文档库 最新最全的文档下载
当前位置:文档库 › 一阶单容上水箱的特性测试及PID参数整定实验报告-重

一阶单容上水箱的特性测试及PID参数整定实验报告-重

一阶单容上水箱的特性测试及PID参数整定实验报告-重
一阶单容上水箱的特性测试及PID参数整定实验报告-重

控制专业实验二

—单容上水箱的特性测试

及PID参数整定

成绩________

单位(二级学院):

学生姓名:

专业:

班级:

学号:

指导教师:

负责项目:

时间:2014年5月1日

一、实验目的

1)、熟悉单容水箱的数学模型及其阶跃响应曲线。

2)、根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。

3)、通过实验熟悉单回路反馈控制系统的组成和工作原理。

4)、分析分别用P、PI和PID调节时的过程图形曲线。

5)、定性地研究P、PI和PID调节器的参数对系统性能的影响。

二、实验设备

AE2000A型过程控制实验装置、MCGS程序运行环境、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验原理

1)、对象特性测试

对象数学模型的建立通常采用两种方法。一种是分析法,即根据过程的机理,物料或能量平衡关系求得它的数学模型;另一种是用实验的方法确定。本装置采用实验方法通过被控对象对阶跃信号的响应来确定它的参数及数学模型。由于此方法较简单,因而在过程控制中得到了广泛地应用。

图3-1 单容自衡水箱特性测试系统(a)结构图(b)方框图

如图3-1.阀门F1-1、F1-3和F1-6全开,设下水箱流入量为Q1,改变电动

调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-10的开度可以改变Q2。液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。若设水箱的进水量为Q 1,出水量为Q 2,水箱的液面高度为h ,出水阀V 2固定于某一开度值。根据平衡时和动态时的进出水量关系,可得:

平衡时:

12()()0Q t Q t -=

动态时:

1222()()()()()()dV t dh t Q t Q t A dt dt h t Q t R ?

-==?????=

??

由以上两式联立可得,

12()()

()h t dh t Q t A R dt

?-

=?

对以上式进行拉氏变换可得,

21212()()

()()()1

R H s H s Q s A S H s R Q s A R S ?-

=???=

??+ 我们对所得出的进行近似,可得,

22()11

R K

G s A R S T S ?=

=

??+?+ 此时,若1Q 有节约变化量0X ,拉氏变换式0

1()X Q s S

?=

,则

000()11X KX KX K

H s T S S S S T

=

?=-

?++ 取拉氏反变换,可得

0()(1)t

T

h t KX e

-=-

当t →∞时,

00

()(0)

()(0)h h h h KX K X ∞-∞-=?=

当t T =时,

100()(1)0.632h T KX e KX -=-=

上式表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图3-2(a )所示,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。也可由坐标原点对响应曲线作切线OA ,切线与稳态值交点A 所对应的时间就是该时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。

图3-2 单容水箱的阶跃响应曲线

如果对象具有滞后特性时,其阶跃响应曲线则为图3-2(b ),在此曲线的拐点D 处作一切线,它与时间轴交于B 点,与响应稳态值的渐近线交于A 点。图中OB 即为对象的滞后时间τ,BC 为对象的时间常数T ,所得的传递函数为:

H(S)=Ts

Ke s

+-1τ

2)、PID 参数整定

如图3-3所示,被控量为上水箱的液位高度,实验要求水箱的液位稳定在给定值上。压力传感器LT1检测到的上小水箱液位信号作为反馈信号,在与给定量比较后的偏差值通过调节器PID 运算输出来控制电动调节阀的开度,以达到控制水箱液位的目的。

图3-3 上小水箱单容液位定值控制系统

(a)结构图 (b)方框图

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。

调节器参数的整定一般有两种方法:一种是理论计算法,即根据广义对象的数学模型和性能要求,用根轨迹法或频率特性法来确定调节器的相关参数;另一种方法是工程实验法,通过对典型输入响应曲线所得到的特征量,然后查照经验表,求得调节器的相关参数。工程实验整定法有四种,即经验法、临界比例度法、衰减曲线法及动态特性参数法。

四、实验内容和步骤

本实验选择上水箱作为被测对象。

1.实验前的准备工作:

(1)将“AT-I智能调节仪”挂件或“AT-III数据采集卡”挂到网孔板上,将挂

件的通讯线插头连接到计算机串口1。(注意串口连线时至少保证一方断电) (2)管路连接:将工频泵出水口和支路1进水口连接起来;将支路1出水口和上

小水箱进水口连接起来;将上小水箱出水口和储水箱进水口连接起来。

(3)将储水箱中贮足水量,然后将阀门F1-1、F1-3、F1-4、F1-6全开,将上小

水箱出水阀门F1-10开至适当开度(30%~80%),其余阀门均关闭。

(4)按图4-1接好设备电路,检查电路。

图4- 1 实验接线图

2. 实验内容:

对象特性测试

1)管路、阀门、接线检查无误后接通总电源开关,打开单相I开关、24V电源开关、电动调节阀开关。

2)打开上位机MCGS组态软件,进入MCGS运行环境,在主菜单中点击“实验一、一阶单容上水箱特性测试实验”,进入“实验一”的监控界面。如图4-2.

图4-2 对象特性测试软件界面

3)调节电动调节阀的开度的初值(在15&-25%之间为好,防止后期溢出),静静等待液上水箱的液位达到稳态,记录-此时的仪表输出值和液位值。

4)修改电动调节阀的开度,即给予阶跃干扰,(此增量不宜过大,以免水箱中水溢出),于是水箱的液位便离开原平衡状态,经过一段时间后,水箱液位进入新的平衡状态,记录此时的调节器输出值和液位测量值,液位的响应过程曲线将如图4-3所示。

图4-3 单容水箱液位阶跃响应曲线

5)根据前面记录的液位值和调节器输出值,计算K值,再根据图4-3中的实验曲线求得T值,写出单容水箱的传递函数。

调节器PID参数整定

1)选择调节器PID参数整定方法

建议选择“衰减曲线法”,即4:1衰减曲线法。

2)管路、阀门、接线检查无误后接通总电源开关,打开单相I开关、24V电源开关、电动调节阀开关。

3)打开上位机MCGS组态软件,进入MCGS运行环境,先在主菜单中点击“实验一、一阶单容上水箱特性测试实验”,进入“实验一”的监控界面。如上图4-2.待液位达到稳态后,在主菜单中点击“实验四、上水箱液位参数整定控制试验”,进入“实验四”的监控页面,如下图4-4.

4-4 液位PID参数整定实验软件界面

4)在监控页面中首先调整比例度的值(从大向小调整),每次调整,都需要调节电动调节阀的开度,即给予阶跃干扰(注意,小心溢出)。若比例度值合适,则衰减比大致在4:1与10:1之间。

5)若比例度值调整合适,则保持比例度值不变,调整积分时间,方法同上。

6)若积分时间也调整合适,则调整微分时间(从大向小调整)。每次调整,都需要调节电动调节阀的开度,即给予阶跃干扰(注意,小心溢出)。经过PID 调节后,对于给予的阶跃干扰,液位高度都能很快速、平稳的重新达到稳态。

五、实验结果与分析 1)、对象特性测试

(1)作出一阶环节的阶跃响应曲线。

(2)根据实验原理中所述的方法,求出一阶环节的相关参数。 由原理处公式推导,我们利用两点法公式

?????

==

∞0

)(0

)(632.0h KX h x K T 可以得到

845%

-21.70

-50.17==

K

=T 7.272

则 H(S)=S

e Ts Ke s

s 272.71841+=+--ττ

2)、液位PID 参数整定

(1)用经验试凑法整定调节器的参数,写出三种调节器的余差和超调量。 根据公式: 连续PID :

1

()

()[()()]b

p D

i

de t u t k e t e t dt T T dt =+

+?

离散PID :

()

(1)1

()[()()()]k

D

p k k j i

T T

U k k E k E j E E T T -==+

+

-∑

对公式分析可得: p p r s k M T T ↑?↑↓↓?↓

i p T M ↓?↑?=

D r s p T t t M ↑?↓↓↓

(2)作出P 调节器控制时的阶跃响应曲线并分析。

分析:经过不断细致的调整,始终不能获得满意的阶跃响应曲线。当比例度大于10时,超调量不能超过预设调节值,稳态值更低,知是比例度仍略高。而当比例度在3至10之间调整时,超调量可以超过预设值,但不能获得衰减比在4:1左右的响应曲线。继续调小时,发现响应曲线呈等谐振荡直至放大趋势。故

调整比例度在3时,调节积分时间。

(3)作出PI调节器控制时的阶跃响应曲线并分析。

分析:加上积分时间的调节后,超调量能够满足要求,但仍不能获得衰减比在4:1左右的响应曲线。在比例度为3,积分时间为2时又发生临界等谐振荡的情况。现有的比例积分调节后续震荡,故考虑加入微分调节,抑制超调。

(4)画出PID控制时的阶跃响应曲线并分析。

分析:在比例积分调节不能获得很好的调节效果后,果断加入微分调节,成功解决比例积分调节的振动问题。比例度为3,积分时间为2,微分时间为1.获得良好的阶跃响应曲线。

一阶单容上水箱对象特性的测试实验报告

《控制工程实验》实验报告 实验题目:一阶单容上水箱对象特性的测试 课程名称:《控制工程实验》 姓名: 学号: 专业: 年级: 院、所: 日期: 2019.04.05

实验一一阶单容上水箱对象特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2. 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3. 掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1. 实验装置对象及控制柜 1套 2. 装有Step7、WinCC等软件的计算机 1台 3. CP5621专用网卡及MPI通讯线各1个 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1 所示为单容自衡水箱特性测试结构图及方框图。阀门F 1-1和F 1-6 全开,设上水箱 流入量为Q 1,改变电动调节阀V1的开度可以改变Q 1 的大小,上水箱的流出量为 Q 2,改变出水阀F 1-11 的开度可以改变Q 2 。液位h的变化反映了Q 1 与Q 2 不等而引起 水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量,h为其输出变量, 则该被控过程的数学模型就是h与Q 1 之间的数学表达式。 根据动态物料平衡关系有: (1) 变换为增量形式有: (2) 其中:,,分别为偏离某一平衡状态的增量; A为水箱截面积

图1 单容自衡水箱特性测试结构图(a)及方框图(b) 在平衡时,Q 1=Q 2 ,=0;当Q 1 发生变化时,液位h随之变化,水箱出口处的 静压也随之变化,Q 2 也发生变化。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2 与h成正比关系,与阀F 1-11 的阻力R成反比,即 或 (3) 式中: R为阀F 1-11 的阻力,称为液阻。 将式(2)、式(3)经拉氏变换并消去中间变量 Q2,即可得到单容水箱的数学模型为 (4) 式中 T 为水箱的时间常数,T=RC;K 为放大系数,K=R;C 为水箱的容量系数。若令 Q1(s)作阶跃扰动,即,=常数,则式(4)可改写为: (5) 对上式取拉氏反变换得 (6) 当 t—>∞时,,因而有

实验1 二阶双容中水箱对象特性测试实验

实验1 二阶双容中水箱对象特性测试实验 一、实验目的 1、熟悉双容水箱的数学模型及其阶跃响应曲线; 2、根据由实际测得的双容液位阶跃响应曲线,分析双容系统的飞升特性。 二、实验设备 AE2000B 型过程控制实验装置、实验连接线 图1 双容水箱系统结构图 三、原理说明 如图1所示:这是由两个一阶非周期惯性环节串联起来,被调量是第二水槽的水位h 2。当输入量有一个阶跃增加?Q 1时,被调量变化的反应曲线如图2所示的?h 2曲线。它不再是简单的指数曲线,而是呈S 形的一条曲线。由于多了一个容器,就使调节对象的飞升特性在时间上更加落后一步。在图中S 形曲线的拐点P 上作切线,它在时间轴上截出一段时间OA 。 这段时间可以近似地衡量由于多了一个容量而使飞升过程向后推迟的程度,因此称容量滞后,通常以τ C 代表之。 设流量Q 1为双容水箱的输入量,下水箱的液位高度h 2为输出量,根据物料动态平衡关系,并考虑到液体传输过程中的时延,其传递函数为: 2112()()* ()(*1)(*1) s H S K G S Q S T S T S e τ-==++

图2 变化曲线 式中K=R3,T1=R2C1,T2=R3C2,R2、R3分别为阀V2和V3的液阻,C1和C2分别为上水箱和下水箱的容量系数。由式中的K、T1和T2须从由实验求得的阶跃响应曲线上求出。具体的做法是在图3所示的阶跃响应曲线上取: 1)h2(t)稳态值的渐近线h2(∞); 2)h2(t)|t=t1=0.4 h2(∞)时曲线上的点A和对应 的时间t1; 3)h2(t)|t=t2=0.8 h2(∞)时曲线上的点B和对应 的时间t2。 然后,利用下面的近似公式计算式2-1中的参数 K、T1和T2。其中:2 () K O h R ∞ == 输入稳态值 阶跃输入量 图3 阶跃响应曲线 4)12 12 t t T T 2.16 + +≈ 对于式(2-1)所示的二阶过程,0.32〈t1/t2〈0.46。当t1/t2=0.32时,为一阶环节;当t1/t2=0.46 h 0.4 0.8 2 h h 1 h 2 2 2

实验五、单容水箱液位PID控制实验(DCS)

实验五、单容水箱液位PID控制实验(DCS) 一、实验目的 1)、熟悉单容水箱液位反馈PID控制系统硬件配置和工作原理。 2)、熟悉用P、PI和PID控制规律时的过渡过程曲线。 3)、定性分析不同PID控制器参数对单容系统控制性能的影响。 二、实验设备 CS4000型过程控制实验装置,DCS系统、 PC机,监控软件。 三、实验原理 一阶单容水箱PID控制方框图 图为单回路上水箱液位控制系统。单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用EPA系统控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如下图中的曲线①、②、③所示。 P、PI和PID 调节的阶跃响应曲线 四、实验步骤

实验报告:单容自横水箱液位特性测试实验报告

过程控制综合实验报告实验名称:单容自衡水箱液位特性测试实验 专业: 班级: 姓名: 学号:

实验方案 一、实验名称:单容自衡水箱液位特性测试实验 二、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。四、实验准备 在所给实验设备准备好时,由实验指导书连线,检查线路之后上电,打开启动按钮,对实验对象进行液位特性测试。通过该实验,我们最后要得到的理想结论是,通过手动控制阀门的开度来对水箱进行液位的特性测试,测试结果应该是,在给实验对象加扰动的情况下,贮蓄容器可以依靠自身重新恢复平衡的过程。 在实验之前,将储水箱中贮足水量,实验过程中选择下水箱作为被测对象,将阀门F1-1、F1-2、F1-8全开,将下水箱出水阀门F1-11开至适当开度,其余阀门均关闭,进行观察实验。

(a)结构图(b)方框图

一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 三相电源(~380V/10A) 远程数据采集模拟量输出模块SA-22、SA-23(24V输入) 三相磁力泵(~380V) 压力变送器 电动调节阀(4~20mA、~220V) 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全 开,设下水箱流入量为Q 1,改变电动调节阀V 1 的开度可以改变Q 1 的大小,下水 箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2 。液位h的变化反映了 Q 1与Q 2 不等而引起水箱中蓄水或泄水的过程。若将Q 1 作为被控过程的输入变量, h为其输出变量,则该被控过程的数学模型就是h与Q 1 之间的数学表达式。

双容水箱液位控制 开题研究报告

双容水箱液位控制开题研究报告

————————————————————————————————作者:————————————————————————————————日期:

自动控制系统课程设计 双容水箱系统 ——开题报告 学校:北京工业大学 学院:电控学院 专业:自动化 班级: 组号:第五组 组员: 实验日期: 指导教师:

目录 1、绪论 (2) 2、研究对象的数学模型及特性分析 (3) 3、控制系统的性能指标要求 (5) 4、控制器的选择与控制方案的设计与仿真 (6) 5、拟采用的实验步骤及理想的实验曲线 (15) 6、模型参数获取的实验设计 (17) 7、附录 (19)

1绪论 双容水箱系统是一种比较常见的工业现场液位系统,在实际生产中,双容水箱控制系统在石油、化工﹑环保﹑水处理﹑冶金等行业尤为常见。通过液位的检测与控制从而调节容器内的输入输出物料的平衡,以便保证生产过程中各环节的物料搭配得当。 经过比较和筛选,串级控制系统PID控制无论是从操作性、经济性还是从系统的控制效果均有比较突出的特性,因此采用串级控制系统PID控制对双容水箱液位控制系统实现控制。 论文以THBDC-1型控制理论?计算机控制技术实验平台为基础的实验数据作为出发点,利用MATLAB的曲线拟合的方法分别仿真出系统中上水箱、下水箱的输出响应曲线。对曲线进行处理求出各水箱的参数,用所求出的参数列写出水箱的传递函数。采用复杂控制系统中的串级控制系统列写出系统框图,根据串级控制系统PID参数整定的方法整定出主控制器和副控制器的P、I、D的数值,从而满足控制系统对各项性能的要求。

最新第一组:一阶单容上水箱对象特性测试实验

实验一、一阶单容上水箱对象特性测试实验 一.实验目的 (1)建立单容水箱阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用作图的方法分别确定它们的参数(时间常数T 、放大系数K )。 二.实验设备 CS2000型过程控制实验装置, PC 机,DCS 控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: 丹麦泵 电动调节阀 V1 DCS控制系统手动输出 h V2 Q1 Q2 图1-1、 单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过DCS 控制系统监控画面——调整画面,(调节器或其他操作器),手动改变(调节阀的开度)对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 五.实验内容步骤 1)对象的连接和检查:

(1)将CS2000 实验对象的储水箱灌满水(至最高高度)。 (2)打开以水泵、电动调节阀、孔板流量计组成的动力支路(1#)至上水箱的出水阀门.关闭动力支路上通往其他对象的切换阀门。 (3)打开上水箱的出水阀至适当开度。 2)实验步骤 (1)打开控制柜中水泵、电动调节阀、24V电源的电源开关。 (2)打开DCS控制柜的电源,打开电脑,启动DCS上位机监控软件,进入主画面,然后进入实验一画面“实验一、一阶单容上水箱对象特性测试实验”。 注满水箱打开出水阀打开阀门,连通电动调节阀 关闭支路阀打开上水箱打开上水箱打开电源 进水阀出水阀 打开泵的开关打开调节阀开关打开24V电源打开DCS控制柜电源

单容液位PID控制

单容水箱液位定值控制实验 (一)实验目的和要求 1、熟悉单回路反馈控制系统的组成和工作原理,研究控制器参数对控制效果的影响; 2、使用P、PI和PID等控制规律进行单容水箱的液位定值控制; 3、分析控制过程中的过渡过程曲线并考察控制参数的影响; 4、运用临界比例度法进行控制器参数的工程整定,以得到理想控制曲线。 (二)工作原理 1、控制系统结构 扰动 上水箱 电动调节阀 DDC系统 给定值+ - 液位 压力变送器 图1 简单控制系统方框图 图1为单回路上水箱液位控制系统。单回路调节系统一般指在一个调节对象上用一个调节器来保持一个参数的恒定,而调节器只接受一个测量信号,其输出也只控制一个执行机构。本系统所要保持的参数是液位的给定高度,即控制的任务是控制上水箱液位等于给定值所要求的高度。根据控制框图,这是一个闭环反馈单回路液位控制,采用工业智能仪表控制。当调节方案确定之后,接下来就是整定调节器的参数,一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会使控制质量变坏,达不到预期效果。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。 一般言之,用比例(P)调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti调节合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。但是,并不是所有单回路控制系统在加入微分作用后都能改善系统品质,对于容量滞后不大,微分作用的效果并不明显,而对噪声敏感的流量系统,加入微分作用后,反而使流量品质变坏。对于我们的实验系统,在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图2中的曲线①、②、③所示。 图 2 P、PI和PID调节的阶跃响应曲线 影响控制系统控制质量的因素有很多,除了被控对象的性质之外,自动化装置能否根据

双容水箱-过控课程设计报告-上海电力_图文(精)

《过程控制系统设计》课程设计报告 姓名: 学号: XXXXXX 班级: XXXXXXXX 指导老师: 设计时间:2014年 1月 11日 ~1月 15日 第一部分双容水箱液位串级 PID 控制实物实验时间:同组人: 一、实验目的 1、进一步熟悉 PID 调节规律 2、学习串级 PID 控制系统的组成和原理 3、学习串级 PID 控制系统投运和参数整定 二、实验原理(画出“ 系统方框图” 和“ 设备连接图” 1、实验设备:四水箱实验系统 DDC 实验软件、四水箱实验系统 DDC 实验软件 2、原理说明: 控制系统的组成及原理 一个控制器的输出用来改变另一个控制器的设定值,这样连接起来的两个控制器称为“串级” 控制器。两个控制器都有各自的测量输入, 但只有主控制器具有自己独立的设定值, 只有副控制器的输出信号送给被控对象, 这样组成的系统称为串级控制系统。本仿真系统的双容水箱串级控制系统如下图 1所示:

图 1 双容水箱串级控制系统框图 串级控制器术语说明 主变量:y1称主变量。使它保持平稳使控制的主要目的 副变量:y2称副变量。它是被控制过程中引出的中间变量 主对象:下水箱;副对象:上水箱 主控制器:PID 控制器 1,它接受的是主变量的偏差 e1,其输出是去改变副控制器的设定值副控制器:PID 控制器 2,它接受的是副变量的偏差 e2,其输出去控制阀门 主回路:若将副回路看成一个以主控制器输出 r2为输入,以副变量 y2为输出的等效环节, 则串级系统转化为一个单回路,即主回路。 副回路:处于串级控制系统内部的,由 PID 控制器 2和上水箱组成的回路 串级控制系统从总体上看, 仍然是一个定值控制系统, 因此, 主变量在干扰作用下的过渡过程和单回路定值控制系统的过渡过程具有相同的品质指标。但是串级控制系统和单回路系统相比, 在结构上从对象中引入一个中间变量(副变量构成了一个回路,因此具有一系列的特点。串级控制系统的主要优点有:

第一节 单容自衡水箱液位特性测试实验

第一节 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (2-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2 Q ??h (2-3)

双容水箱特性的测试

第二节双容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1.THJ-2型高级过程控制系统实验装置 2.计算机、MCGS工控组态软件、RS232/485转换器1只、串口线1根 3.万用表1只 三、实验原理 图2-1 双容水箱对象特性结构图 由图2-1所示,被控对象由两个水箱相串联连接,由于有两个贮水的容积,故称其为双容对象。被控制量是下水箱的液位,当输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-62所示。由图2-2

可见,上水箱液位的响应曲线为一单调的指数函数(图2-2(a)),而下水箱液位的响应曲线则呈S形状(2-2(b))。显然,多了一个水箱,液位响应就更加滞后。 由S形曲线的拐点P处作一切线,它与时间轴的交点为A,OA则表示了对象响应的滞后时间。至于双容对象两个惯性环节的时间常数可按下述方法来确定。 图2-2 双容液位阶跃响应曲线图2-3 双容液位阶跃响应曲线在图2-3所示的阶跃响应曲线上求取: (1)h2(t)|t=t1=0.4h2(∞)时曲线上的点B和对应的时间t1; (2)h2(t)|t=t1=0.8h2(∞)时曲线上的点C和对应的时间t2;然后,利用下面的近似公式计算式 由上述两式中解出T1和T2,于是求得双容(二阶)对象的传递函数为

四、实验内容与步骤 1.接通总电源和相关仪表的电源。 2.接好实验线路,打开手动阀,并使它们的开度满足下列关系: V1的开度>V2的开度>V3的开度 3.把调节器设置于手动位置,按调节器的增/减,改变其手动输出值(一般为最大值的40~70%,不宜过大,以免水箱中水溢出),使下水箱的液位处于某一平衡位置(一般为水箱的中间位置)。 4.按调节器的增/减按钮,突增/减调节器的手动输出量,使下水箱的液位由原平衡状态开始变化,经过一定的调节时间后,液位h2进入另一个平衡状态。 5.点击实验界面下边的按钮,可切换到实时曲线、历史曲线和数据报表 6.根据实验所得的曲线报表和记录的数据,按上述公式计算K值,再根据图中的实验曲线求得T1、T2值。 60%上升峰值

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识 一、单容水箱液位控制系统原理 单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动的影响。单回路控制系统由于结构简单、投资省、操作方便、且能满足一般生产过程的要求,故它在过程控制中得到广泛地应用。图1-1为单容水箱液位控制系统方块图。 当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的选择有着很大的关系。合适的控制参数,可以带来满意的控制效果。反之,控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常工作。因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个很重要的实际问题。一个控制系统设计好以后,系统的投运和参数整定是十分重要的工作。图1-2是单容液位控制系统结构图。 图1-1 单容水箱液位控制系统的方块图系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定

值无偏差存在。图1-2 是单容水箱液位控制系统结构图。 一般言之,具有比例(P )调节器的系统是一个有差系统,比例度δ的大小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。比例积分(PI )调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数δ,Ti 选择合理,也能使系统具有良好的动态性能。 图1-2 单容液位控制系统结构图 比例积分微分(PID )调节器是在PI 调节器的基础上再引入微分D 的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。在单位阶跃作用下,P 、PI 、PID 调节系统的阶跃响应分别如图1-3中的曲线①、②、③所示。 图1-3 P 、PI 和PID 调节的阶跃响应曲线 二、单容水箱液位控制系统建模 .

实验四 控制系统频率特性的测试 实验报告

实验四控制系统频率特性的测试 一.实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性相频特性 (2)实验方法 设有两个正弦信号: 若以) (y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以) (t 化,) (y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和) (t 曲线(通常是一个椭圆)。这就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym,φ, 四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。(2)首先确定被测对象模型的传递函数, 预先设置好参数

T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。 (三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性

双容水箱液位静动态特性测试(实验一)

青岛科技大学实验报告 年月日 姓名专业班级同组者 课程实验项目双容水箱液位静、动态特性测试 一、实验目的 1. 熟悉双容水箱的数学模型及其阶跃响应曲线。 2. 根据由实际测得双容液位的阶跃响应曲线,确定其传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2.计算机、MCGS工控组态软件、RS232/485转换器1只、串口线1根 3. 万用表 1只 三、实验原理 图1 双容水箱对象特性结构图 由图1所示,被控对象由两个水箱相串联连接,由于有两个贮水的容积,故称其为双容对象。被控制量是下水箱的液位,当输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2所示。由图2可见,上水箱液位的响应曲线为一单调的指数函数(图2(a)),而下水箱液位的响应曲线则呈S形状(图2(b))。显然,多了一个水箱,液位响应就更加滞后。 图2 双容液位阶跃响应曲线 图3 双容液位特性参数计算 在图3所示的阶跃响应曲线上求取,利用下面的近似公式计算式

,从而得到双容对象的传递函数为。 四、实验内容与步骤 1、打开上位机,按照线路图接线。 2、检查线路,接通总电源和相关仪表的电源。 3、把调节器设置于手动位置,手动改变输出值到阀位65%,观察实时和历史曲线,使上水箱和中水箱的液位处于某一平衡位置。 4、突增/减调节器的手动输出量(建议增加到75%),重新达到平衡,作为一次阶跃输入,测得。减小手动阀位输出量到65%,使中水箱的液位由原平衡状态开始变化,经过一定的调节时间后,液位h2进入另一个平衡状态,测得。 5、两次参数求平均求得系统参数,并打印历史曲线。 五、实验要求 请给出实验的调节过程及调节参数,并附上历史曲线,分析实验结果,给出双容液位广义对象的传递函数表达式。

第二节 双容

第二节 双容(串联)水箱特性的测试 一、实验目的 1.掌握双容(串联)水箱特性的阶跃响应曲线测试方法; 2.根据由实验测得双容液位的阶跃响应曲线,确定其特征参数K 、T 1、T 2及传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备(同前) 三、原理说明 图2-5 双容(串联)水箱对象特性测试系统 (a)结构图 (b)方框图 由图2-5所示,被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。根据本章第一节单容水箱特性测试的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述: G(s)=G 1(s)G 2(s)=) 1s T )(1s T (K 1s T k 1s T k 212211++=+?+ (2-9) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。 本实验中被测量为下水箱的液位,当中水箱输入量有一阶跃增量变化时,两水箱的液位变化曲线如图2-10所示。由图2-10可见,上水箱液位的响应曲线为一单调上升的指数函数(图2-10 (a));而下水箱液位的响应曲线则呈S 形曲线(图2-10 (b)),即下水箱的液位响应滞后了,它滞后的时间与阀F1-10和F1-11的开度大小密切相关。 图2-6 双容水箱液位的阶跃响应曲线

(a )中水箱液位 (b )下水箱液位 双容对象两个惯性环节的时间常数可按下述方法来确定。在图2-11所示的阶跃响应曲线上求取: (1) h 2(t )|t=t1=0.4 h 2(∞)时曲线上的点B 和对应的时间t 1; (2) h 2(t )|t=t2=0.8 h 2(∞)时曲线上的点C 和对应的时间t 2。 图2-7 双容水箱液位的阶跃响应曲线 然后,利用下面的近似公式计算式 阶跃输入量 输入稳态值=∞=O h x )(K 2 (2-10) 2.16 t t T T 2121+≈+ (2-11) )55.074.1()T (T T T 2 122121-≈+t t (2-12) 0.32〈t 1/t 2〈0.46 由上述两式中解出T 1和T 2,于是得到如式(2-9)所示的传递函数。 在改变相应的阀门开度后,对象可能出现滞后特性,这时可由S 形曲线的拐点P 处作一切线,它与时间轴的交点为A ,OA 对应的时间即为对象响应的滞后时间τ。于是得到双容滞后(二阶滞后)对象的传递函数为: G (S )= ) 1)(1(21++S T S T K S e τ- (2-13) 四、实验内容与步骤 本实验选择左上水箱和左下水箱串联作为被测对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2全开,将左上水箱出水阀门F1-9、左下水箱出水阀门F1-11开至适当开度(要求F1-9开度稍大于F1-11的开度),其余阀门均关闭。 (一)、智能仪表控制 1.将SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照本章第一节控制屏接线图连接实验系统。 2.接通总电源空气开关和钥匙开关,打开24V 开关电源,给压力变送器上电,按下启动按钮,合上空气开关,给智能仪表及变频器上电。 3.打开上位机MCGS 组态环境,打开“THKGK-3型智能仪表控制系统”工程,然后进入MCGS 运行环境,在主菜单中点击“实验二、双容(串联)自衡水箱对象特性测试” ,进

实验一 单容自衡水箱液位特性测试实验

计算机控制技术实验报告 实验一单容自衡水箱液位特性测试实验 班级: 姓名: 学号:

实验一 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图1-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (1-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d ? (1-2) 式中:ΔQ 1,ΔQ 2,Δh ——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 口处的静压也随之变化,Q 2也发生变化。 由流体力学可知,流体在紊流情况下, 液位h 与流量之间为非线性关系。但为 了简化起见,经线性化处理后,可近似 认为Q 2与h 成正比关系,而与阀F1-11 的阻力R 成反比,即 ΔQ 2=R h ? 或 R=2Q ??h (1-3) 图1-1 单容自衡水箱特性测试结构图及方框图 式中:R ——阀F1-11的阻力,称为液阻。 将式(1-2)、式(1-3)经拉氏变换并消去中间变量Q 2,即可得到单容水箱的数学模型为

单容水箱液位控制系统的PID算法

自动控制原理课程设计报告

单容水箱液位控制系统的PID算法 摘要随着科技的进步,人们对生产的控制精度要求越来越高,水箱液位系统是过程控制中一种典型的控制对象,提高液位控制系统的性能十分重要。本文针对理想的单容水箱液位系统,将包括单容水箱、电动机等在内的部分分别建立数学模型,并加入常规PID对系统性能进行调节。但由于实际单容水箱液位系统具有时滞性和非线性,实际生产中若要对其建立精确的数学模型比较困难。因此,将模糊控制的方法引用到对单容水箱液位系统的PID控制中,通过Simulink仿真验证了算法的有效性。结果表明,和常规PID控制相比,模糊PID控制具有良好的动静态品质。 关键词单容水箱液位; PID控制; MA TLAB; Simulink; 模糊控制. PID control method in water level systemof single-tank ABSTRACT With the development of technology, the control precision is more and more important. And thewater level system of single-tankis a typical control target in process control. The article mainly deals with the water level system of single-tank. It establishes mathematics model for every part of the system, and uses the traditional PID to improve the function . But in actual industry,it’s hard to establishes precise mathematics model. So, it introduces fuzzy PID control in this system. The result suggests that fuzzy PID control is more suitable than the traditional one. KEY WORDS the water level of single-tank; PID control; MA TLAB ; Simulink; fuzzy control. 在工业过程控制中,被控量通常有:液位、压力、流量和温度。其中,液位控制是工业中常见的过程控制,广泛运用于水塔、锅炉、高层建筑水箱等受压容器的液位测量,是工业自动化的一个重要的组成部分。因此,对它进行研究有很高的价值。 单容水箱是一个自衡系统,自衡调节过程比较缓慢,液位很难达到预期值。加入闭环调整后,系统的性能有所改善。但是,实际过程中往往要求要求水箱系统超调小、响应快、稳态误差小。并且要求水箱在一定扰动下,即出水阀门打开后,液位能够平稳、快速、准确地恢复到一个恒定值。因此,在水箱液位控制过程中引入PID调节。 常规PID适用于数学模型容易确定的系统。理想模型下,引入PID调节后,系统的动态和静态性能改善。但是实际中,液位控制具有滞后、非线性、时变性、数学模型难以准确建立等特点。常规的PID控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化。而模糊控制具有对参数变化不敏感和鲁棒性强等特点,但控制精度不太理想。如果将模糊控制和常规的PID控制结合,用模糊控制理论来整定PID控制器的比例、积分、微分系数,就能更好地适应控制系统的参数变化和工作条件的变化。 本文主要对单容水箱闭环系统建立模型,分析其闭环系统、引入常规PID控制及引入模糊PID控制后的系统性能,并用MATLAB进行仿真。 1 单容水箱液位控制系统模型 1.1原理图 1.2系统闭环结构框图 负载阀 调节阀 电机浮子 减速器 电位器 图1单容水箱液位闭环控制系统

过程控制实验二 一阶单容上水箱对象特性测试实验

成绩: 实验名称:实验二一阶单容上水箱对象特性测试实验 仿真实验:PID参数整定 实验小组:A大组第二小组 组员姓名:__ _____ ____ 组员学号:_________ 指导老师:_____ ___ __ 实验日期:__ 2015/5/9 _____ ______ _ 信息工程学院自动化系

一实验名称 1、一阶单容上水箱对象特性测试实验 2、仿真实验:PID参数整定 二实验目的 1.认识实验系统,了解本实验系统中的各个对象。 2.测试一个水箱的对象特性。 3.学会PID参数整定的基本原则。 4.使用稳定边界法和衰减曲线法去整定参数。 三实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号)。同时,记录对象的输出数据或阶跃响应曲线,然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法,不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q 1,出水量为Q 2 ,水箱的液面高度为h, 出水阀V 2 固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T为水箱的时间常数(注意:阀V 2 的开度大小会影响到水箱的时间常数), T=R 2*C,K=R 2 为过程的放大倍数,R 2 为V 2 阀的液阻,C 为水箱的容量系数。令输 入流量Q 1(S)=R O /S,R O 为常量,则输出液位的高度为: 当t=T时,则有: h(T)=KR 0(1-e-1)=0.632KR =0.632h(∞) 即 h(t)=KR (1-e-t/T) 当t—>∞时,h(∞)=KR ,因而有 K=h(∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2 所示。当由实验求得图1-2所示的

思考题

单容自衡水箱液位特性测试实验 五、实验报告要求 1.画出“单容水箱液位特性测试”实验的结构框图。 2.根据实验得到的数据及曲线,分析并计算出单容水箱液位对象的参数及传递函数。 六、思考题 1.做本实验时,为什么不能任意改变出水阀F1-11开度的大小? 如果实验条件中没有水量大小,及水量是恒定的,肯定不能改变水流大小,不然在其他外因发生变化时产生的测试结果就不能完全归结于该外因变化的结果,可能还存在水流大小变化的影响。 2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关? 答:因为系统用到了仪表,因此与仪表的精度有关,同时与出水阀开度的大小有关。并和放大系数K、时间常数T以及纯滞后时间有关。 3.如果采用上水箱做实验,其响应曲线与下水箱的曲线有什么异同?并分析差异原因。

双容(串联)水箱特性的测试 五、实验报告要求 1.画出双容(串联)水箱液位特性测试实验的结构框图。 2.根据实验得到的数据及曲线,分析并计算出双容水箱液位对象的参数及传递函数。 3.综合分析几种控制方案的实验效果。 六、思考题 1.做本实验时,为什么不能任意改变两个出水阀门开度的大小? 对设定的给定值会有影响 2.用响应曲线法确定对象的数学模型时,其精度与那些因素有关? 与k和T有关 3.引起双容对象滞后的因素主要有哪些? K,T及时间常数 单容液位定值控制系统 五、实验报告要求 1.画出单容水箱液位定值控制实验的结构框图。 2.用实验方法确定调节器的相关参数,写出整定过程。 3.根据实验数据和曲线,分析系统在阶跃扰动作用下的静、动态性能。 4.比较不同PID参数对系统的性能产生的影响。 5.分析P、PI、PD、PID四种控制规律对本实验系统的作用。 6.综合分析多种控制方案的实验效果。

过程控制控实验报告

实验一 单容自衡水箱特性的测试 一、实验目的 1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。 二、实验设备 1. A3000高级过程控制实验系统 2. 计算机及相关软件 三、实验原理 由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。根据物料平衡关系,在平衡状态时: 0Q Q 2010=- (1) 动态时则有: dt dV Q Q 21=- (2) 式中V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与h 的关系为Adh dV =,即: dt dh A dt dV = (3) A 为水箱的底面积。把式(3)代入式(2)得: QV116 V104 V103 h ?h QV105 QV102 P102 LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图

图2.2 单容水箱的单调上升指数曲线 dt dh A =-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dt dh A R h Q S =-1,即: 或写作: 1 )()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。式(5)就是单容水箱的传递函数。 若令S R s Q 01)(=,R 0=常数,则式(5)可改为: T S KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6) 当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入 输出稳态值。当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。 当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。 1KQ h dt dh AR S =+

相关文档
相关文档 最新文档