文档库 最新最全的文档下载
当前位置:文档库 › 最好的midas连续梁分析

最好的midas连续梁分析

最好的midas连续梁分析
最好的midas连续梁分析

1. 连续梁分析

概述

比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)时的反力、位移、内力。

^

|

(

<

{

图 分析模型

3跨连续两次超静定

3跨静定

3跨连续1次超静定

材料

钢材: Grade3

截面

数值: 箱形截面400×200×12 mm

荷载

1. 均布荷载: tonf/m

2. 温度荷载: ΔT = 5 ℃(上下面的温度差)

设定基本环境

打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。

文件/ 新文件

文件/ 存档(连续梁分析)

工具/ 单位体系

长度> m; 力> tonf

图设定单位体系

设定结构类型为 X-Z 平面。

模型 / 结构类型

结构类型> X-Z 平面

设定材料以及截面

材料选择钢材GB (S )(中国标准规格),定义截面。

模型 / 材料和截面特性 /

材料

名称( Grade3) 设计类型 > 钢材

规范> GB(S) ; 数据库> Grade3

模型 / 材料和截面特性 / 截面

截面数据

截面号 ( 1 ) ; 截面形状 > 箱形截面 ; 用户:如图输入 ; 名称> 400×200×12

图 定义材料 图 定义截面

建立节点和单元

为了生成连续梁单元,首先输入节点。

正面,

捕捉点 (关),

捕捉轴线 (关)

捕捉节点 (开),

捕捉单元 (开),

自动对齐

选择“数据库”中的任意材料,材料的基本特性值(弹性模量、泊松比、线膨胀系数、容重)将自动

参照用户手册的“输入单元时主要考虑事项”

模型/ 节点/ 建立节点

坐标( x, y, z ) ( 0, 0, 0 )

图建立节点

用扩展单元功能来建立连续梁。

模型/ 单元/ 扩展单元

全选

扩展类型> 节点线单元

单元属性> 单元类型> 梁单元

材料> 1:Grade3; 截面> 1: 400*200*12; Beta 角( 0 )生成形式> 复制和移动; 复制和移动> 任意间距

方向> x ; 间距( 3@5/3, 8@10/8, 3@5/3 )

图建立单元

X Z

输入梁单元. 关于梁单元的详细事项参照在线帮助的“单元类型”的“梁单元”部分

输入边界条件

3维空间的节点有6个自由度(Dx, Dy, Dz, Rx, Ry, Rz)。但结构类型已设定为X-Z平面(程

序将自动约束Y方向的位移Dy和绕X轴和Z轴的转动Rx,Rz),所以只剩下3个自由度(Dx,

Dz, Ry)。铰支座约束自由度Dx, Dz, 滚动支座约束自由度Dz。

模型/边界条件/ 一般支承

节点号(开)

单选(节点: 4 )

选择>添加; 支承条件类型> Dx, Dz (开)

单选(节点: 1, 12, 15 ) ;支承条件类型> Dz (开)

图图输入边界条件

输入荷载

定义荷载工况

为输入均布荷载和温度荷载,首先定义荷载工况

荷载/ 静力荷载工况

名称(均布荷载) ; 类型> 用户定义的荷载(USER)

名称(温度荷载) ; 类型> 用户定义的荷载(USER)

输入荷载条件

给连续梁施加均布荷载 1 tonf/m 。

荷载 / 梁单元荷载(单元)

节点号 (关) 全选

荷载工况名称> 均布荷载 ; 选择 > 添加

荷载类型>均布荷载 ; 方向>整体坐标系 Z ; 投影>否 数值 >相对值 ; x1 ( 0 ) ; x2 ( 1 ) ; W ( -1 )

这个相对值的意思是:在一个单元中,距离起点的距离x1,x2相对于单元全长的比例,x1 ( 0 ),x2 ( 1 )意思是全单元均布,x1 (0),x2 )意思是前半个单元均布。

图 输入均布荷载

荷载方向与整体坐标系Z 轴方向相反,输入荷载为“-1”。

输入连续梁的上下面温度差(ΔT = 5℃)。

输入温度差后,根据材料的热膨胀系数、温差引起的梁截面产生的应力考虑为荷载。

显示梁单元荷载(关)

荷载/ 温度梯度荷载

全选

荷载工况名称> 温度荷载; 选择> 添加; 单元类型> 梁

温度梯度> T2z-T1z ( 5 )

图输入温度荷载

复制单元

复制连续梁(模型1)来建立多跨静定梁(模型2,模型3)。为了同时复制连续梁(模型1)均布荷载、温度荷载、边界条件,使用复制节点属性和复制单元属性功能。

显示

边界条件>一般支承(开)

模型/ 单元/ 单元的复制和移动

全选

形式> 复制; 移动和复制> 等间距

dx, dy, dz ( 0, 0, -5 ); 复制次数( 2 )

复制节点属性(开),复制单元属性(开)

模型1

模型2

模型3

图复制单元

输入铰接条件

在复制的连续梁输入内部铰支座来建立多跨静定梁。 在梁单元的端部使用释放梁端约束功能来生成铰接条件。

模型 / 边界条件/释放梁端约束

单元号(开)

单选 ( 单元 : 19, 23, 33 ) 选择 > 添加/替换

选择释放和约束比率 > j-节点 > My (开), Mz (开) (或

)

图 输入铰支支座

运行结构分析

对连续梁和多跨静定梁运行结构分析。

分析 /

运行分析

模型 1

模型 2 模型 3 关于内部铰支的详细说明参照在线帮助的 “释放梁端约束” 部分

生成梁单元时,随着先指定的i 节点和后指定的j 节点的生成决定坐标系。

只要在图标菜单显示的单元表单下打开单元坐标轴和局部方向就可以确认。

查看分析结果

查看反力

比较均部荷载作用下连续梁和多跨静定梁的反力。

单元号(关)

显示

边界条件> 一般支承(关), 释放梁端约束(开)

结果/ 反力和弯矩

荷载工况/荷载组合> ST:均布荷载; 反力> FXYZ

显示类型> 数值(开),图例(开)

数值

小数点以下位数( 1 ) ; 指数型(关) ; 适用于选择确认时(开)

图均布荷载引起的反力

以表格的形式查看均布荷载引起的的反力。比较外荷载总合和反力的总合来查看模型

的建立和荷载的输入是否恰当。

例题Z轴方向荷载为tonf/m2×20 m×3 = 60 tonf,与表格中Z轴方向的反力(FZ)总

和相等。

结果/ 分析结果表格/ 反力

荷载组合> 均布荷载(ST)(开) ; 温度荷载(ST)(关)

图反力结果表格

比较对温度荷载的反力。

结果 /

反力和弯矩

荷载工况/荷载组合> ST:温度荷载 ; 反力 > FXYZ 显示类型> 数值 (开), 图例 (开)

图 温度荷载产生的反力

模型 1 模型 3

查看变形图

查看温度荷载产生的变形图。 DXZ=22DZ DX .

显示

边界条件 > 一般支承 (开)

结果 / 变形 /

变形形状

荷载工况/荷载组合 > ST:温度荷载 ; 变形 > DXZ 显示类型>变形前 (开), 图例 (开)

图 温度荷载产生的变形图

模型 1

模型 2 模型 3

查看内力

查看均布荷载产生的结构的弯矩。

结果/ 内力/ 梁单元内力图

荷载工况/荷载组合> ST:均布荷载; 内力> My

选择显示> 5 点;不涂色;系数( )

显示类型> 等值线(开), 数值(开), 图例(开)

数值

小数点以下位数( 1 ) ; 指数型(关) ; 适用于选择确认时(开)

多跨静定梁(模型2)与连续梁(模型1)相比,可以看出跨中弯矩减小,但支点弯矩增大的情况。还可以看出,设有一个铰的多跨静定梁(模型3)的铰支点弯矩与(模型2)类似,无铰部分的弯矩与(模型1)类似。

图节点荷载产生的弯矩

查看温度荷载产生的弯矩。

温度荷载产生的变形图(图中,可以看出模型2两边的悬臂梁与中间的简支梁的变形是相互独立的。温度荷载不会约束梁的变形,所以也不会产生内力。

结果/ 内力/ 梁单元内力图

荷载工况/荷载组合> ST:温度荷载; 内力> My

显示选项> 精确解;不涂色;放大( )

显示类型>等值线(开), 数值(开)

数值

小数点以下位数( 1 ) ; 指数型(关) ; 适用于选择确认时(开)

图温度荷载产生的弯矩图

习题

1. 请查看如下图相同跨径(span)的简支梁,多跨静定梁,连续梁及支点部分加强的梁

的正弯矩依次减小,而负弯矩依次增大。

\

midas连续梁分析报告实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型

?材料 钢材: Grade3 ?截面 数值 : 箱形截面 400×200×12 mm ?荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系

设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面? 设定材料以及截面 材料选择钢材GB(S)(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号( 1 ) ; 截面形状 > 箱形截面; 用户:如图输入 ; 名称> 400×200×12 ? 选择“数据库”中的任 意材料,材料的基本特 性值(弹性模量、泊松 比、线膨胀系数、容 重)将自动输出。 图 1.3 定义材料图 1.4 定义截面建立节点和单元

为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关), 捕捉轴线 (关) 捕捉节点 (开), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事项”

MIDAS梁格法学习小结及疑问

MIDAS梁格法学习小结及疑问 最近在做一个半径80米,曲线弧长90米,采取3跨30米布置的连续曲梁桥。经过计算我的圆心角为32度,必须得当作曲梁模拟。 首先我采用的是单箱梁模拟,但是经过师兄提醒,感觉到这样考虑十分不妥,因为曲梁桥弯扭藕合作用明显。横桥向扭矩的分析对桥梁最后结果有着很大的影响。即需要做横向分析。 因此特来论坛淘梁格法计算的资料,这一搜索不得了,让我有种醍醐灌顶的感觉。尤其是bridgedlut兄的见解,让我受益颇深。同时还有有很多前辈表述了自己做时曲梁碰到的问题及自己的见解。我老老实实的坐了一个多小时,十分耐心细致的看完了所有相关帖子。自己感觉到本来对梁格法停留在概念程度上的我已经对梁格法有了进一步的了解,并且对我现在正在做的工程有着很大的帮助,再次对各位表示谢谢了。谢谢各位斑竹辛苦的工作。谢谢kaisi论坛给我提供了一个很好的学习平台。 先谈谈自己看后的一些基本认识: 1.符拉索夫的三个方程经典的描述出了弯扭藕合作用对曲梁的重要影响,需进一步复习加深理解。 2.梁格体系涉及到纵向单元的划分:纵向单元划分当然是越细越好,但是原则上每跨分成8段以上比较理想,其中:截面变化处,关键部位等必须划分,并且连续弯梁桥的中间支座附近因内力变化剧烈,因此需加密网格。 3.横向虚梁的截面模拟。总体原则:每个等效划分梁格的纵向中性轴必须与远箱粱截面在同一高度。 4.通常都把箱梁腹板处化做梁肋。这样腹板处就被化做单元,可以直接查看其内力。 几点补充: 1.梁格法模拟的关键是横截面几何参数的等效化,我这方面的知识比较欠缺。请问能否提供一个比较详细的算例,我想bridgedlut 兄是一定有的,哈哈,或者介绍基本相关的书籍,以便查阅。 2.我这座连续曲梁桥,有两个桥墩,三跨布置,中跨布置两道横隔板,边跨设置边横隔板。请问梁格法在横隔梁处的处理是不是也只把这部分当做实心的截面来看就可以,是否横隔梁处也得沿着全跨分为几个梁格?也就是横隔梁处的计算通常是怎么处理的,针对梁格法? 特此对有关梁格法的相关好贴做了一个小小的总结,一来方便大家查阅,二来自己后续学习查看也更加方便些。 梁格法计算问题

[整理]MIDAS连续梁桥建模.

该过程是将三垮桥的运营状态进行有限元分析,下面介绍了本人在对模型模拟的主要步骤,若中间出现的错误,请读者朋友们指出修改。 注:“,”表示下一个过程 “()”该过程中需做的内容 一.结构 1.单元及节点建立的主桁:因为桥面具有一定纵坡,故将《桥跨布置》图的桥面线复制到《节段划分》图对应桥跨位置,然后进行单元划分,将该线段存入新的图层,以便下步导入,将文件保存为.dxf格式文件。 2.打开midas运行程序,将程序里的单位设置成《节段划分》图的单位,这里为cm。导入上步的.dxf文件。将节点表格中的z坐标与y坐标交换位置(midas中的z与cad中的y对应)。结构建立完成。模型如图: 二.特性值 1.材料的定义:在特性里面定义C50的混凝土及Strand1860(添加预应力钢筋使用) 2.截面的赋予: 1).在《截面尺寸》和《预应力束锚固》图里,做出截面轮廓文件,保存为.dxf 文件 2).运行midas,工具,截面特性计算器,统一单位cm。导入上步的.dxf文件 先后运行generate,calculate property,保存文件为.sec文件,截面文件完成 3)运行midas,特性,截面,添加,psc,导入.sec文件。根据图例,将各项特性值填入;验算扭转厚度为截面腹板之和;剪切验算,勾选自动;偏心,中上部4)变截面的添加:进入添加截面界面,变截面,对应单元导入i端和j端(i为左,j为右);偏心,中上部;命名(注:各个截面的截面号不能相同)

5)变截面赋予单元:进入模型窗口,将做好的变截面拖给对应的单元。 注:1.建模资料所给的《预应力束锚固图》的0-0和14-14截面与《节段划分》图有出入,这里采用《截面尺寸》做这两个截面,其余截面按照《预应力束锚固图》做 2.定义材料先定义混凝土,程序自动将C50赋予所建单元(C50是定义的第一个材料,程序将自动赋予给所建单元) 三.边界条件 1.打开《断面》图,根据I、II断面可知,支座设置位置。根据途中所给数据,在模型窗口中建立支座节点(12点) 2.点击节点,输入对应坐标,建立12个支座节点 3.建立弹性连接:模型,边界条件,弹性连接,连接类型(刚性),两点(分别点击支座点与桥面节点)共12个弹性连接 4.边界约束:中间桥墩,约束Dx,Dz;Dx,Dy,Dz;Dx,Dz, 两边桥墩,约束Rx,Dz;Rx,Dy,Dz;Rx,Dz 如表 四.添加预应力钢筋 1.定义钢束特性:打开《预应力筋布置及材料表》、《预应力束几何要素》。荷载,

迈达斯Midas-civil梁格法建模实例

北京迈达斯技术有限公司

目录 概要 (3) 设置操作环境........................................................................................................... 错误!未定义书签。定义材料和截面....................................................................................................... 错误!未定义书签。建立结构模型........................................................................................................... 错误!未定义书签。PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。输入荷载 .................................................................................................................. 错误!未定义书签。定义施工阶段. (60) 输入移动荷载数据................................................................................................... 错误!未定义书签。输入支座沉降........................................................................................................... 错误!未定义书签。运行结构分析 .......................................................................................................... 错误!未定义书签。查看分析结果........................................................................................................... 错误!未定义书签。PSC设计................................................................................................................... 错误!未定义书签。

MIDAS_GTS使用中的注意点

MIDAS_GTS注意点 1、当线彼此交叉存在的时候利用线是无法生成网格或者面的。如果不是特殊的情况建议 将彼此交叉的线在交叉处分割。 2、对建立的几何形状生成网格,在特性里输入“1”,只要指定特性号就可以生成网格。 3、如果使用栅格面,那么会利用输入的M和N值生成M×N的虚拟的栅格后,再输入栅格的高度数据,以此生成一个复杂的面。在此操作例题中生成11×16个栅格,从栅格高度数据文件中导入高度数据后生成地表面。为了生成准确的栅格面,所以至少要有4×4以上的栅格,如果设定了比它小的栅格有可能无法生成面。 与栅格面类似的功能有顶点面。顶点面是指定若干个顶点后,生成任意一个包含所有已指定的顶点的曲面。 4、放样是连续指定截面形状后根据选择的顺序生成比较圆滑的形状。此时如果勾选直线的话会用直线连接截面形状。 5、分割实体是利用辅助曲面分割对象实体的功能。 6、使用隧道功能时如果利用GTS里提供的隧道建模样板可以很便利的生成隧道截面形状。 7、使用生成几何体功能可以利用下级形状(线、线组、面)生成上级形状(面、面组、实体)。生成几何体里有沿直线的扩展、以基准轴为中心旋转的旋转扩展、连接若干截面形状的放样、根据导线扩展的扫描等功能。 8、嵌入是选择主形状和辅助形状之后利用实体的交叉计算在主形状的内部插入辅助形状的功能。嵌入不能考虑相邻的形状。 9、两实体相邻的部分自动生成网格时,为了使相邻面上的节点耦合,GTS会自动调节生成节点的位置及网格的形状。 在分割施工阶段的过程中,象上述的模型一样需要分割与整个岩土相连的隧道形状实体。为使节点耦合,与隧道相连的岩土也要一起进行分割。在分割隧道形状实体时将岩土实体指定为相邻的形状,程序会自动保持两个实体在同一个面上相邻的状态下分割的节点耦合。 10、网格尺寸控制也叫播种,是指在对象形状上生成网格时事先指定的单元分割个数。为了在隧道的周边得到更精确的分析结果将单元大小指定为1.2m。为了生成渐变式的单元大小,按照从1.2m到3m呈变化趋势定义了单元大小。通过网格尺寸控制指定的分割单元大小分别注册到工作目录树的网格 > 网格尺寸控制里。此网格尺寸控制值除非在工作目录树里删除,否则会应用到所有的生成网格过程中。 利用显示网格播种信息命令可以查看应用到对象形状上的网格尺寸信息。此时在对象形状上会用红色点显示生成节点的位置。而且利用选项指定隐藏网格种子的话在画面上就会不显示网格种子信息。 11、选了自动划分平面网格命令(F7)后,生成偏移单元选项先在对象领域的边界上生成四边形网格,然后填充内部,所以它可以在边界处生成大小均匀质量较高的网格,这是它的优点。 划分内部区域选项是在对象区域内部有其它区域定义时决定是否生成网格的选项。 使用生成高次单元选项可生成高阶单元。 独立注册各面网格是针对多个区域同时生成网格时将各网格分别注册到工作目录树。 合并节点是当已经存在的节点和生成的节点位于同一位置时将两个节点合并为一个节点。

midas施工阶段分析

本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil的施工阶 段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。 BliJU Elki EJI Laid 肛归旳F^siik Mida 口啊lads wndEw 屮「討] 图1.分析模型-IOI ?l St IMvr ■?■

桥梁概况及一般截面 分析模型为一个两跨连续梁,其钢束的布置如图 2所示,分为两个阶段来施工 桥梁形式:两跨连续的预应力混凝土梁 桥梁长度: L = 2@30 = 60.0 m 区分 钢束 艮坐标 x (m) 0 12 24 30 36 48 60 钢束1 z (m) 1.5 0.2 2.6 1.8 钢束2 z (m) 2.0 2.8 0.2 1.5 图2.立面图和剖面图 L=30 m L=30 m ? -------- 1 0壬 ■ -? 0 + ? 12 m 6 m CS1 CS2 6 m m

预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。 1. 定义材料和截面 2. 建立结构模型 3. 输入荷载 恒荷载 钢束特性和形状 钢束预应力荷载 4. 定义施工阶段 5. 输入移动荷载数据 6. 运行结构分析 7. 查看结果

使用的材料及其容许应力 混凝土 设计强度: 2 f ck = 400 kgf / cm 初期抗压强度:f ci =270kgf/cm 2 弹性模量: Ec=3,000Wc1.5 vfck+ 70,000 = 3.07 X 105kgf/cm 2 容许应力: 预应力钢束 (KSD 7002 SWPC 7B-① 15.2mm (0.6?strand) 屈服强度: 2 f py = 160 kgf / mm T P y = 22.6 tonf / strand 抗拉强度: 2 f pu =190kgf / mm T P U = 26.6tonf / strand 截面面积: 2 A p =1.387 cm 弹性模量: 6 2 E p = 2.0X 0 kgf /cm 张拉力: fpi=0.7fpu=133kgf/mm 2 锚固装置滑动: 空=6 mm 磨擦系数: g = 0.30 / rad k = 0.006 /m

MIDAS例题---连续梁教学内容

4×30m连续梁结构分析 对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。 建立斜连续梁结构模型的详细步骤如下。 1. 设定建模环境 2. 设置结构类型 3. 定义材料和截面特性值 4. 建立结构梁单元模型 5. 定义结构组 6. 定义边界组 7.定义荷载组 8.定义移动荷载 9. 定义施工阶段 10. 运行结构分析 11. 查看结果 12.psc设计 13. 取一个单元做横向分析

概要: 在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。 本文中的例子采用一座4×30m的连续梁结构(如图1所示)。 1、桥梁基本数据 桥梁跨径布置:4×30m=120; 桥梁宽度:0.25m(栏杆)+2.5m(人行道)+15.0m(机动车道)+2.5m(人行道)+0.25(栏杆)=20.5m; 主梁高度:1.6m;支座处实体段为1.8m; 行车道数:双向四车道+2人行道 桥梁横坡:机动车道向外1.5%,人行道向内1.5%; 施工方法:满堂支架施工; 图1 1/2全桥立面图和1.6m标准断面

2、主要材料及其参数 2.1 混凝土各项力学指标见表1 表1 2.2低松弛钢绞线(主要用于钢筋混凝土预应力构件) 直径:15.24mm 弹性模量:195000 MPa 标准强度:1860 MPa 抗拉强度设计值:1260 MPa 抗压强度设计值: 390 MPa 张拉控制应力:1395 MPa 热膨胀系数:0.000012 2.3普通钢筋 采用R235、HRB335钢筋,直径:8~32mm 弹性模量:R235 210000 MPa / HRB335 200000 MPa 标准强度:R235 235 MPa / HRB335 335 MPa 热膨胀系数:0.000012 3、设计荷载取值: 3.1恒载: 一期恒载包括主梁材料重量,混凝土容重取25 KN/m 3。 二期恒载:人行道、护栏及桥面铺装等(该桥梁上不通过电信管道、水管等)。 其中: 桥面铺装:采用10cm的沥青混凝土铺装层;沥青混凝土安每立方24kN计算,则计算铺装宽度为15m,桥面每米铺装沥青混凝土重量为:0.16×24×15=57.6kN/m;

迈达斯Midas-civil梁格法建模实例

迈达斯技术

目录 概要 (3) 设置操作环境................................................................................................................ 错误!未定义书签。定义材料和截面............................................................................................................ 错误!未定义书签。建立结构模型................................................................................................................ 错误!未定义书签。PSC截面钢筋输入......................................................................................................... 错误!未定义书签。输入荷载 ........................................................................................................................ 错误!未定义书签。定义施工阶段. (62) 输入移动荷载数据........................................................................................................ 错误!未定义书签。输入支座沉降................................................................................................................ 错误!未定义书签。运行结构分析................................................................................................................ 错误!未定义书签。查看分析结果................................................................................................................ 错误!未定义书签。PSC设计 ......................................................................................................................... 错误!未定义书签。

Midas GTS操作例题列表

GTS操作例题列表: 基础例题 1 二维平行隧道施工阶段分析 2 三维隧道施工阶段分析 3 三维连接隧道施工阶段分析 4 二维路堤施工阶段分析 5 三维基坑开挖阶段地下水渗流分析 6 铁路移动荷载分析 7 三维基坑支护施工阶段分析 8 桥台基础施工阶段分析 9 二维衬砌分析 高级例题 10 地铁施工阶段分析 11 铁路隧道Y型连接段施工阶段分析 12 城市交叠隧道施工阶段分析 实际工程列表 1 公路隧道-断层带区段 2 公路隧道-断层带区段 3 公路隧道-洞门_端差 4 公路隧道-洞门_无端差 5 公路隧道-曲线隧道 6 公路隧道-三维并行隧道 7 公路隧道-避难所 8 公路隧道-河谷区段 9 公路隧道-联拱隧道 10 护岸结构-防浪堤连接区段 11 护岸结构-护岸墙连接区段 12 铁路隧道-横穿上部公路隧道 13 地铁隧道-管棚支护导坑法隧道 14 基础-桥台基础 15 其他隧道-U形隧道 16 土坝 17 堆石坝 验证例题列表 1 无限弹性体上的圆孔 2 无限弹性体上的球腔 3 横观同性无限弹性体上的圆孔 4 莫尔-库伦无限体上的圆孔 5 各向不同应力作用下无限弹性体上的直线圆形隧道 6 弹性地基上的条形基础 7 条形荷载作用下的弹性Gibson地基

8 弹性半无限体上的圆形基础 9 莫尔-库伦地基上的条形和圆形基础 10 条形基础承载力(粘聚力随深度变化) 11 屈雷斯卡地基上的正方形基础 12 冲切问题中的塑性流动 13 剑桥粘土和修正剑桥粘土模型的三轴试验 14 基坑支护 15 倾斜面上的隧道挖掘 16 [稳定流] 三角形土坝 17 [稳定流] 限制水流的截水墙 18 [稳定流] 坝基截流 19 [稳态] 水库粘土层 20 [稳态] 无侧限大坝渗流 21 [稳定流] 倾斜渗透 22 [稳定流] 大坝竖直面(Muskat问题) 23 [稳定流] 向河堤无侧限流动 24 [稳定流] 隧道渗流问题 25 [非稳定流] 水井径向流 26 [非稳定流] 固结分析 27 [非稳定流] 水库蓄水分析 28 [非稳定流] 水位骤降分析 29 [固结] Cryer’s问题 30 [固结] 饱和土固结分析

MIDAS GTS-地铁施工阶段分析资料精

高级例题1
地铁施工阶段分析

GTS高级例题1.
- 地铁施工阶段分析
运行GTS
1
概要
2
生成分析数据
6
属性 / 6
几何建模
20
矩形, 隧道, 复制移动 / 20
扩展, 圆柱 / 25
嵌入, 分割实体 / 27
矩形, 转换, 分割实体 (主隧道) / 30
矩形, 转换, 分割实体 (连接通道) / 33
矩形, 转换, 分割实体 (竖井,岩土) / 36
直线, 旋转 / 39
生成网格
41
网格尺寸控制 / 41
自动划分实体网格 / 44
析取单元 / 46
自动划分线网格 / 48
重新命名网格组 / 53
修改参数 / 57
分析
58
支撑 / 58
自重 / 60
施工阶段建模助手 / 61
定义施工阶段 / 67
分析工况 / 68
分析 / 70

查看分析结果
71
位移 / 71
实体最大/最小主应力 / 74
喷混最大/最小主应力 / 77
桁架 Sx / 79

GTS 高级例题1
GTS高级例题1
建立由竖井、连接通道、主隧道组成的城市隧道模型后运行分析。 在此GTS里直接利用4节点4面体单元直接建模。
运行GTS
运行程序。
1. 运行GTS 。
2. 点击 文件 > 新建建立新项目。
3. 弹出项目设置对话框。
4. 项目名称里输入‘高级例题 1’。
5. 其它的项直接使用程序的默认值。
6. 点击

7. 主菜单里选择视图 > 显示选项...。
8. 一般表单的网格 > 节点显示指定为‘False’。
9. 点击

1

必看最经典梁格——midas空心板梁桥梁桥法工程实例

空心板梁桥工程实例 1几何尺寸 空心板梁几何尺寸见图4.1.1至图4.1.3。 图4.1.2 边板截面(cm)图4.1.3 中板截面(cm) 2主要技术指标 (1) 结构形式:装配式先张法预应力混凝土简支空心板梁 (2) 计算跨径:16m (3) 斜交角度:0度 (4) 汽车荷载:公路-Ⅱ级 (5) 结构重要性系数:1.0 3 计算原则 (1) 执行《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。

(2) 6厘米厚现浇C50混凝土不参与结构受力,仅作为恒载施加。 (3) 温度效应,均匀温升降均按20摄氏度考虑;温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条的规定取值。 (4) 按A 类部分预应力混凝土构件设计。 (5) 边界条件:圆形板式橡胶支座约束用弹性支承进行模拟,弹簧系数SDx=SDy=1890 KN/m;SDz=9.212E+05KN/m;SRx=078E+09KN.m/rad; 4主要材料及配筋说明 (1) 空心板选用C50混凝土 (2) 预应力钢绞线公称直径mm s 2.15φ,1根钢绞线截面积2 139mm A p =,抗拉强度标准值Mpa f pk 1860=,锚具变形总变形值为12mm。横截面预应力筋和普通钢筋布置见图4.4.1和图4.4.2。预应力筋有效长度见表4.4.1 图4.4.1边板钢筋钢绞线布置图(cm) 图4.4.2 中板钢筋钢绞线布置图(cm) 图中N9筋(实心黑点)为普通钢筋,其余为钢绞线。 表4.4.1 16米空心板预应力筋有效长度表

midasGTS常见问题释疑

MIDAS/GTS常见问题释疑 第一部分:程序安装 (2) 1.问:启动程序时提示没有发现保护锁? (2) 2.问:启动程序时提示密钥号错误? (2) 第二部分:前处理 (2) 1.问:顶点拟合曲面为何有时不能实现? (2) 2.问:NURSS面与边界面的区别? (2) 3.问:检查重复形状应注意哪些问题? (3) 4.问:几何/合并面线的作用是什么? (3) 5.问:利用‘填充网格’命令将二维单元转变为三维单元时,为什么提示上下面单元数不同? (3) 6.问:为什么在连续点选缩放、平移、分行视图及旋转的时候功能会产生混淆? (3) 7.问:将二衬定义为实体的时候需要注意什么问题? (3) 8.问:“the quadratic 1-dimensional element type is supported”错误命令是什么意思? (3) 9.问:匹配面线命令的作用和用法? (3) 10.问:在加‘面压力’时,其对象类型有‘单元,单元-面’ 有什么区别? (4) 11.问:GTS可以导入导出哪些格式,如何导入电子地图,电子地图抓图的精度如何? (4) 12.问:我们建立地表面的栅格面都是等间距的,但实际的勘测点都是随意的不等间距点,那么该如何生成地表面?可否通过3 点坐标生成地表面或地层面? (4) 13.问:在水头边界定义时,怎样查看水头边界是总水头还是压力水头? (4) 14.问:在几何线或面上加了荷载,可以将荷载直接转化到节点或单元上吗? (4) 15.问:水头边界有哪些类型? (5) 17.问:在GTS里面可不可以显示结构单元的截面特性? (5) 18.问:在GTS里面可不可以对某些常用的功能设置快捷键? (5) 19.问:在GTS里面可不可以实现对某个单元的显示或隐藏? (5) 20.问:出现如图2所示的提示? (5) 21.问:出现如图3所示的提示? (5) 22.问:出现如图4所示的提示? (6) 23.问:在GTS里都否实现单元、节点信息的输入输出? (6) 24.问:为什么加了梯形荷载之后,窗口中显示的荷载数值是梯形变化的,而图形显示是矩形的? (6) 第三部分 分析功能 (6) 1.问:K0法与有限元法有什么区别? (6) 2.问:计算边坡的时候需要注意的哪些问题? (6)

midas_连续梁计算书

第1章89#~92#预应力砼连续梁桥 1.1结构设计简述 本桥为27+27+25.94现浇连续箱梁,断面型式为弧形边腹板大悬臂断面,根据道路总体布置要求,主梁上下行为整体断面,变宽度32.713m -35m,单箱5室结构变截面。箱梁顶板厚度为0.22m,底板厚度0.2m;支点范围腹板厚度0.7m,跨中范围腹板厚度0.4m。主梁单侧悬臂长度为 4.85m,箱梁悬臂端部厚度为0.2m,悬臂沿弧线一直延伸至主梁底板。主梁两侧悬臂设置0.1m后浇带,与防撞护栏同期进行浇筑。 本桥平、立面构造及断面形式如图11.1.1和图11.1.2所示。 图11.1.1 箱梁构造图

图11.1.2 箱梁断面图 纵向预应力采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强f=1860MPa。中支点断面钢束布置如图11.1.3所示。 度 pk 图11.1.3 中支点断面钢束布置图 主要断面预应力钢束数量如下表 墩横梁预应力采用采用φs15-19,单向张拉,如下图。 1.2主要材料 1.2.1主要材料类型 (1) 混凝土:主梁采用C50砼;

(2) 普通钢筋:R235、HRB335钢筋; (3) 预应力体系:采用φs15.2高强度低松弛钢绞线(Ⅱ级)(GB/T5224-1995),标准强度 f=1860MPa;预应力锚具采用符合GB/T14370-2002《预应力筋锚具、 pk 夹具和连接器》中Ⅰ类要求的优质锚具;波纹管采用符合JT/T529-2004标准的塑料波纹管。 1.2.2主要材料用量指标 本桥上部结构主要材料用量指标如表11.2.2-1所示,表中材料指标均为每平米桥面的用量。 表11.2.2-1 上部结构主要材料指标 1.3结构计算分析 1.3.1计算模型 结构计算模型如下图所示。 图11.3.1-1 结构模型图

MIDAS梁格法建模

MIDAS梁格法建模 2021-4-2612:14MIDAS梁格法建模使用该软件,针对于一般的窄桥可以使用单梁进行模拟,遇到宽度较大的桥梁,尽量使用梁格法,有没有人用梁格法建立过模型\用MIDAS进行局部构件分析的,希望能发一些这样的实例上来,谢谢wentao8401全文结束》》-4-2614:29前段时间我集中时间精力学习了下梁格法,有点不太理解你所谓的局部构件分析指的是什么,因为据我所知,midas只有用它的FX+才能算局部分析,或者用ansys的子结构分析也可以。谈谈我对梁格的几点认识: 1、它是一种将空间分析近似为平面干系分析的方法,精确程度可以满足工程需求。适用范围:梁格法主要针对的是宽跨比较大的直线桥以及圆心角较大的曲线梁桥。我个人的理解,只所以需要用梁格子体系来分析结构,就是因为原本当作干系构件的梁因为承受了不能忽视的扭矩以及横向弯曲作用。如对于直线宽桥,活载的偏心布置所产生的扭矩不能简单的用偏载系数这一概念简化。而对于曲线梁桥更是如此,首先恒载的不对称就会产生一部分扭矩,这种效应更使结构不能再用一根杆来进行分析计算。要么在杆件上添加扭矩,要么就得使用梁格法以增加横向杆件数量了。 3、梁格原理:模拟梁格体系,使其受荷效应与原结构等效(不可能那么精确,只能说接近等效)

4、梁格需要注意的几个方面:第一、关于梁格的划分,为保证荷载的正确传递,横向杆件的间距不宜超过纵向梁肋的间距。也就是说纵向梁格的划分以横向梁格划分为标尺,而横向的梁格划分又得遵循划分后各个梁格的中性轴与原截面保持在同一水平高度处(这点很关键,主要是保证梁格纵向弯曲与原结构的等效性)。对于箱梁而言,一般来说,横向梁格划分一个腹板一个梁格。且假若能尽量满足划分梁格后的各个梁格质心与原箱梁腹板的中心重合将对预应力效应模拟的准确性很有帮助。而纵向梁格每跨8到10个梁格可以基本满足精度要求。第二、截面几何特性值的修正,(主要针对箱梁截面)因为划分梁格的截面几何特性相对原截面有较大偏差,需要对纵梁格的抗扭惯性矩,剪切面积以及横向梁格的抗弯惯性矩以及剪切面积进行修正,具体公式我参考的是《上部结构性能》一书上第五章的剪力-柔性梁格法的公式。梁格法的不足:由于梁格法依照平截面假定,因此它考虑不了剪力滞后效应。因此对于少横隔梁的结构假如需要计算其剪力滞效应的话可以使用空间有限元分析软件计算,midas是算不了的,ansys可以。而且梁格法最后所得结果的准确性在很大程度上是于人对梁格的理解掌握能力成正比的,建议假若不需要使用梁格的时候,尽量不用。比如圆心角大于30度的曲桥用midas的单梁模拟精度完全可以相信。以上主要是总结一下自己学习的一些体会,难免有不正确的地方,望高手进一步指点。附上自己认为比较好的一些资料跟模型供大家查阅。希望多多交流。lingboms

栈桥——迈达斯分析验算示例(清晰版)

栈桥分析 北京迈达斯技术有限公司

目 录 栈桥分析 (1) 1、工程概况 (1) 2、定义材料和截面 (2) 定义钢材的材料特性 (2) 定义截面 (2) 3、建模 (4) 建立第一片贝雷片 (4) 建立其余的贝雷片 (8) 建立支撑架 (9) 建立分配梁 (12) 4、添加边界 (17) 添加弹性连接 (17) 添加一般连接 (19) 释放梁端约束 (22) 5、输入荷载 (22)

添加荷载工况 (22) 6、输入移动荷载分析数据 (23) 定义横向联系梁组 (23) 定义移动荷载分析数据 (23) 输入车辆荷载 (24) 移动荷载分析控制 (26) 7、运行结构分析 (27) 8、查看结果 (27) 生成荷载组合 (27) 查看位移 (28) 查看轴力 (29) 利用结果表格查看应力 (30)

栈桥分析 1、工程概况 一座用贝雷片搭建的施工栈桥,跨径15m(5片贝雷片),支承条件为简支,桥面宽6米。设计荷载汽—20,验算荷载挂—50。贝雷片的横向布置为5×90cm,共6片主梁,在贝雷片主梁上布置I20a分配梁,位置作用于贝雷片上弦杆的每个节点处,间距约75cm。如下图所示: 贝雷片参数:材料16Mn;弦杆2I10a槽钢(C 100x48x5.3/8.5,间距8cm),腹杆I8(h=80mm,b=50mm, tf=4.5mm ,tw=6.5mm)。贝雷片的连接为销接。 图1 贝雷片计算图示(单位:mm) 支撑架参数:材料A3钢,截面L63X4。 分配横梁参数:材料A3钢,截面I20a,长度6m。

建模要点:贝雷片主梁用梁单元,销接释放绕梁端y-y轴的旋转自由度;支撑架用桁架单元;分配横梁用梁单元,与贝雷主梁的连接采用节点弹性连接(仅连接平动自由度,旋转自由度不连接);车道布置一个车道,居中布置。 2、定义材料和截面 定义钢材的材料特性 模型 / 材料和截面特性 / 材料/添加 材料号:1 类型>钢材;规范:JTJ(S) 数据库>16Mn (适用) 材料号:2 类型>钢材;规范:JTJ(S) 数据库>A3 确认 定义截面 注:midas/Civil的截面库中含有丰富的型钢截面,同时还拥有强大的截面自定义功能。 模型 / 材料和截面特性 / 截面/添加 数据库/用户 截面号1; 名称:(弦杆) 截面类型:(双槽钢截面) 选择用户定义,数据库名称(GB-YB); 截面名称:C 100x48x5.3/8.5 C:(80mm)点击适用

midas施工阶段分析

目录 Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2) Q2、 POSTCS阶段的意义 (2) Q3、施工阶段定义时结构组激活材龄的意义 (2) Q4、施工阶段分析独立模型和累加模型的关系 (2) Q5、施工阶段接续分析的用途及使用注意事项 (2) Q6、边界激活选择变形前变形后的区别 (3) Q7、体内力体外力的特点及其影响 (4) Q8、如何考虑对最大悬臂状态的屈曲分析 (4) Q9、需要查看当前步骤结果时的注意事项 (5) Q10、普通钢筋对收缩徐变的影响 (5) Q11、如何考虑混凝土强度发展 (5) Q12、从施工阶段分析荷载工况的含义 (5) Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6) Q14、赋予各构件初始切向位移的意义 (6) Q15、如何得到阶段步骤分析结果图形 (6) Q16、施工阶段联合截面分析的注意事项 (6) Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)

Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。 因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。 注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。 Q2、P OSTCS阶段的意义 A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。 施工阶段的荷载效应累计在CS合计中,而POSTCS阶段各个荷载的效应独立存在。 POSTCS阶段荷载效应有ST荷载,移动荷载,沉降荷载和动力荷载工况。 有些分析功能也只能在POSTCS阶段进行:屈曲、特征值。 Q3、施工阶段定义时结构组激活材龄的意义 A3.程序中有两个地方需要输入材龄,一处是收缩徐变函数定义时需输入材龄,用于计算收缩应变;一处是施工阶段定义时结构组激活材龄,用于计算徐变系数和混凝土强度发展。因此当考虑徐变和混凝土强度发展时,施工阶段定义时的激活材龄一定要准确定义。 当进行施工阶段联合截面分析时,计算徐变和混凝土强度发展的材龄采用的是施工阶段联合截面定义时输入的材龄,此时在施工阶段定义时的结构组激活材龄不起作用。 为了保险起见,在定义施工阶段和施工阶段联合截面分析时都要准确的输入结构组的激活材龄。 Q4、施工阶段分析独立模型和累加模型的关系 A4.进行施工阶段分析的目的,就是通过考虑施工过程中前后各个施工阶段的相互影响,对各个施工阶段以及POSTCS阶段进行结构性能的评估,因此通常进行的都是累加模型分析。 对于线性分析,程序始终按累加模型进行分析,如欲得到某个阶段的独立模型下的受力状态,可以通过另存当前施工阶段功能,自动建立当前施工阶段模型,进行独立分析。 在个别情况下,需要考虑当前阶段的非线性特性时,可以进行非线性独立模型分析,如悬索桥考虑初始平衡状态时的倒拆分析,需用进行非线性独立模型分析。 Q5、施工阶段接续分析的用途及使用注意事项 A5.对于复杂施工阶段模型,一次建模很难保证结构布筋合理,都要经过反复调整布筋。 每次修改施工阶段信息后,都必须重新从初始阶段计算。接续分析的功能就是可以指定接续分析的阶段,被指定为接续分析开始阶段前的施工阶段不能进行修改,其后的施工阶段可以进行再次修改,修改完毕后,不必重新计算,只需执行分析〉运行接续

迈达斯Midascivil梁格法建模实例

迈达斯M i d a s c i v i l梁格法建模实例 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

迈达斯Midascivil梁格法建模实例

目录 概要......................................................... 设置操作环境 ................................................. 定义材料和截面 ............................................... 建立结构模型 ................................................. PSC截面钢筋输入 .............................................. 输入荷载 ..................................................... 定义施工阶段 ................................................. 输入移动荷载数据 ............................................. 输入支座沉降 ................................................. 运行结构分析 ................................................. 查看分析结果 ................................................. PSC设计......................................................

相关文档
相关文档 最新文档