厂和化肥厂使用。南海的资源开发前景看好,但海上天然气开发难度较大,同时在一定程度也受到地缘政治因素的制约,因此,暂不宜进行大规模开发利用。5.东海地区的勘探工作一度受一些政策的影响而比较迟缓,但从现在工作成果看,资源储量看好。在钱塘江口以外的平湖气田发现的部分天然气资源正在供应上海,主要满足城市居民的生活用气。但东海资源的情况与南海情况相近,也暂不宜进行大规模开发利用。 我国的天然气资源市场及其发展前景 2001年天然气占中国总能源需求比例为2.96%(石油占27.4%,煤炭占62.0%,核能占0.47%,水力占6.9%)。 我国天然气资源量为38.04万亿立方米,估计可采储量(7-10)万亿立方米。陆上62个盆地和地区的天然气储量29.9万亿立方米,78.6%集中在四川盆地、陕甘宁地区、塔里木盆地和青海省。10个海上盆地大多集中在南海和东海,总计8.14万亿立方米,占总量21.4%。 据分析,全国常规天然气资源量中,最终可采储量为14万亿立方米,其中东部占30.3%,西部占28.2%,海上占21.4%。我国天然气储量大于1万亿立方米的地区有10个:塔里木、四川、陕甘宁、东海、渤海湾、莺歌海、琼东南、珠江口、准噶尔和柴达木。现已形成以四川、鄂尔多斯、塔里木、柴达木、莺琼、东海六大盆地为主的气层气资源区,以及渤海湾、松辽、准噶尔三大盆地气层气与溶解气共存资源区格局。据统计,全国共发现69个含天然气盆地,其中天然气资源量比较丰富的塔里木、四川、陕甘宁、东海、渤海湾、琼东南、珠江口、准噶尔、柴达木盆地的总资源量为32.26万亿立方米,占全国天然气总资源量的84.8%。 2001年我国天然气探明储量为1.37万亿立方米,占世界0.9%。资源探明率3.6%。2000年我国还在内蒙古伊克昭盟发现首个世界级大气田:苏里格大气田,天然气探明地质储量达到6025.27亿立方米,相当于一个储量6亿吨的特大油田,不仅是我国现在规模最大的天然气田,也是我国第一个世界级储量的大气田。 我国近海天然气工业拥有较大发展潜力。对近海10个沉积盆地的油气资源综合评价认为,天然气总资源量8.4万亿立方米。目前在海上找到的天然气储量4211亿立方米,占近海天然气资源量9%。中国海洋石油总公司(CNOOC)天然气生产能力将由2000年100亿立方米增加到2010年150亿-200亿立方米。莺歌海、琼东南、珠江口盆地、东海西湖和渤海渤中是今后寻找天然气的有利地区。莺歌海-琼东南盆地有巨大的天然气资源,其中崖13-1气田年产天然气36.13亿立方米,预计天然气资源量约为1.5万亿立方米。东海盆地探明天然气地质储量达2000亿立方米以上。 2000年我国天然气生产量277.3亿立方米(2001年303亿立方米),其中,中国石油

气凝胶项目合作方案

气凝胶项目 合作方案 规划设计/投资分析/实施方案

气凝胶项目合作方案 气凝胶材料经过80多年的发展,已经逐渐从实验室的研发阶段步入工业化应用阶段,虽然价格昂贵,应用不广,但在民用、航天、军事等高技术领域的应用目前是无法取代的。随着现代制备技术的不断发展,成本进一步降低,其应用领域将越来越广。气凝胶的轻量化、复合化和柔性化将是二十一世纪气凝胶超级隔热材料的主要发展方向。 该气凝胶项目计划总投资19022.47万元,其中:固定资产投资13120.19万元,占项目总投资的68.97%;流动资金5902.28万元,占项目总投资的31.03%。 达产年营业收入45884.00万元,总成本费用34849.72万元,税金及附加360.86万元,利润总额11034.28万元,利税总额12917.11万元,税后净利润8275.71万元,达产年纳税总额4641.40万元;达产年投资利润率58.01%,投资利税率67.90%,投资回报率43.50%,全部投资回收期 3.80年,提供就业职位682个。 严格遵守国家产业发展政策和地方产业发展规划的原则。项目一定要遵循国家有关相关产业政策,深入进行市场调查,紧密跟踪项目产品市场走势,确保项目具有良好的经济效益和发展前景。项目建设必须依法遵循

国家的各项政策、法规和法令,必须完全符合国家产业发展政策、相关行业投资方向及发展规划的具体要求。 ......

气凝胶项目合作方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

采油采气装备的现状和发展趋势

采油采气装备的现状和发展趋势 高向前:各位来宾大家好!我汇报的题目是采油采气装备的现状和发展趋势。随着油气勘探开采对象的难度加大和日趋复杂,采油(气)技术装备作为油气田开发目标的实现载体和手段,其重要性愈显突出。近年来我国的采油采气装备技术有了长足的进步,为我国石油工业的发展做出了重大贡献,但整体技术水平与石油工业发展要求及国际先进水平相比仍有较大差距。为了满足生产需求和建设国际综合能源公司的战略要求,提升我国石油装备制造水平,促进我国装备制造业的发展,我所开展了采油采气技术装备现状和发展趋势研究。该报告分成八个领域共十章,并按完善推广、重点研究、超前储备提出了发展建议。本报告的内容多,涉及面广,由于时间紧,研究工作尚显粗略,还存在着一些不尽完善的地方,今后仍需要不断跟踪和研究。共分为十章。 一、概述近十年来采油(气)技术装备的总体发展状况未来面临的挑战和发展趋势 二、常规采油技术国外先进技术调研我国机械采油技术和装备的发展方向 三、注水技术及工具新技术及配套工具的应用情况面临的挑战 四、稠油开采新技术和新装备的使用情况面临的挑战 五、水平井、复杂结构井开采及完井技术水平井完井技术分支井及侧钻井完井技术水平井增产改造技术水平井井下作业技术面临的挑战 六、天然气开采高压高温酸性气藏的开采天然气地面集输技术气井排液采气技术面临的挑战 七、井下作业技术与装备新技术和新装备的使用情况面临的挑战 八、海洋石油钻采装备海洋油气开发装备海洋石油采油装备 九、数字油田数字油田的概念、分类和基本架构数字油田关键技术数字油田技术的发展需求数字油田在中国的发展现状中国数字油田面临的问题 十、采油采气技术装备发展方向及建议 近十年来采油(气)技术装备的总体发展状况 近年来,采油(气)技术和装备领域紧密结合油气田开发的需要,针对“油田整体老化”、“多井低产”、“低丰低质”的开发局面,紧密结合“重大开发试验”、“水平井规模应用”、“老油田二次开发”、“特、超低渗透油田有效规模动用”等发展战略举措,针对生产工艺要求,形成了高含水油田综合治理、低渗透油藏经济开发、稠油储量有效动用、气藏有效开发、超深及复杂类型油藏采油以及完井、井下作业和大修等配套技术和装备,改善了老区开发效果,加快了新增探明储量的产能转化效率,促进了各类油气田开发水平的提高,基本满足了油气田开发的需要。 第一章概述 未来采油采气工程技术装备面临的挑战: 随着稠油及高含水老油田开发程度持续加深,新投入开发的储量多属低渗、特低渗油藏,油田开发面临技术和经济的双重挑战,对采油采气工程技术和装备的要求越来越高。单井日产量的高低是关系到油田企业效益和抗风险能力的重要因素; 老油田进入特高含水期,进一步提高采收率是采油工程的历史责任; 低品位储量逐渐成为开发主体,急需发展经济有效开采新技术; “三高”气藏规模投入开发,对采气工艺提出了新的课题; 稠油开发进入“双高”开采阶段,急需转变开采方式;

我国天然气利用现状与发展趋势

我国天然气利用现状与发展趋势

东输管道工程正式商业运作,标志着我国天然气市场发育阶段由启动期向发展期迈进,预计这一阶段将持续到2030年。在此期间,我国的天然气管网、储气库等基础设施建设将不断加快,逐步形成全国天然气统一骨干管网;国内各大气田的天然气产能建设和产量将迅速增长,进口天然气渠道将不断拓宽,非常规天然气也将得到快速发展,从而形成多元化的供气格局。在此基础上,我国的天然气消费量将保持快速增长势头,在我国能源结构中所占比例持续提高。 1我国天然气利用现状 1.1天然气消费量快速增长 近年来,我国经济的快速增长促进了各行业对各类能源的巨大需求。1999年,我国成为全球第二大能源消费国,一次能源消费量占全球的10.3%;2008年,这一比例增加到17.7%。 随着天然气工业基础设施的逐渐完善和发展,近年来我国天然气需求增长强劲,天然气市场消费量呈现爆炸式增长。1996年以前,由于天然气工业基础设施不够完备,天然气消费量增长缓慢;1996年以后,随着大型长输天然气管道的陆续建成,天然气消费消费量迅速增长,至2006年,10年间消费量增长了2倍。 图1显示了2000年~2008年我国天然气消费量变化情况。从天然气消费量增长趋势看,最近十年是天然气增长的快速期,年均增长接近50亿立方米,年均增长速度超过14%。而2004年西气东输管道建成以来,全国天然气的市场消费量年均增长接近100亿立方米。根据统计,2008年我国天然气消费量已经达到780亿立方米,是2000年全国的天然气消费量的3倍多。

图1 2000年~2008年我国天然气消费量增长情 况图(108m3) 但是,从相对规模上看,多年来天然气消费在全国一次能源消费构成中始终在2%~3%左右。1996年全国天然气消费量为179亿立方米,占一次能源消费总量的比例为1.7%,远低于世界平均水平23%;2008年全国天然气消费量780亿立方米,占一次能源消费总量的比例为3.6%,仍然远低于世界平均水平24%。这既说明我国天然气市场的发展潜力仍然大,也表明提高天然气在一次能源中的比例,实现2020年8%的目标仍然任重道远。 从天然气的供气气源来看,2006年以前,我国天然气消费所有用气均为中国石油、中国石化、中国海油以及个别地方公司供应的国产天然气。2006年后随着国内第一个进口LNG项目——广东深圳大鹏LNG项目的实施,我国开始利用境外的进口天然气。随着国内天然气市场需求的快速增长以及我国实施国内国外“两种资源”战略,落实的进口天然气项目将越来越多,进口天然气占我国的天然气消费比例将会越来越高。 1.2利用天然气的区域更加广泛 “九五”之前,我国尚未大规模修建天然气管网等基础设施,天然气消费基本上是“就近利用”,主要集中在油气田周边,生产区基本上就是消费区,其

采气工艺技术复习题样本

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 采气工艺技术复习题 一、填空部分 1.气井完成方法有( 裸眼完井) 、 ( 射孔完井) 、 ( 衬管完井) 、 ( 尾管完井) 。 2.气井试气工序( 通井) 、 ( 洗井) 、 (压井)、 (射孔) ( 诱喷) 、 ( 测试) 。 3. 油气藏的类型( 构造油气藏) 、 ( 地层油气藏) 、 ( 岩性油气藏) 4.自喷采气时气液混合物在井筒内的流动状态有( 泡流) 、 ( 断柱流) 、 ( 环流) 、 ( 雾流) 。 5. 气井生产中常见下列压力参数:地层压力、套压、流压、油压.输压、流量计静压, 它们之间相互联系, 按大小依次为: 地层压力>流压>套压>油压>(计量前分离器压力)>流量计静压>输压 6. 沉积岩分( 碎屑岩) 、 ( 粘土岩) 、 ( 碳酸盐岩) 。 7.根据成因, 组成地壳岩石分为( 岩浆岩) 、 ( 沉积岩) 、 ( 变质岩) 三大类, 其中油气的绝大部分储存在( 沉积岩) 岩层中。既能生油又能储油的地层岩石( 沉积岩) 8.气藏驱动类型( 气驱) 、 ( 弹性水驱) 、 ( 水驱) 。 9.油气藏形成的基本条件有( ) 、 ( ) 、 ( ) 10.气井井口装置由( 套管头) ( 油管头) ( 采气树) 三大部分组成。 11.流体的渗流过程中, 地层能量有( 边水底水压头) 、 ( 气顶压头) 、 ( 溶解气 )、 ( 岩石与流体弹性)、 ( 重力位能) 12.生成油气的原始物质( 有机污泥) 有机质向油气转化的条件包括( 温度与时间) ( 放射性元素 ) ( 厌氧细菌) ( 催化剂 ) ( 压力 ) 13.燃烧的必要条件( 可燃物) 、 ( 助燃物) 、 ( 着火源) 。 14.天然气的主要物理性质, 包括( 主要成份) ( 分子量) ( 密度重度相对密度) ( 粘度) ( 具体状态方程式) ( 临界温度与临界压力) ( 含水量和溶解度) 等物理参数 15. 灭火的基本原理能够归纳为( 冷却法) 、 ( 窒息法) 、 ( 隔离法) 。 16.鄂尔多斯盆地的现今构造面貌奠基于加里东末期、( 燕山) 中期的构造运动,

相关文档
相关文档 最新文档