文档库 最新最全的文档下载
当前位置:文档库 › 专题二 中考数学转化思想(含答案)-

专题二 中考数学转化思想(含答案)-

专题二 中考数学转化思想(含答案)-
专题二 中考数学转化思想(含答案)-

第2讲转化思想

概述:在解数学题时,所给条件往往不能直接应用,?此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到.

典型例题精析

例1.(2002,上海)如图,直线y=1

2

x+2分别交x,y轴于点A、C、P?是该直线上

在第一象限内的一点,PB⊥x轴,B为垂足,S△ABP=9.

(1)求P点坐标;

(2)设点R与点P在同一反比例函数的图象上,且点R在直线PB右侧.作RT⊥x轴,?T为垂足,当△BRT与△AOC相似时,求点R的坐标.

分析:(1)求P点坐标,进而转化为求PB、OB的长度,P(m,n)?再转为方程或方程组解,因此是求未知数m,n值.

∵S△ABP=9,∴涉及AO长,应先求AO长,由于A是直线y=1

2

x+2与x轴的交点,∴

令y=0,得0=1

2

x+2,∴x=-4,∴AO=4.

∴(4)

2

m n

=9…①

又∵点P(m,n)在直线y=1

2

x+2上,

∴n=1

2

m+2…②

联解①、②得m=2,n=3,∴P(2,3).

(2)令x=0,代入y=1

2

x+2中有y=2,

∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b.

分类讨论:

①当2

4

b

a =…①

又由P点求出可确定反比例函数y=6 x

又∵R(m+a,b)在反比例函数y=6

x

∴b=

6

m a

+

……②

联解①、②可求a,b值,进而求到R点坐标.

②当2

4

a

b

=时,方法类同于上.

例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)?的顶点是A,抛物线y2=x2-2x+1的顶点是B.

(1)判断点A是否在抛物线y2=x2-2x+1上,为什么?

(2)如果抛物线y1=a(x-t-1)2+t2经过点B,

①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形??若能,求出t的值;若不能,请说明理由.

分析:(1)∵y1的顶点为(t+1,t2),代入y2检验

x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2,

∴点A在y2=x2-2x+1的抛物线上.

(2)①由y2=x2-2x+1=(x-1)2+0,

∴y2顶点B(1,0),因为y1过B点,

∴0=a(1-t-1)2+t 2?at2+t2=0.

∵t≠0,∴t2≠0,∴a=-1.

①当a=-1时,y=-(x-t-1)2+t2,

它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2?x-t-1=±t

∴x1=t+t+1=2t+1, x2=-t+t+1=1.

情况一:两交点为E(2t+1,0),F(1,0).

而A(t+1,t2)由对称性有AF=AE(如图)

∴只能是∠FAE=90°,AF2=AD2+DF2.

而FD=OD-OF=t+1-1=t,A D=t2,

∴AF2=t2+t2=AE2,

FE=OE-OF=2t+1-1=2t.

令EF2=AF2+AE2,则有(2t)2=2(t2+t2),4t2=2t4+2t2,

∵t≠0,

∴t2-1=0,

∴t=±1.

情况二:E(1,0),F(2t+1,0)

用分析法若△FAE为直角三角形,由抛物线对称性有AF=AE即△AFE为等腰直角三角形.

且D为FE中点,∵A(t+1,t2),

∴AD=t2,OD=t+1,

∴AD=DE,∴t2=OE-OD=1-(t+1),

t2=-t,∴t1=0(不合题意,舍去),t2=-1.

故这条抛物线与x轴两交点和它们的顶点A能够成直角三角形,这时t=±1.

中考样题看台

1.(2003,海南)已知抛物线y=ax2+bx+c开口向下,并且经过A(0,1)和M(2,-3)两点.

(1)若抛物线的对称轴为x=-1,求此抛物线的解析式;

(2)如果抛物线的对称轴在y轴的左侧,试求a的取值范围;

(3)如果抛物线与x轴交于B、C两点,且∠BAC=90°,求此时a的值.

2.(2003,南宁)如图,已知E是△ABC的内心,∠A的平分线交BC于点F,?且与△ABC 的外接圆相交于点D.

(1)求证:∠DBE=∠DEB;

(2)若AD=8cm,DF:FA=1:3,求DE的长.

3.(2003,山东)如图是由五个边长都是1的正方形纸片拼接而成的,过点A 1的直线分别与BC 1、BE 交于M 、N ,且被直线MN 分成面积相等的上、下两部分. (1)求

1MB +1NB

的值; (2)求MB 、NB 的长;

(3)将图沿虚线折成一个无盖的正方形纸盒后,求点MN 间的距离.

D 2C 2

B 1A 1D 1

C 1

B

C A

E D https://www.wendangku.net/doc/9b13868538.html,

N

M F

4.(2004,云南)如图,MN 表示某引水工程的一段设计路线,从M 到N?的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500?米为半径的圆形区域为居民区,取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400米,通过计算,如果不改变方向,输水线路是否会穿过居民区?

A

B

N

M

5.(2004,丽水市)如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P?从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动,如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),那么 (1)设△POQ 的面积为y ,求y 关于t 的函数解析式;

(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C?是否落在直线AB 上,并说明理由;

(3)当t 为何值时,△POQ 与△AOB 相似.

B A

y x

Q https://www.wendangku.net/doc/9b13868538.html,

P

O

考前热身训练

1.已知抛物线y=(x-2)2-m 2(常数m>0)的顶点为P . (1)写出抛物线的开口方向和P 点的坐标;

(2)若此抛物线与x 轴的两个交点从左到右分别为A 、B ,并且∠APB=90°,试求△ABP 的周长.

2.已知m ,n 是关于x 方程x 2+(

x+2t=0的两个根,且m 2

过点Q (m ,n )的直线L 1与直线L 2交于点A (0,t ),直线L 1,L 2分别与x 轴的负半轴交于点B 、C ,如图,△ABC 为等腰三角形. (1)求m ,n ,t 的值; (2)求直线L 1,L 2的解析式;

(3)若P 为L 2上一点,且△ABO ∽△ABP ,求P 点坐标.

l 2

A

l 1

B

C

y x

Q

O

3.如图,正方形ABCD 中,AB=1,BC 为⊙O 的直径,设AD 边上有一动点P (不运动至A 、D ),BP 交⊙O 于点F ,CF 的延长线交AB 于点E ,连结PE .

(1)设BP=x ,CF=y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当CF=2EF 时,求BP 的长;

(3)是否存在点P ,使△AEP ∽△BEC (其对应关系只能是A ?B ,E ?E ,P ?C )?如果存在,?试求出AP 的长;如果不存在,请说明理由.

B

C

E

答案:

中考样题看台

1.(1)抛物线解析式是y=-1

2

x2-x+1

(2)由题意得:

1

423

c

a b c

=

?

?

++=-

?

消去c,得b=-2a-2,?

又∵抛物线开口向下,对称轴在y轴左侧,

2

a

b

a

<

?

?

?

-<

??

∴b<0,∴b=-2a-2<0,解得a>-1,

∴a的取值范围是-1

(3)由抛物线开口向下,且经过点A(0,1)知:

它与x轴的两个交点B、C分别在原点的两旁,

此时B、C两点的横坐标异号OA=c=1,

又∠BAC=90°,∴点A必在以BC为直径的圆上;

又∵OA⊥BC于O,∴OA2=OB·OC,

又∵b=-2a-2,c=1,

∴抛物线方程变为:y=ax2-2(a+1)x+1,

设此抛物线与x轴的两个交点分别为B(x1,0),C(x2,0),则x1、x2是方程ax2-2(a+1)x+1=0的两根,

∴x1·x2=1

a

,∴OB·OC=│x1│·│x2│=│x1x2│=-x1x2,(∵x1·x2<0),?

∴OB·OC=-1

a

又∵OA2=OB·OD,OA=1,

∴1=-1

a

,解得a=-1,

经检验知:当a=-1时,所确定的抛物线符合题意,故a的值为-1.2.(1)证明,由已知∴∠1=∠2,∠3=∠4,

∵∠BED=∠3+∠1,∠5=∠2,∴∠4+∠5=∠3+∠1,即∠EBD=∠BED.(2)△BFD∽△ABD,∴BD2=AD·FD.

∵DF:FA=1:3,AD=8,∴DF:AD=1:4,

1

84

DF =,DF=2cm ,∴BD 2=16,∴DE=BD=4cm . 3.(1)∵

111NB MB A B MB =,即11

NB MB

MB =-, 得MB+NB=MB ·NB ,两边同除以MB ·NB 得1MB +1

NB

=1. (2)

12MB ·NB=5

2

,即MB ·NB=5, 又由(1)可知MB+NB=MB ·NB=5,

∴MB 、NB?分别是方程x 2

-5x+5=0的两个实数根,x 1

=

52+,x 2

=52

-, ∵MB

(3)B 1

MN=1.

4.解:过A 作AC ⊥MN 于C ,设AC 长为x 米,由题意可知,∠AMC=30°,∠ABC=45°, ?∴MC=AC ·cot30°=3x ,BC=AC=x ,

∵MC-BC=MB=400

.解得x=200(3+1)(米).? ∴x>500,∴不改变方向,输水线路不会穿过居民区.

5.解:(1)∵OA=12,OB=6,由题意,得BQ=1×t=t ,OP=1×t=t . ∴OQ=6-t ,∴y=12×?OP ×OQ=12×t (6-t )=-12

t 2

+3t (0≤t ≤6) (2)∵y=-

12

t 2

+3t ,∴当y 有最大值时,t=3, ∴OQ=3,OP=3,即△POQ 是等腰三角形.?

把△POQ 沿PQ 翻折后,可得四边形OPCQ 是正方形, ∴点C 的坐标是(3,3),∵A (12,0),B (0,6), ∴直线AB 的解析式为y=-1

2

x+6, 当x=3时,y=

9

2

≠3,

∴点C不落在直线AB上.(3)△POQ∽△AOB时,

①若OQ OP

OB OA

=,即

6

612

t t

-

=,12-2t=t,

∴t=4.②若OQ OP

OA OB

=,即

6

126

t t

-

=,6-t=2t,∴t=2,?

∴当t=4或t=2时,△POQ与△AOB相似.

考前热身训练

1.(1)开口向上,P(2,-m2).

(2)设对称轴与x轴交于点C,令(x-2)2-m2=0,得x1=-m+2,x2=m+2,∴A(-m+2,0),B(?m+2,0),

∴AC=│2-(-m+2)│=m,(∵m>0)由抛物线对称性得

PA2=AC2+PC2=m2+(-m2)2.

∵∠APB=90°,

∴易证AC=PC,

即│m│=│-m2│,∴m1=0,m2=±1.

∵m>0,∴m=1,

∴△ABC的周长为

2.(1)m=-2,

(2)L1:y2

L2:

y=

3

(3)过B作BP1⊥AC于P1,则P1(3

2

2

),

过B作BP2⊥AB于P2,则P2(-2

2

).

3.(1)y=1

x

).(2)

(3)若△AEP∽△BEC,则AE AP

BE BC

=,易知Rt△BAP≌Rt△CBE,BE=AP.

B

C

A

y

x

P

O

设AP=t (0

11

t t

t -=,∴,又∵0

∴P 点存在,且AP=1

2

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

人教中考数学提高题专题复习圆的综合练习题含答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x =上时停止旋转,旋转过程中,AB边交直线y x =于点M,BC边交x轴于点N(如图). (1)求边OA在旋转过程中所扫过的面积; (2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数; (3)设MBN ?的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论. 【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析 【解析】 试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积; (2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数; (3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子. 试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°, ∴OA旋转了45°. ∴OA在旋转过程中所扫过的面积为 2 452 3602ππ ? =. (2)∵MN∥AC, ∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°. ∴∠BMN=∠BNM.∴BM=BN. 又∵BA=BC,∴AM=CN. 又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN. ∴∠AOM=∠CON=1 2(∠AOC-∠MON)= 1 2 (90°-45°)=22.5°. ∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化. 证明:延长BA交y轴于E点, 则∠AOE=45°-∠AOM,∠CON=90°-45°-∠AOM=45°-∠AOM, ∴∠AOE=∠CON. 又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.

2020年中考数学专题复习1新情境应用问题

中考数学专题复习1:新情境应用问题 Ⅰ、综合问题精讲: 以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新颖,立意巧妙,有利于对考生应用能力、阅读理解能力。问题转化能力的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析,新情境应用问题有以下特点:(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力.解应用题的难点是能否将实际问题转化为数学问题,这也是应用能力的核心. Ⅱ、典型例题剖析 【例1】(2005,宜宾)如图(8),在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P处,并以20千米/ 时的速度向西偏北25°的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张. (1)当台风中心移动4小时时,受台风侵袭的圆形区域

半径增大到千米;又台风中心移动t小时时,受 台风侵袭的圆形区域半径增大到千米. (2)当台风中心移动到与城市O距离最近时,这股台风 是否侵袭这座海滨城市?请说明理由(参考数据2 1.41 ≈,≈). 3 1.73 解:(1)100;(2)(6010)t +; ⑶作OH PQ OH=(千米),设经⊥于点H,可算得1002141 过t小时时,台风中心从P移动到H,则 t=(小时),此时,受 ==52 PH t 201002 台风侵袭地区的圆的半径为:601052130.5 +? (千米)<141(千米) ∴城市O不会受到侵袭。 点拨:对于此类问题常常要构造直角三角形.利用三角函数知识来解决,也可借助于方程. 【例2】如图2-1-5所示,人民海关缉私巡逻艇在东

数学的转化思想

中考数学专题复习之三:数学的转化思想 【中考题特点】: 转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】: 例1:已知:n m ,满足13,132 2 =-=-n n m m , 求 n m m n +的值。 例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4 1 =0中至少有一个方程有实数根,求m 的取值范围。 例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。 A B C D E F

例4:已知方程组 kx 2-x -y+ 2 1=0 y=k(2x -1) (x 、y 为未知数) 有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1 x 1y y 2 121=++,求实数k 的值。 例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【练习】: 1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求 b a 的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。 A B C D E F P

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

中考数学专题提升(一)

二轮专题提升 专题提升(一) 综合型问题 1.[2012·荆门]如图Z-1-5,△ABC是等边三角形,P是∠ABC的平分线BD 上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为(C) 图Z-1-5 A.2B.2 3 C. 3 D.3 【解析】∵△ABC是等边三角形,P是∠ABC的平分线, ∴∠EBP=∠QBF=30°.∵BF=2,FQ⊥BP, ∴BQ=BF·cos30°=2× 3 2= 3. ∵FQ是BP的垂直平分线,∴BP=2BQ=2 3.在Rt△BEP中,∵∠EBP=30°, ∴PE=1 2BP= 3.故选C. 2.[2010·黄冈]已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为 (A) A.1或-2 B.2或-1

C .3 D .4 【解析】 依题意过(0,-3)的直线y =kx -3与y =-1,y =3,x =1所围的四边形有两种情况.分别求出各顶点的坐标(含k ),利用面积等于12分别求出k =1或-2.选A. 3.[2012·嘉兴]如图Z -1-6,在Rt △ABC 中,∠ABC =90°,BA =BC .点D 是 AB 的中点,连结CD ,过点B 作BG ⊥CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:① AG AB =FG FB ;②点F 是GE 的中点;③AF =2 3AB ;④S △ABC =5S △BDF ,其中正确结论的序号是 ①③ . 图Z -1-6 【解析】 ∵在Rt △ABC 中,∠ABC =90°, ∴AB ⊥BC .∵AG ⊥AB ,∴AG ∥BC , ∴△AFG ∽△CFB , ∴AG CB =FG FB . ∵BA =BC ,∴ AG AB =FG FB , 故①正确; ∵∠ABC =90°,BG ⊥CD , ∴∠DBE +∠BDE =∠BDE +∠BCD =90°,

初中数学中的“转化思想”

初中数学中的“转化思想” [摘要]:随着课程改革的深入展开,培养学生的能力越来越重要,数学学习更应重视数学思想方法的渗透和培养。本文从几方面论述了转化思想在数学学习中的重要作用:转化思想可以使学生经历探索的学习过程,改变学生的学习方式,转化思想能培养学生创新思维能力及逻辑思维能力,是一种很重要的思维方法;转化思想可以增强学生的数学应用意识,提高解决问题的能力,从而,大大加强学生学习数学的兴趣。 [关键词]:转化思想数学学习逻辑思维应用意识学习兴趣 [引言]:人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,每种数学思想都有它一定的应用范围,但笔者在数学实践中体会到,在学生的数学学习过程中,决不能忽视转化数学思想所起的重要作用,在教学中必须重视转化思想的渗透和培养。 转化是解数学题的一种重要的思维方法,转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现。就解题的本质而言,解题既意味着转化,既把生疏问题转化为熟习问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题;把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等,因此学生学会数学转化,有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 数学转化思想、方法无处不在,它是分析问题、解决问题有效途径,它包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。转化的目的是不断发现问题,分析问题和最终解决问题。在数学中,很多问题能化复杂为简单,化未知为已知,化部分为整体,化一般为特殊,……等等,下面就“转化思想”在初中数学的应用通过举例作个简单归纳。

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学总复习 教学案 3.5 函数的综合运用

3-6 函数的综合运用 知识考点: 会综合运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。 精典例题: 【例1】如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于C 点,与x 轴交于D 点,OB =10,tan ∠DOB = 3 1 。 (1)求反比例函数的解析式; (2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 之间的函数关系式;并写出自变量m 的取值范围。 (3)当△OCD 的面积等于2 S 时,试判断过A 、B 两点的抛物线 在x 轴上截得的线段长能否等于3?如果能,求出此时抛物线的解析式;如果不能,请说明理由。 解析:(1)x y 3 = (2)A (m ,m 3),直线AB :m m x m y -+=31 D (3-m ,0) )31(321m m S S S ADO BDO +?-=+=?? 易得:30<

中考数学复习专题 转化思想(含答案)

转化思想 一. 选择题:(本题10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分;共40分) 1、用换元法解方程x x x x + =++222 1时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=0 2、如图,已知ABC ?外有一点,P 满足PC PB PA ==,则( ) A 、22 3 1∠= ∠ B 、21∠=∠ C 、221∠=∠ D 、2,1∠∠的大小无法确定 3、小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2 3.5 4.9h t t =-(t 的单位:s , h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A 、0.71s B 、 0.70s C 、0.63s D 、0.36s 4、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直 径的圆交AB 于D ,若AD=8cm ,则阴影部分的面积为 ( ) A 、64πcm 2 B 、64 cm 2 C 、32 cm 2 D 、48 πcm 2 5、已知实数x 满足0112 2 =+++ x x x x ,那么x x 1+的值为( ) A 、1或-2 B 、-1或2 C 、1 D 、-2 6、如图,在半圆的直径上作4个正三角形,如这半圆周长为1C ,这4个正三角形的周长和为2C ,则1C 和2C 的大小关系是( ) 第2题 第3题 第4题 第6题

A 、1C >2C B 、1 C <2C C 、1C =2C D 、不能确定 7.如图,点A 、D 、G 、M 在半圆O 上,四边形 ABOC 、DEOF 、HMNO 均为矩形,设BC=aEF=b ,NH=c ,则下列各式中正确的是 A 、a >b >c B 、a=b=c C 、c >a >b D 、b >c >a 8. 如图,梯形ABCD 中,AB//DC ,AB =a ,BD =b ,CD =c , 且a 、b 、c 使方程ax bx c 220-+=有两个相等实数根,则∠DBC 和∠A 的关系是( ) A. ∠=∠DBC A B. ∠≠∠DBC A C. ∠>∠DBC A D. ∠<∠DBC A 9. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周 上从点A 出发绕侧面一周,再回到点A 的最短的路线长是( ) (A) 36 (B) 2 3 3 (C) 33 (D) 3 10. 已知a 、b 、c 是?ABC 三边的长,b>a =c ,且方程 ax bx c 220-+=两根的差的绝对值等于2,则?ABC 中 最大角的度数是( ) A. 90? B. 120? C. 150? D. 60? 二、填空题:(本大题共4小题,每小题5分,共20分,) 11、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为__________ 12、某同学在电脑中打出如下排列的若干个圆(图中●表示实心圆, ○表示空心圆): ● ○●●○●●●○●●●●○●●●●●○●●●●●●○ 若将上面一组圆依此规律复制得到一系列圆,那么前2007个圆中有 个空心圆; 13、二次函数y=ax 2+bx+c (a ≠0)的部分对应值如下表,则不等式ax 2+bx+c>0的解集为 . H N O F C A D G M c a b E B 第7题 第8题 D C 1 2 A B 第9题 第11题

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2018年中考数学方法技巧:专题五-转化思想训练(含答案)

2.[2016·扬州]已知M=a-1,N=a2-a(a为任意实数),则M、N的大小关系为() 方法技巧专题五转化思想训练 转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等. 一、选择题 1.[2015·山西]我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而 得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x 1 =0,x 2 =2.这种解法体现的数学思想是() A.转化思想B.函数思想 C.数形结合思想D.公理化思想 27 99 A.M<N B.M=N C.M>N D.不能确定 3.[2016·十堰]如图F5-1所示,小华从A点出发,沿直线前进10m后左转24°,再沿直线前进10m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是() A.140m B.150m C.160m D.240m 图F5-1 4.[2016·徐州]图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是() 图F5-2 A.1或9B.3或5 C.4或6D.3或6 二、填空题 5.[2017·烟台]运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x的取值范围是________. 图F5-3

2.A [解析] ∵N -M =a 2 - a -( a -1)=a 2-a +1=(a - )2+ >0,∴M <N .故选 A . 6.[2016·达州] 如图 F 5-4,P 是等边三角形 ABC 内一点,将线段 AP 绕点 A 顺时针旋转 60°得到线段 AQ ,连结 BQ .若 PA =6,PB =8,PC =10,则四边形 APBQ 的面积为________. 图 F 5-4 7.[2016·宿迁] 如图 F 5-5,在矩形 ABCD 中,AD =4,点 P 是直线 AD 上一动点,若满足△PBC 是等腰三角形的 点 P 有且只有 3 个,则 AB 的长为________. 图 F 5-5 三、解答题 8.如图 F 5-6①,点 O 是正方形 ABCD 两条对角线的交点.分别延长 O D 到点 G ,OC 到点 E ,使 OG =2OD ,OE =2OC , 然后以 OG 、OE 为邻边作正方形 OEFG ,连结 AG ,DE . (1)求证:DE ⊥AG ; (2)正方形 ABCD 固定,将正方形 OEFG 绕点 O 逆时针旋转 α 角(0°<α <360°)得到正方形 OE ′F ′G ′,如图②. ①在旋转过程中,当∠OAG ′是直角时,求 α 的度数; ②若正方形 ABCD 的边长为 1,在旋转过程中,求 AF ′长的最大值和此时 α 的度数,直接写出结果,不必说明理 由. 图 F 5-6 参考答案 1.A 7 2 1 3 9 9 2 4 注:此题把比较两个式子的大小转化为比较两个代数式的差的正负. 3.B [解析] ∵多边形的外角和为 360°,这里每一个外角都为 24°,∴多边形的边数为 360°÷24°=15.

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

2020中考数学复习突破与提升专题提升练习(五类常用数学思想分类汇编)(无答案)

2020中考数学复习突破与提升专题提升练习 (五类常用数学思想分类汇编) 类型一整体思想 1. (2019·宁波)小慧去花店购买鲜花,若买5枝玫瑰和3枝百合,则她所带的钱还剩下10元;若买3枝玫瑰和5枝百合,则她所带的钱还缺4元.若只买8枝玫瑰,则她所带的钱还剩下( ) A.31元 B.30元 C.25元 D.19元 2.(2019·内江)若x,y,z为实数,且{x+2y-z=4, x-y+2z=1,则代数式x2-3y2+z2的 最大值是. 3.(2019·厦门思明区模拟)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长的直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为. 4. .(2018·常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.

类型二转化思想 1. (2019·河南开封模拟)运用图形变化的方法研究下列问题:如图,AB是☉O的直径,CD,EF是☉O的弦,且AB∥CD∥EF,AB=10, CD=6,EF=8,则图中阴影部分的面积是( ) A. π B.10π C.24+4π D.24+5π 2. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度. 3.(2019·十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为. 4. 如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋 = . 转,当∠ABF最大时,S △ADE 5.(2019·宝安模拟)如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为.

专题二 中考数学转化思想(含答案)-

第2讲 转化思想 概述:在解数学题时,所给条件往往不能直接应用,?此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到. 典型例题精析 例1.(2002,上海)如图,直线y= 1 2 x+2分别交x ,y 轴于点A 、C 、P?是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9. (1)求P 点坐标; (2)设点R 与点P 在同一反比例函数的图象上,且点R 在直线PB 右侧.作RT ⊥x 轴,?T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标. 分析:(1)求P 点坐标,进而转化为求PB 、OB 的长度,P (m ,n )?再转为方程或方程组解,因此是求未知数m ,n 值. ∵S △ABP =9,∴涉及AO 长,应先求AO 长,由于A 是直线y= 1 2 x+2与x 轴的交点,∴令y=0,得0= 1 2x+2, ∴x=-4, ∴AO=4. ∴(4)2 m n =9…① 又∵点P (m ,n )在直线y=1 2 x+2上, ∴n=1 2 m+2…② 联解①、② 得m=2,n=3, ∴P (2,3).

(2)令x=0,代入y=1 2 x+2中有y=2, ∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b. 分类讨论: ①当2 4 b a =…① 又由P点求出可确定反比例函数y=6 x 又∵R(m+a,b)在反比例函数y=6 x 上 ∴b= 6 m a + ……② 联解①、②可求a,b值,进而求到R点坐标. ②当2 4 a b =时,方法类同于上. 例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)?的顶点是A,抛物线y2=x2-2x+1的顶点是B. (1)判断点A是否在抛物线y2=x2-2x+1上,为什么? (2)如果抛物线y1=a(x-t-1)2+t2经过点B, ①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形??若能,求出t的值;若不能,请说明理由. 分析:(1)∵y1的顶点为(t+1,t2),代入y2检验 x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2, ∴点A在y2=x2-2x+1的抛物线上. (2)①由y2=x2-2x+1=(x-1)2+0, ∴y2顶点B(1,0),因为y1过B点, ∴0=a(1-t-1)2+t 2?at2+t2=0. ∵t≠0,∴t2≠0,∴a=-1. ①当a=-1时,y=-(x-t-1)2+t2, 它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2?x-t-1=±t ∴x1=t+t+1=2t+1, x2=-t+t+1=1. 情况一:两交点为E(2t+1,0),F(1,0).

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2020年中考数学基础题型提分讲练专题24计算能力提升(含解析)

专题24 计算能力提升专题卷 (时间:90分钟 满分120分) 一、选择题(每小题3分,共36分) 1. x 的取值范围是( ) A .x≥4 B .x >4 C .x≤4 D .x <4 【答案】D 【解析】 4﹣x >0, 解得:x <4 即x 的取值范围是:x <4 故选D . 【点睛】 此题主要考查了二次根式有意义的条件,正确把握定义是解题关键. 2.(2019·湖北初二期中)已知3y =,则2xy 的值为( ) A .15- B .15 C .152 - D . 152 【答案】A 【解析】 由3y = ,得 250{520 x x -≥-≥, 解得 2.5{ 3 x y ==-. 2xy =2×2.5×(-3)=-15, 故选A . 3.(2019·四川中考真题)若:3:4a b =,且14a b +=,则2a b -的值是( ) A .4 B .2 C .20 D .14

【答案】A 【解析】 解:由a :b =3:4:3:4a b =知34b a =, 所以43 a b = . 所以由14a b +=得到:4143 a a +=, 解得6a =. 所以8 b =. 所以22684a b -=?-=. 故选:A . 【点睛】 考查了比例的性质,内项之积等于外项之积.若 a c b d =,则ad bc =. 4.(2019·湖北中考真题)已知二元一次方程组1249x y x y +=??+=? ,则22 22 2x xy y x y -+-的值是( ) A .5- B .5 C .6- D .6 【答案】C 【解析】 1249x y x y +=?? +=? ① ②, 2②-①×得,27y =,解得7 2 y =, 把7 2y = 代入①得,712x +=,解得52 x =-, ∴222222()()() x xy y x y x y x y x y -+-=-+-572261 x y x y -- -===-+, 故选C. 【点睛】 本题考查了解二元一次方程组,分式化简求值,正确掌握相关的解题方法是关键. 5.(2019·甘肃中考真题)1x =是关于x 的一元一次方程220x ax b ++=的解,则24a+b=( )

2019年中考数学运用转化思想解决数学问题

2019年中考数学运用转化思想解决数学问题各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 转化思想和构造思想是数学中两大基本的数学思想,本文就是想利用转化思想最重要也是最有效的思想之一转化为已能解决的问题来解竞赛题。本文以竞赛题目中经常会出现一些关于素数、带余除法、完全平方数等问题为着手点,这些都是属于初等数论范畴,而且这些知识几乎在每年竞赛题中都会出现,包括高中数学联赛、冬令营、中国国家队选拔考试,乃至在IMO考试中都是必考的内容,所以大家应该对此给予重视。对于数论的学习,不能操之过急,应该首先把数论的基础知识和性质认真的系统的学习一遍,对竞赛中出现相应的题目进行反思,这一点是很重要的。一同来体会一下最近几年全国和各省市初中

竞赛题目中常见的问题,如何把问题转化。 例1 设m是不能表示为三个互不相等的合数之和的最大整数,求m的值。 分析不妨先求出三个互不相等的合数之和,即4+6+8=18,所以容易想到17是不能表示为三个互不相等的合数之和的最大整数。 解:由于4+6+8=18,故下面就来证明m的最大整数是17。 当m>18时,若,则m>9 即任意大于18的整数均可以表示为三个互不相等的合数之和,故m=17 此题容易入手,逆向去考虑,采取极端性想法使问题得以解决。 例2 求满足等式的正整数x、y。 分析此问题容易想到因式分解,再加之问题里有数2003,因为2003是质数,这也是一个信息。

解:观察式子特点不难得出 故所求的正整数对x,y)=1,2003),2003,1) 此问题考察的重点在于因式分解。 例3 如果对于不小于8的自然数n,当3n+1是一个完全平方数时,n+1都能表示成k个完全平方数的和,那么k的最小值是________。 分析采取分析法,因为是一个完全平方数,所以设,再去推导n和a的关系,使问题不断得到解决。 解:由已知是一个完全平方数,所以就设#p#分页标题#e# ,显然不是3的倍数,于是,从而 即,所以k的最小值是3 此方法是解决数论问题的一个常用的,也是基本的一个方法。

相关文档
相关文档 最新文档