文档库 最新最全的文档下载
当前位置:文档库 › 高倍率放电VRLA电池的设计技术

高倍率放电VRLA电池的设计技术

高倍率放电VRLA电池的设计技术
高倍率放电VRLA电池的设计技术

高倍率放电VRLA电池的设计技术

1引言

1971年美国Gates公司利用其吸液式圆筒型VRLA电池的专利技术,第一次实现了氧复合原理在商品电池中的应用,使铅酸蓄电池的制造技术取得了一百多年来的重大突破。历经30年的发展和完善,VRLA电池的应用范围已由传统的备用浮充,扩展到机动车辆起动、动力牵引、太阳能和风能储能等方面。随着我国经济持续快速的发展,在今后的20年内,中国将有可能成为世界最大的通信市场。通信行业是铅酸蓄电池的主要用户,目前VRLA电池占了市场需求总量的2/3[1]。面对电子技术的不断更新与升级,将对配套电池的性能提出苛刻的要求,显然,VRLA电池性能价格比的竞争在今后是无法避免的,尤其在中国加入WTO 后,如何有效地缩短国产电池与国外知名品牌的差距,成为摆在我们面前亟待解决的问题。

2高倍率放电VRLA电池性能的影响因素

以Pb Ca合金为板栅材料,采用AGM隔板和氧复合技术的VRLA电池具有比开口式铅酸蓄电池更好的高倍率放电性能,这是因为Pb Ca合金的导电能力优于Pb Sb合金,这种性能在低温下更为明显。表1列举了普通开口式与阀控密封式摩托车用12V7Ah电池在相同铅膏配方和结构设计(每单格3正/4负),但不同板栅合金条件下的性能对比情况。通常情况下,高倍率放电VRLA电池为浅放电循环或备用浮充方式使用,Pb Ca合金所导致的早期容量损失(PCL)在此不是主要的影响因素。但是,从低成本使用的经济性来看,限制电池寿命的主要因素之一——板栅腐蚀的问题是要考虑的。由于Pb Ca Sn Al合金具有抗腐蚀、抗蠕变及防止钝化层形成等良好特性,综合评价,正板栅采用此合金是必要的。板栅既是活性物质的支撑骨架,也是电池内部化学能与电能转换输出的通道。合理的板栅厚度、集流栅网和极耳位置的设计,是保证大电流输出时较低的内阻和较高的活性物质利用率,以及减缓电极极化所必须的。由于铅酸蓄电池的大电流放电性能常常受控于负极,而负极的性能又依赖于膨胀剂的作用,所以,多年来世界各国的铅酸蓄电池研究人员,都将负极添加剂的优选作为改进和提高负极性能最主要的措施。国内大多数蓄电池生产厂家一般都采用干荷电极板来装配VRLA电池,为了防止负极板被氧化,需要向铅膏中加入一定量的防氧化剂,防氧化剂多为有机化合物,它们连同有机膨胀剂一起,往往对电池的充电接受能力产生了不良影响。对于二次电池来说,充电接受能力是一项非常重要的性能指标,它表征了电池中活性物质可逆转化的程度。经验告诉我们,充电不足将导致铅酸蓄电池大电流放电性能的降低,特别是低温下的起动放电能力。在VRLA电池中,由于氧复合的存在,负极始终处于不完全充电状态,同时,有机膨胀剂的氧化分解也比开口式电池严重,最终导致负极性能的衰退。另外,大量的研究结果表明:正极极化电位的增大,是导致铅酸蓄电池高倍率放电时闭路电压降低和持续时间缩短的主要因素。因此,在高倍率放电VRLA电池的设计中,正极的作用是不容忽视的。这也说明,对正极制造工艺的改进是提高电池大电流放电性能的可靠方法之一。采用AGM隔板的VRLA电池是限液式设计,AGM隔板作为硫酸电解液的主要载体,不仅提供了电极反应所需的硫酸,而且还为氧复合提供了必要的气体通道。AGM隔板对极群组的压力有很大的影响,当AGM隔板的饱和度降低到一定程度时,将导致AGM隔板与极板间出现剥离,内阻的不断增大,使高倍率放电性能急剧下降。因此,在保证电极反应所需电解液量的前提下,增大极群组的紧装配度,有利于高倍率放电性能的提高和电池寿命的延长。

表1板栅合金对铅蓄电池高倍率放电性能的影响

项目注:低温起动记录的数据为:开路电压(V)/5s电压(V),放电时间(s)。

表2正极添加剂对VRLA电池高倍率放电性能的影响

类别

项目注:低温起动记录的数据为:开路电压(V)/5s电压(V),放电时间(s)

从设计角度来看,除了上述影响因素外,满足高倍率放电的电池结构的优化设计也是必须的,诸如汇流排、极柱设计等,这对于高倍率放电的小型VRLA电池尤其重要。由于这方面的内容不是本文讨论的重点,故不再赘述。

3高倍率放电VRLA电池设计技术的探讨

铅酸蓄电池的放电倍率与活性物质利用率之间存在着这样的关系:放电倍率越大,活性物质利用率越有限。一般来讲,不论是开口式电池还是VRLA电池,采用薄型极板设计来满足高倍率放电性能是必须的。薄型极板增大了电极反应面积,提高了活性物质利用率,降低了电池内阻,因而能够获得良好的大电流放电性能。尽管将平板式板栅做到很薄的“拉网”和“铅布”技术已走向商品化,但大规模的应用远不及“重力浇铸”技术。另外,使用“重力浇铸”将板栅做到很薄也是有困难的,特别是薄板栅还要经历随后的涂板、固化、化成、分板、焊组等多个工序,将面临极板废损大、电池故障多等质量问题。值得一提的是,采用薄板设计的VRLA电池,相对于具有相同活性物质重量的厚板设计来说,其耗铅量要多一些,而且板栅耐受化学和电化学腐蚀的能力也有所降低。因此,适于高倍率放电的薄板设计需要掌握一定的原则。电池的充放电性能最终是通过正、负极活性物质与电解液的相互作用来体现的。D.Simonsson从理论上对传质过程、放电状态以及PbSO4形成条件的依赖关系进行了研究,将活性物质的不完全利用归纳为:孔口处PbSO4堵塞和孔径的有限性造成扩散的障碍,导致孔中电解液的贫乏[2]。一定的活性物质结构决定了一定的利用率,改变活性物质的结构可以通过控制一些过程参数如和膏、固化来影响,也可以通过向铅膏中加入添加剂的方法来实现[3]。相对而言,后者更利于工序和过程的控制,并具有实际推广价值。下面我们将通过一些实际配方设计的例证来说明这种有效性。

3.1正极铅膏配方对高倍率VRLA电池放电性能的影响

表4不同电解液配方对VRLA电池高倍率放电性能的影响

由前文分析得出:减缓和降低正极极化电位的增大是确保高倍率放电性能提高的重要措施。VRLA电池配方中正极添加剂的选择应着眼于能够形成良好的正极活性物质微孔结构和导电网络,或者具有减缓和消除活性物质与Pb Ca板栅界面钝化层影响的作用。由于正极所处的电位较高,一般的添加剂均会被氧化分解,难以在整个寿命期间发挥作用,这是选择正极添加剂时的一个“瓶颈”问题。表2列出了将报废的正极活性物质以一定比例加入正极铅膏后,与添加石墨的正极铅膏的性能对比情况。结果表明:前者有利于提高VRLA电池低温高倍率放电性能。从生产来看,报废正极板总是存在的,取其活性物质进行二次利用,对节约材耗、降低成本具有实际意义[4]。

3.2负极铅膏配方对高倍率VRLA电池放电

性能的影响

与正极不同的是,负极活性物质的微孔结构对高倍率放电的影响并不明显。在低温下使用的VRLA电池,若负极孔率增多,会阻碍电解液的扩散,最终导致电池放电性能的降低。因此,负极性能的优劣更多地依赖于膨胀剂的种类。木素对大电流放电有良好的促进作用,但国产木素酸溶解性大,降低了寿命期间对负极的膨胀效果,使用这种木素的厂家已不多见。进口木素的性能好但价格昂贵,不论使用何种木素,负极的充电接受能力都会受到一定的影响,这对VRLA电池的负极来说显得更为严重。通过与其它负极添加剂的合理搭配,腐植酸在提高大电流放电方面也有良好的作用,由于它价格便宜,性能稳定,添加后铅膏的填涂性又非常适合于机械化涂板,因而在国内普遍使用。近年来,一些腐植酸生产厂家又陆续开发出杂质含量更低,适用于VRLA电池的高纯腐植酸。为了进一步提高负极的性能,目前,将木素与腐植酸合成或将两者按一定比例混和起来使用的工艺配方也备受关注。为此,我们对两者混和使用的配比进行了优化研究,有关数据如表3所示。改进后的配方对提高电池充放电性能及降低电池成本都有利,具有实际推广价值。

表3有机膨胀剂配比的改进对VRLA电池性能的影响

类别

项目3.3电解液配方对高倍率VRLA电池放电

性能的影响

长期以来,国内外就硫酸电解液中加入某些添加剂后对VRLA电池性能的影响进行了大量的研究。由于电解液添加剂的使用,具有不改变电池工业生产过程、附加成本低、效果好、便于推广等优点,因此,选择合适的电解液添加剂已成为改善铅酸蓄电池性能的主要途径之一[5]。我们认为,VRLA电池电解液添加剂的作用可以归结为以下几点:

(1)增强电解液的电导,提高电池过放电后的容量恢复性能和再充电接受能力;

(2)抑制枝晶短路的发生;

(3)提高电池的容量和抑制早期容量损失;

(4)防止活性物质的软化、脱落和减缓板栅的腐蚀。我们在试验中发现,某些添加剂只具有上述的一种作用,而另一些添加剂则同时具有几种作用。表4对比了4种电解液配方对高倍率放电性能的影响。可见,仅仅是改变了电解液组成,电池的放电性能就出现了较大差异。

4结语

(1)铅膏及电解液配方的设计与改进是着眼于优选各类添加剂及其配比来实现的,它是VRLA电池满足高性能要求的一条重要的技术路线。与通常优化电池结构的改进措施相比,优良的配方更有利于电池性能的提高和品质的稳定。

(2)某些添加剂的应用不仅提高了VRLA电池的放电性能,而且还利于电池成本的降低,从而保证了性能价格比的进一步提高。

适用于改进VRLA电池性能的添加剂有很多种,但真正推广应用的却不多,这方面,我国与发达国家相比还有很大的差距。这表明,虽然国内多数蓄电池制造企业均视电池配方为核心技术,但配方实用化研发的进程却非常缓慢。由于电池配方工艺改进具有较广阔的研发空间,我们相信,今后随着研发力度的不断加强,势必对我国VRLA电池的整体性能和产品档次的提高产生深远的影响。

软包装锂离子电池的高倍率放电性能

软包装锂离子电池的高倍率放电性能 ■<1.河南师范大学化学与环境科学学院常照荣吕豪杰 ■<2.新乡学院化学与环境工程学院付小宁 ■<3.河南新飞科隆电源有限公司尹正中 摘 要:以额定容量为1100mAh的063465型软包装锂离子电池为研究对象,研究了电池结构,正极活性物质与导电剂、粘结剂的配比,极板的面密度、压实密度等因素对锂离子电池高倍率放电性能的影响。制备的实验电池以15C大电流放电,电压平台为3.5V,循环220次(15C放电),容量保持率为87.0%。 关键词:软包装; 锂离子电池; 高倍率放电 锂离子电池具有能量密度高、循环寿命长、开路电压高及污染小等优点[1],已用于小电流放电的移动通讯、笔记本和数码相机等领域,但高倍率放电性能有待提高[2-4]。程建聪等[5]通过提高导电剂含量,采用薄正极和中间相炭微球(MCMB),并使用功能电解液,改善了电池的大电流性能;V.Subramanian 等[6]以气相法烧制的纳米纤维碳为负极制备的锂离子电池,可进行10C放电;M.Okuho等[7]通过水热法制备纳米级(17 nm)的LiCoO2,l00C放电容量达到1C时的65%,可满足电动汽车等大功率放电要求,但是制备工艺苛刻。 本文作者采用工业化的正负极材料,通过优化电池结构,调整配比参数,制备软包装电池,并测试了相关性能。 1 实验 1.1 极板制备 将正极活性物质LiCoO2(北京产,≥99.4%)、导电炭黑SP(Timcal公司产,≥99.75%)和导电石墨KS6(Timcal公司产,≥99.4%)按不同的比例混合后,以PVDF(美国产,≥99.9%)作为粘结剂,配制成浆料;将负极活性材料人工石墨(深圳产,≥99.9%)、导电炭黑SP、分散剂SBR(河南产,≥99.0%)和粘结剂CMC(德国产,≥99.9%)按质量比90.5:1.5:4:4混合后,配制成浆料。用涂布机将正极浆料均匀涂覆于铝箔(江苏产,≥99.8%)上,负极浆料均匀涂覆于铜箔(湖南产,≥99.8%)上,在80℃下真空(-0.1 MPa)干燥12h后,辊压,制成正、负极片。电解液为1mol/L LiPF6/ DMC+EMC+EC(体积比1:1:1,张家港产),隔膜为0.025 mm厚的聚丙烯微孔膜(日本产)。 1.2 测试仪器 采用BS-8802二次电池检测装置(广州产)对电池进行化成;BS-V高电压大电流动力电池检测设备(广州产)进行倍率测试;BS-VR3内阻测试仪(广州产)检测内阻。 1.3 电极及电池设计 以额定容量为1100mAh的063465型液态软包装锂离子电池为研究对象。采用真空热封机封口,经过防短路处理、干燥,然后注入电解液,经化成分容后,测试电池的性能。 实验电池的参数见表1。 2结果与讨论 2.1 电池结构的影响 电池技术 < 2008年9月73

高容量、高倍率充放电铁基负极材料2

动力用高容量、高功率铁基负极材料制备和研发 项目介绍 为了解决新能源汽车在续航里程和快速充电上的问题,动力电池的能量密度和高倍率充电性能必须得到提高,而作为动力电池重要组成部分负极材料的能量密度和高倍率充放电性能也必须要满足要求。现在市场常用的负极材料主要有碳类材料、钛酸锂和硅碳材料,碳类材料又分为石墨类负极材料、软碳、硬碳。碳类负极材料中的石墨类负极材料受理论容量(375 mAh/g),和快速充放电过程产生锂枝晶的问题也限制了它在动力电池方面的应用。软碳和硬碳相对石墨类负极材料虽然在能量密度和快充方面都有一定的优势,但是一方面制备工艺复杂,成本高,另一方面在高倍率充电性能方面仍不能满足动力电池的需求(20C下充电容量为140 mAh/g)。钛酸锂负极材料具有快充、安全和长寿命有点,但是能量密度低(理论容量只有175 mAh/g),价格高,且在充放电循环过程中易产生胀气问题,使其在动力电池上的应用受到了极大地限制。作为以高容量(0.1C下,600 mAh/g左右)为特色的硅碳负极材料由于体积效应(膨胀率约为300%)的影响,导致硅负极材料低的可逆容量、差的循环稳定性和倍率性能。所以我们需要迫切开发一种低成本、高能量密度、可快速充电的负极材料来满足新能源汽车动力电池的需求。 本课题现在开发出一种铁基负极材料,制备的原材料丰富,过程工艺成本低,能量密度和高倍率充放电比现在市场已有的负极材料都要高。通过简单的液相法制备前驱体,把前驱体在较低温度下进行烧结。该工艺过程简单,易于实现工业化生产。原材料上我们选择资源比较丰富铁盐和镍盐,有机溶剂也是现在锂电行业常用的有机溶剂,所需的原料均不需要自己二次加工且原材料生产厂家选择多。所需要的生产设备和生产工艺均可参考和使用三元极材料的生产。 项目已有工作 已完成实验室的小批量的制备工艺和申请一项发明专利。该铁基负极材料在纽扣半电池测试中,0.2C下,首次放电比容量达到730 mAh/g,首次充电比容量达到573 mAh/g,首次库伦效率78.4%,在24 C倍率下,其充电克容量和放电克容量分别为164 mAh/g和171.3 mAh/g。该比容量和高倍率性能在都要优于市场已有的负极材料。 图1、铁基负极材料制备实验流程图

影响锂离子电池高倍率充放电性能的因素

影响锂离子电池高倍率充放电性能的因素 由技术编辑archive1 于星期四, 2014-10-16 13:51 发表 影响锂离子电池高倍率充放性能的因素很多,包括电池设计、电极组装、电极材料的结构、尺寸、电极表面电阻以及电解质的传导能力和稳定性等。为了探究其原因和机理,本文主要从正极、负极和电解质材料三方面对它们在高倍率充放电时各自的影响因素进行了综述和分析,并讨论了利于高倍率充放的电极和电解质材料的发展方向。 锂离子电池具有工作电压高、比能量大、无记忆效应且对环境友好等优点,广泛应用于手机、相机、笔记本电脑等小 型电器的同时,在电动车、卫星、战斗机等大型电动设备方面的应用也备受青睐[1-2]。美国Lawrence LiVermore 国家实验室早在1993 年就对日本SONY 公司的20500 型锂离子电池进行了全面的技术分析,考察其用于卫星的可能 性[3];我国中科院物理所也早在1994 年承担福特基金项目时就开始了动力型锂离子电池的研发[4];国内外一些知名企业进行了动力型锂离子电池的研制和生产,如德国瓦尔塔公司研发的方型锂离子电池,容量为60 Ah,比能量为115 Wh/kg,日本索尼公司生产的高功率型锂离子电池80%DOD 的比功率高达800 W/kg [5],国内深圳的比亚迪、雷天、天津力神、河南金龙、湖南晶鑫等公司也研制生产出容量在10 Ah 以上的动力型锂离子电池。 尽管在全世界科技和工业界的共同努力下,动力型锂离子电池的研发和生产已取得了长足进展,并逐步走上了实用的轨道,但其价格较高,而且循环性能、安全性能及其高倍率充放电性能都有待于进一步提高(如目前锂离子电池用于电动车时,其动力仍不能与传统燃油机的动力相比,这影响着电动车的行程、最高时速、加速性能及爬坡性能等)。为了动力型锂离子电池更快的发展,有必要对其高倍率性能的影响因素进行系统研究和分析,找出根本原因。

锂电池放电系数及其说明

你是需要一个大容量的电池呢,还是需要一个高放电倍率的电池呢?当然,你的钱多到不知道怎么花,那么你大可以买一只容量也大,放电倍率也大的电池。不过如果要选呢? 我们先来看一下,电池的放电倍率是什么。放电倍率,顾名思义,就是电池可以放出的最大电流,可以达到自身容量的多少倍。那么我们怎么知道自己的电池的放电倍率呢?一般的锂电池上都会标有X C这样的一个字符。“X”一般都是数字,比如12C,20C等等。这就是你电池的放电倍率。12C就是12倍,不用我再多说了吧。比如12C,1000毫安时的电池,那么它最大的放电电流就是1000mAX12=12A。氢电池上一般不会标放电倍率。不过我还是要强调一点,放电倍率其实不是一种数值,确切的说它应该有两个数值,一个是极限放电倍率,一个是持续放电倍率。极限的放电是指电池在瞬间可以放出的最大电流,电池在短时间内可以达到的最大放电电流与容量的比就是极限放电倍率。持续放电是指电池正常工作时可以持续的状态放电的最大电流。持续放电倍率就是这个持续放电电流与电池容量的比。说到这,大家可能会认识到,极限放大倍率肯定会大于持续放电倍率,但是从放电的持续性上看,还是要看持续放电倍率。这两个值都是很重要的。 我们再来看看自己手里的电池,上面标的一般只有一个放电倍率值,这个值绝大部分标的都是极限放电倍率。而持续放电倍率一般都是在极限放电倍率的60%~80%,自己乘一下就能算出大概的值。为什么厂商只标极限放电倍率??这个问题还要我来解释吗?一个标着10C 的电池和一个标着12C的电池,你会选哪个? 好了,了解完放电倍率,我们下面就要进入正题了,你需要一个大容量的电池还是一个高C 的电池 通过上面的介绍,我想大家应该已经知道了,放电倍率,也就是那个C的值只是一个倍率,并不是一个放电电流的恒定值,也就是说,不同的电池,放电倍率不一样,但是有可能放出的电流是一样大的。你比如一个1000mhA的20C的电池,它的极限最大放电电流是20A,一个容量2000mhA的10C的电池,它的极限最大放电电流也是20A。可是,放电倍率是一个技术性较高的性能,每提升1个C,都要付出相对较大的技术力量,而提升电池的容量相对与现在的技术来说,已经不是很难的事情了,所以,相对来讲,高放电倍率的电池价格肯定要高于高点容量的电池——这是在最终放电电流相同的情况下的比较,就像刚才提到的那个例子。所以,如果可能的话,我们应该尽量选一些点容量大些,放电倍率却不是非常高的电池,这样的电池放电电流不低,而且价格不高。比如3000mhA12C的电池,它的极限放电电流是3X12=36A,一个2000mhA15C的电池,别看它的放电倍率高,可是它的最大放电电流却只有30A。孰轻孰重我想大家都很清楚了吧,况且,容量大的电池,可以支持你的狗多叫好久呢:)在模型界,一般放电倍率是一个也需要考虑的性能指标,因为模型大多需要持续的大电流输出,启动的时候需要的电流更是大得吓人,所以,为了大电流的持续放电和极限速度(竞技模型嘛,有时候快0.1秒也是很重要的),一般在考虑电容量的同时,也要兼顾一下放电倍率。可是我们的狗,不会需要那么大的电流,会别告诉我你的狗在启动时需要超过60A的电流——你烧火棍里面的保险最大也就是20A的。嘿嘿嘿嘿。 所以,建议大家尽量买容量大的电池,这样的电池性价比最高。

锂离子电池高倍率放电性能研究

图1 双极耳电池电极片示意图 Fig.1Schematicdiagramofelectrodepatch 收稿日期:2005-08-21 作者简介:唐致远(1946—),男,安徽省人,教授,博士生导师,主要研究方向为应用电化学。 Biography:TANGZhi-yuan(1946—),male,professor. 锂离子电池高倍率放电性能研究 唐致远1,谭才渊1,陈玉红1,崔燕1,薛建军2 (1.天津大学化工学院应用化学系,天津300072;2.广州鹏辉电池有限公司,广东广州511483) 摘要:对锂离子电池高倍率放电性能进行了研究。发现电池设计对锂离子电池放电性能具有较大的影响,设计了一种新型的锂离子电池的电极。研究了电极活性物质与导电剂、粘结剂的配比,电极片的面密度、压实密度对锂离子电池高倍率放电性能的影响,通过实验研究得到了一种高倍率放电性能良好的锂离子电池,该电池放电容量高,放电平台平滑,平台电压较高,循环性能较好,且电池放电时表面温度不高。分析锂离子电池高倍率放电循环曲线时发现了放电容量变化的一个规律,给出了针对锂离子电池高倍率放电的一种充、放电制度。关键词:锂离子电池;高倍率;放电;极耳中图分类号: TM912.9文献标识码:A 文章编号:1002-087X(2006)05-05 Researchonhighratedischargeforlithiumionbattery TANGZhi-yuan1,TANCai-yuan1,CHENYu-hong1,CUIYan1,XUEJian-jun2 (1.DepartmentofAppliedChemistry,SchoolofChemicalEngineeringandTechnologyTianjinUniversity,Tianjin300072,China; 2.GreatPowerBatteryCo.Ltd,GuangzhouGuangdong511483,China) Abstract:Thispaperresearchedonhighratedischargeperformanceinlithiumionbattery.Batterydesigninfluencedon thehighratedischargeperformancesincerely,thenanewdesignaboutlithiumionbatterycameforth.Theelectrodematerialingredient,surfacedensityandthicknessofelectrodewereresearched.Thispaperfoundafavorablehighratedischargeperformancelithi-umionbattery,whichhadhighdischargecapacity,flatvoltage,preferablecycleperformanceandlowtemperaturewhendis-charging.Aruleondischargecapacitywasfound,andachargeanddischargesystemforhighratedischargelithiumionbatterywasrecommended. Keywords:lithiumionbattery;highrate;discharge;lead 当前,锂离子电池行业发展迅速,随着电子产品的发展,对锂离子电池也提出了更高的要求。电动汽车市场展现出蓬勃的发展势头[1 ̄4],需要放电电流较大、功率较高的锂离子电池,许多小型电器也要求能够高倍率放电,小电流放电锂离子电池已不能完全满足市场的需求。虽然,氢镍电池高倍率放电研究发展较早,但是其电压较低,质量比容量及体积比容量与锂离子电池相比均较低,因此,在一些对电池电压、质量、体积等要求严格的电器中,都对锂离子电池寄予厚望。 1实验 1.1电极制备 正极活性物质LiCoO2,与鳞片石墨、碳黑、乙炔黑混合,以 聚偏氟乙烯(PVDF)作为粘结剂配制成浆料。负极活性材料为石墨,添加乙炔黑,以羧甲基纤维素钠(CMC)为粘结剂,混合制成浆料。将正、负极浆料分别涂布于铝箔、铜箔上,然后干燥辊压制成正、负极片。电解液为1.0mol/LLiPF6/碳酸乙烯酯(EC)-碳酸二甲酯(DMC)(1∶1)(广州市天赐高新材料科技有限公司),隔膜为聚丙烯微孔膜(Celgard2400),厚度为0.025mm。 1.2电极及电池设计 以063465软包装液态锂离子电池为研究对象,制作两类电池:(1)正、负极片分别焊接一个极耳(本文称为单极耳电池)。(2)正、负极片分别焊接两个极耳(本文称为双极耳电池)。(如图1所示)。单极耳和双极耳电池的封口处侧视图如图2所示。 a.极耳;b.极耳胶 A.极耳胶1;a.极耳1; B.极耳胶2;b.极耳2 图2两种设计电池封口处侧视图 Fig.2Sideviewofbatteryseal

蓄电池的额定容量C及放电倍率

蓄电池的额定容量C,单位安时(Ah),它是放电电流安(A)和放电时间小时(h)的乘积。由于对同一个电池采用不同的放电参数所得出的Ah是不同的,为了便于对电池容量进行描述、测量和比较,必须事先设定统一的条件。实践中,电池容量被定义为:用设定的电流把电池放电至设定的电压所给出的电量。也可以说电池容量是:用设定的电流把电池放电至设定的电压所经历的时间和这个电流的乘积。 为了设定统一的条件,首先根据电池构造特征和用途的差异,设定了若干个放电时率,最常见的有20小时、10小时时率、电动车专用电池为2小时率,写做C20、C10和C2,其中C代表电池容量,后面跟随的数字表示该类电池以某种强度的电流放电到设定电压的小时数。于是,用容量除小时数即得出额定放电电流。也就是说,容量相同而放电时率不同的电池,它们的标称放电电流

却相差甚远。比如,一个电动自行车用的电池容量10Ah、放电时率为2小时,写做10Ah2,它的额定放电电流为10(Ah)/ 2(h)=5A;而一个汽车启动用的电池容量为54Ah、放电时率为20小时,写做54Ah20,它的额定放电电流仅为54(Ah)/ 20(h)=2.7A!换一个角度讲,这两种电池如果分别用5A和2.7A的电流放电,则应该分别能持续2小时和20小时才下降到设定的电压。 上述所谓设定的电压是指终止电压(单位V)。终止电压可以简单的理解为:放电时电池电压下降到不至于造成损坏的最低限度值。终止电压值不是固定不变的,它随着放电电流的增大而降低,同一个蓄电池放电电流越大,终止电压可以越低,反之应该越高。也就是说,大电流放电时容许蓄电池电压下降到较低的值,而小电流放电就不行,否则会造成损害。电池在工作中的电流强度还常常使用倍率来表示,写做NCh 。N是一个倍数,C代表容量的安时

如何提高锂离子电池的倍 率性能

如何提高锂离子电池的倍率性能 1. 磷酸铁锂是最近炙手的热门,有做好倍率的没?不说A123,只说国内的。怎么样才能提高其倍率性能呢?电池制造厂家,不考虑材料的改善,材料本身需要较高的粘结剂,再加入较多导电剂的话,势必影响大大的容量,除了增加导电剂含量外,还有哪些能改善其倍率性能呢? 2. 你1C放电下来的曲线是斜下来的,倍率肯定不行的了,,,理想的话最后的尾巴应该是倾向于一个垂直90度下来的 3. 我认为是碳包覆不好所造成的,大倍率放电使得LFP核体温升急剧,包覆的碳温升跟不上,造成碳包覆不牢固,电阻加大。碳包覆的方法解决LFP导电率的方法很难将倍率做的很高。 4. 还不错的曲线嘛!高倍率循环不好在于正极材料和电解液方面来改善,其它方面一般不会出现大的异常 5. 我们年前,拿了点威泰的材料,测试了下,容量不行,但是曲线特别平!!!人家倍率肯定好了,哎。。。 6. 26650,2800容量,属于高容量高倍率电池 7. 我觉得与正极材料关系比较大,不同厂家倍率性能不相同。我目前测试了两家,一家的也是10C循环性能不好。 8. 材料很重要,不同厂家的性能差别很大。说到加工工艺的话,涂布还是有点技术含量的,国内不可能做到国外二次涂布和增加添加剂的技术的 9. 我去年做过一批美国能源部得项目,磷酸铁力,1000次循环80%,这个工艺非常重要,粘结性不只于其PVDF有关。我们的电池比日本和在美国一起做的都要好。10. 控制压实密度,加入AC 11. 粒度再降也不是办法,因为1um的颗粒和10um的颗粒在倍率性能上其实是差不多的,当然10um的和20um的可能就有区别了如果做到粒度再小,比表面积可能会增大,匀浆就会出现问题,很可能会出现团聚不能打散,浆料相应会起球和颗粒最有效的方法应该是降低电极厚度。同时,在配比上优化配方,控制好导电剂,然后选择空隙较大的隔膜和电导系数较高的电解液。12. 极片做薄点,隔膜空隙大点,电解液粘度低点,极耳大点,可以多试试13. 倍率性能提高,要开发新的匀浆配方。用粒度小的正极材料。14. 是从材料到工艺的全方面实验了。我们早在做30C的汽车启动电池了。多试一下,就会得到你想要的。15. 1. 不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有20%膨胀收缩率,而像LFP正极材料有6%膨胀收收率。当多次充放电中,其正、负活性材颗粒与颗粒之间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不再参与电极反应。因此循环使用寿命下降。VGCF碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活性材颗粒间之间隙,可藉由VGCF碳管架桥连接,电子与离子传输不会间断。 2. 由于VGCF碳管微结构是中空多管壁,可以让正、负电极吸纳更多的电解液,使得锂离子可以顺利快速嵌入或脱嵌,因此,有利于高倍率充放电。 3. VGCF是高强度纤维状长径比大之材料,可增加电极板的可挠性,正极或负极活性材颗粒间之黏接力或与极板间之黏接力更强,不会因挠曲而龟裂掉粉。 4. VGCF本质是高导电高导热特性,正极活性材其导电性都不好,添加VGCF 以提高正极活性材的导电性,也提高正极或负极的导热系数,利于散热。17. 我认为电池的结构设计影响也很大,条件允许情况下,尽可能将极片做薄,正负极对面积做大,减小高倍下的真实放电电流密度,另外,集流体的设计也很重要,尽可能减小极化,相应电池发热降低,温升小,电池在高倍率下的寿命相应会得到提高的。18. 负极材料选MCMB对倍率放电有利。正极要控制好粒度和比表面积的大小。电解液可以考虑选用粘度少,电导率高的。隔膜可以考虑挺孔隙率大一点的,稍厚一点,安全性好。导电剂方面可以考虑使用混合导电剂,控制含量,分散均匀!粘结剂方面也可考虑用水性胶。相对而言,水性胶在倍率放电方面比油性胶有优势。在电池设

高倍率电池

高倍率电池 高倍率电池一般指的是锂电池,锂离子电池是一种充电高倍率电池,它主要依赖锂离子在正极和负极之间移动来工作。在充放电过程中,Li+ 在两个电极之间来回嵌入和脱嵌:充电池时,Li+从正极脱嵌,经由电解质嵌入负极,负极处于富锂状态;放电时则相反。一般采用含有锂元素的材料作为电极的电池。是现代高机能电池的代表。 锂电池分为高倍率电池和锂离子电池。目前手机和笔记本电脑使用的都是锂离子电池,通常人们俗称其为高倍率电池,而真正的高倍率电池因为危险性大,很少应用于日常电子产品。 工作状态和效率 锂离子电池能量密度大,均匀输出电压高。自放电小,好的电池,每月在2%以下(可恢复)。没有记忆效应。工作温度范围宽为-20℃~60℃。轮回机能优胜、可快速充放电、充电效率高达100%,而且输出功率大。使用寿命长。不含有毒有害物质,被称为绿色电池。 充电 是电池重复使用的重要步骤,锂离子电池的充电过程分为两个阶段:恒流快充阶段和恒压电流递减阶段。恒流快充阶段,电池电压逐步升高到电池的尺度电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则跟着电池电量的上升逐步减弱到设定的值,而终极完成充电。电量统计芯片通过记实放电曲线可以抽样计算出电池的电量。锂离子电池在多次使用后,放电曲线会发生改变,锂离子电池固然不存在记忆效应,但是充、放电不当会严峻影响电池机能。 留意事项 锂离子电池过度充放电会对正负极造成永久性损坏。过度放电导致负极碳片层结构泛起塌陷,而塌陷会造成充电过程中锂离子无法插入;过度充电使过多的锂离子嵌入负极碳结构,而造成其中部门锂离子再也无法开释出来。充电量即是充电电流乘以充电时间,在充电控制电压一定的情况下,充电电流越大(充电速度越快),充电电量越小。电池充电速渡过快和终止电压控制点不当,同样会造成电池容量不足,实际是电池的部门电极活性物质没有得到充分反应就休止充电,这种充电不足的现象跟着轮回次数的增加而加剧。 放电

电池放电时间计算

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。 4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(-7.0C)、超高倍率(>7.0C)如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。 25)放电率 电池在规定时间内放出额定容量时所需的电流值;或按一定输出电流放完额定容量时所需的时间。常用倍率(若干C)或时率表示。 26)活性物质 电池放电时,能进行氧化或还原反应而产生电能的电极材料。 27)充电 将外电路输入蓄电池的电能转化为化学能贮存起来的操作过程。 28)充电率 蓄电池在规定时间内充到额定容量所需的电流值;或在一定电流下充到额定容量所需的时间。一般用倍率(若干C)或时率表示。

不同倍率下的放电性能测试规范

1.0 目的和范围 规范迈科新能源有限公司锂离子二次电池芯的不同倍率下的放电性能的测试。 适用于迈科新能源有限公司锂离子二次电池芯或客户要求的成品电池不同倍率下的放 电性能测试。 1.1 变更记录 1.2 定义(无) 1.3 相关文件和资料(无) 2.0测试仪器 2.1擎天测试柜(BS-9300R)、内阻测试仪(NZY-200)、数显卡尺(分辨率为0.01mm ) 3.0试验环境 3.1温度:15℃~35℃,相对湿度:45%-75%,大气压力:86kPa~106kPa 。 4.0作业内容及方法 4.1取样:当有重大工艺变更(材料改变)或新产品开发时(含新型号)或周期性测试,由 测试员或实验员从检测车间新批次或试验批次电池芯中随机抽取4只, 如正常生产批每周抽取2批/每类,将电池芯编号,测试并记录其内阻、电压、厚度。 4.2不同倍率下的放电性能测试: A 在环境温度20±5℃,湿度45%-75%的条件下,以1C 5A 充电至电池芯端电压达到充电限制电压4.2V 时,改为恒压充电直到电流小于或等于0.01C 5A 。再以1C 5A 电流放电到终止电压3.0V ,搁置2min 后,循环2次。电池芯放电结束后记录第二次的放电容量及3.6V 平台。 M

M B充饱电:以1C5A充电,当电池芯端电压达到充电限制电压4.2V,改为恒压充电, 直到充电电流小于或等于0.01C5A。 C放电:在环境温度20±5℃,湿度45%-75%的条件下,充电条件都以1C5A充电, 分别以0.2C5A、0.5C5A、1C5A、2C5A电流放电到终止电压3.0V,记录容量。 4.3 电池芯处理:试验结束后,将所有电池芯按容量、内阻档次分类标识入库。 4.4异常反馈:如果不同倍率下的放电性能测试数据及现象有异常,则在测试完后立即向 测试负责人反馈,再补抽4只,按4.2条件和步骤进行测试,仍然不符合时,以书面 的形式向技术部、品质部反馈。技术部应立即对此问题进行分析、试验,以尽快找出 原因,消除引起异常的因素。 4.5数据处理:将测试数据及现象详细记录,做成不同倍率下的放电性能测试报告,报告 经整理后,上交领导核准,按照批次顺序放入不同倍率下的放电性能测试报告文件夹内存档,以备查验。 5.0判定标准 5.1 参见HYB《锂离子电池芯测试判定标准》文件编号:HYB/QI-24-027 版次:A/1 0.2C5A放电容量比率≥100% 0.5C5A放电容量比率≥100% 1C5A 放电容量比率100% 2 C5A 放电容量比率≥95% 6.0质量记录 《不同倍率下的放电性能测试报告》 7.0附件(无)

锂电放电倍率与放电电流的问题精编版

锂电放电倍率一般是指在某规定电压平台之上锂电最大放电电流与电池容量之比,电池放电倍率是电池本身的性能参数,跟电池串并联无关,也就是说通过电池串并联可以改变电池组电压和放电电流,但无法改变电池组的放电倍率。对于基本的电芯来说放电倍率大小只是其内阻大小的一种表达形式,放电倍率越大内阻越小。 可用以下方法简单计算放电倍率: 考虑锂聚合物电池安全放电截至电压一般为3.3V,取放电电压平台为3.3V(所取电压平台要保证电池在此电压下连续放电不会发热损坏,就是所谓的持续放电能力,不是瞬时放电能力)。考虑最佳状态电池刚充满电4.2V,如果放电使其端电压为3.3V,那么电池本身压降为0.9V, 最大放电电流I=0.9/r,r为电池内阻,放电倍率=I/Q,Q为电池容量,放电能力相同指在3.3V 平台上放电电流相同,由上面可以得出电池内阻相同,所以说对于单节电芯放电倍率只是电池内阻的一种表达形式。实际上电池内阻是随着充放电过程有变化的,因此放电倍率也只是大概值,一般都是最佳状态下能达到的数值。 拿我的11.6AH、3S、10C锂电来说,充电时显示内阻变化范围大约为25-37毫欧之间,考虑到电线和接口电阻的影响单节电芯内阻应该在8-12毫欧之间,取放电电压平台为3.3V,最佳状态内阻8毫欧,电池刚充满电4.2V,则: 最大放电电流I=(4.2-3.3)/0.008=112.5A, 放电倍率=112.5/11.6=9.7C。 如果取不同放电电压平台做标准,用不同内阻值都会影响到最后计算出的放电倍率,还是我上面那块8-12毫欧的电池,取不同值计算结果: 1)内阻8毫欧,放电平台3.0V,则放电倍率为12.9C; 2)内阻8毫欧,放电平台3.3V,则放电倍率为9.7C; 3)内阻8毫欧,放电平台3.5V,则放电倍率为7.54C; 4)内阻10毫欧,放电平台3.3V,则放电倍率为7.76C; 5)内阻12毫欧,放电平台3.3V,则放电倍率为6.47C; 因此电池放电倍率与测试所选取的标准有关。 测量电池内阻时如果接口接触不好会有较大影响,因此测量时要确保接口接触良好,电池内阻也会随充电过程变化,一般测量时电池组电压越低(串联的少),放电倍率越大,由接口和电线电阻引起的误差也越大(本质就是电池组内阻越小,接口和导线电阻所占的比例越大)。 就最大放电电流来说(同样电压):10AH(10C)=5AH(20C),因为它们的内阻是相同的,比较最大放电电流时要通过容量乘以放电倍率来比较,而不是仅仅通过放电倍率来比较,比较最大放电电流的本质是比较电池内阻大小,就像1m口径的水桶0.5倍口径的出水管没有3m口径水桶0.2倍出水管出水量大一样。但就实际使用来说同样玩一会容量低的电池电压下降要比容量高的快,但有些人实际过程中觉得5AH(20C)的会比10AH(10C)更暴力,更来劲,这其实不是电池放电能力的问题,是因为5AH(20C)的会比10AH(10C)电池重量轻,因此车的操控性、灵活性和加速性能强一些,所以感觉更暴力。如果仅仅是拿车直线飙高速的话两种电池开始时可能没多大差别,但玩一会后测一下电压就会发现大容量单节电池有4.0V,小容量的可能就只有3.8V了,电压的差别对无刷电机的影响大家都明白。所以要想测试车的极速除了场地选好以外电池要用新充满电的电池,最开始时跑的最快。

倍率放电作业指导书

我这里做了份倍率放电的作业指导书,楼主尽可以参考下 1.0目的:检测锂离子电池倍率放电的性能。 2.0范围:适用锂离子电池所有生产型号的测试。 3.0职责:检测室检测技术员执行,工程师负责监督。 4.0实验所须设备:卡尺,内阻仪,检测柜, 5.0测试条件: 环境温度20±5℃,湿度45-75%,大气压力86-106KPa 6.0操作步骤和方法 6.0.1首先检查电池外观,应无变形、漏液现象,检测电池内阻、电压、厚度,作好记录,然后将电池装在检测柜夹具上,在环境温度20±5℃的条件下进行实验。 6.0.2以1C5A充电,当电池端电压达到充电限制电压4.2V时,转恒压充电,直到充电电流≤0.01C5A,停止充电,取下电池,搁置10分钟。 6 .0.3充满电的电池,在检测柜上以0.2C5A的电流进行恒流放电到终止电压3.0V,记录放电容量(Q1)。再按照(6.0.2)对电池进行充电,然后以0.5C5A的电流进行恒流放电到终止电压3.0V,记录放电容量(Q2),按照以上步骤再作1C5A和2C5A放电,分别记录放电电流(Q3和Q4),并且保存每次放电的曲线。 6.0.4放电实验作完后,对电池要进行电压、内阻、厚度检测,并记录。 6.0.5具体充放电操作按照《检测柜操作指引》进行 6.0.6计算 放电容量比率: 0.5C5A放电容量/0.2C5A放电容量=Q2/Q1×100% 1C5A放电容量/0.2C5A放电容量=Q3/Q1×100% 2C5A放电容量/0.2C5A放电容量=Q4/Q1×100% 7.0注意事项 7.0.1实验至少要测3只电池的数据,并对每只电池编号 7.0.2实验测试后的电池作废品返库 标准要求: 放电容量比率:0.5C5A放电容量/0.2C5A放电容量≥98% 1C5A放电容量/0.2C5A放电容量≥95% 2C5A放电容量/0.2C5A放电容量≥80%。 记录:《倍率放电性能测试报告》

如何提高锂离子电池的倍 率性能

如何提高锂离子电池的倍率性能 1.磷酸铁锂是最近炙手的热门,有做好倍率的没?不说A123,只说国内的。怎么样才能提高其倍率性能呢?电池制造厂家,不考虑材料的改善,材料本身需要较高的粘结剂,再加入较多导电剂的话,势必影响大大的容量,除了增加导电剂含量外,还有哪些能改善其倍率性能呢? 2.你1C放电下来的曲线是斜下来的,倍率肯定不行的了,,,理想的话最后的尾巴应该是倾向于一个垂直90度下来的 3.我认为是碳包覆不好所造成的,大倍率放电使得LFP核体温升急剧,包覆的碳温升跟不上,造成碳包覆不牢固,电阻加大。碳包覆的方法解决LFP导电率的方法很难将倍率做的很高。 4.还不错的曲线嘛!高倍率循环不好在于正极材料和电解液方面来改善,其它方面一般不会出现大的异常 5.我们年前,拿了点威泰的材料,测试了下,容量不行,但是曲线特别平!!!人家倍率肯定好了,哎。。。 6. 26650,2800容量,属于高容量高倍率电池 7.我觉得与正极材料关系比较大,不同厂家倍率性能不相同。我目前测试了两家,一家的也是10C循环性能不好。 8.材料很重要,不同厂家的性能差别很大。说到加工工艺的话,涂布还是有点技术含量的,国内不可能做到国外二次涂布和增加添加剂的技术的 9.我去年做过一批美国能源部得项目,磷酸铁力,1000次循环80%,这个工艺非常重要,粘结性不只于其PVDF有关。我们的电池比日本和在美国一起做的都要好。10.控制压实密度,加入AC 11.粒度再降也不是办法,因为1um的颗粒和10um的颗粒在倍率性能上其实是差不多的,当然10um的和20um的可能就有区别了如果做到粒度再小,比表面积可能会增大,匀浆就会出现问题,很可能会出现团聚不能打散,浆料相应会起球和颗粒最有效的方法应该是降低电极厚度。同时,在配比上优化配方,控制好导电剂,然后选择空隙较大的隔膜和电导系数较高的电解液。12.极片做薄点,隔膜空隙大点,电解液粘度低点,极耳大点,可以多试试13.倍率性能提高,要开发新的匀浆配方。用粒度小的正极材料。14.是从材料到工艺的全方面实验了。我们早在做30C的汽车启动电池了。多试一下,就会得到你想要的。15.1.不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有20%膨胀收缩率,而像LFP正极材料有6%膨胀收收率。当多次充放电中,其正、负活性材颗粒与颗粒之间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不再参与电极反应。因此循环使用寿命下降。VGCF碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活性材颗粒间之间隙,可藉由VGCF

关于电池放电倍率和放电电流的问题

关于电池放电倍率和放电电流的问题 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

锂电放电倍率一般是指在某规定电压平台之上锂电最大放电电流与电池容量之比,电池放电倍率是电池本身的性能参数,跟电池串并联无关,也就是说通过电池串并联可以改变电池组电压和放电电流,但无法改变电池组的放电倍率。对于基本的电芯来说放电倍率大小只是其内阻大小的一种表达形式,放电倍率越大内阻越小。 可用以下方法简单计算放电倍率: 考虑锂聚合物电池安全放电截至电压一般为 3.3V,取放电电压平台为3.3V(所取电压平台要保证电池在此电压下连续放电不会发热损坏,就是所谓的持续放电能力,不是瞬时放电能力)。考虑最佳状态电池刚充满电4.2V,如果放电使其端电压为3.3V,那么电池本身压降为0.9V, 最大放电电流I=0.9/r,r为电池内阻, 放电倍率=I/Q,Q为电池容量, 放电能力相同指在3.3V平台上放电电流相同,由上面可以得出电池内阻相同,所以说对于单节电芯放电倍率只是电池内阻的一种表达形式。实际上电池内阻是随着充放电过程有变化的,因此放电倍率也只是大概值,一般都是最佳状态下能达到的数值。 拿我的11.6AH、3S、10C锂电来说,充电时显示内阻变化范围大约为25-37毫欧之间,考虑到电线和接口电阻的影响单节电芯内阻应该在8-12毫欧之间,取放电电压平台为3.3V,最佳状态内阻8毫欧,电池刚充满电4.2V,则:

最大放电电流I=(4.2-3.3)/0.008=112.5A, 放电倍率=112.5/11.6=9.7C。 如果取不同放电电压平台做标准,用不同内阻值都会影响到最后计算出的放电倍率,还是我上面那块8-12毫欧的电池,取不同值计算结果:1)内阻8毫欧,放电平台3.0V,则放电倍率为12.9C; 2)内阻8毫欧,放电平台3.3V,则放电倍率为9.7C; 3)内阻8毫欧,放电平台3.5V,则放电倍率为7.54C; 4)内阻10毫欧,放电平台3.3V,则放电倍率为7.76C; 5)内阻12毫欧,放电平台3.3V,则放电倍率为6.47C; 因此电池放电倍率与测试所选取的标准有关。 测量电池内阻时如果接口接触不好会有较大影响,因此测量时要确保接口接触良好,电池内阻也会随充电过程变化,一般测量时电池组电压越低(串联的少),放电倍率越大,由接口和电线电阻引起的误差也越大(本质就是电池组内阻越小,接口和导线电阻所占的比例越大)。 就最大放电电流来说(同样电压):10AH(10C)=5AH(20C),因为它们的内阻是相同的,比较最大放电电流时要通过容量乘以放电倍率来比较,而不是仅仅通过放电倍率来比较,比较最大放电电流的本质是比较电池内阻大小,就像1m口径的水桶0.5倍口径的出水管没有3m口径水桶0.2倍出水管出水量大一样。但就实际使用来说同样玩一会容量低的电池电

充放电倍率对于锂离子电池过充性能的影响

充放电倍率对于锂离子电池过充性 能的影响 锂离子电池主要由正极、负极、隔膜和电解液等部分组成,通过Li+在正负极的迁移进行储能。其中在充电的过程中,Li+从正极脱出,然后嵌入到负极之中,放电的过程则正好相反,因此锂离子电池也被形象的称为“摇椅式”电池。正常使用时,正极脱出的Li能够全部嵌入到负极之中,这一过程中副反应比较少,因此锂离子电池在正常的工作条件下具有非常优异的工作寿命,但是极端滥用的条件下,例如过充,正极会被充到很高的电压,从而脱出过量的Li,超出负极的容量,导致负极析锂。这一方面会加剧电解液在负极表面的还原分解,另一方面正极的高电势也会导致电解液在正极表面大量氧化分解,因此过充不但会引起锂离子电池的安全风险,还会导致锂离子电池的循环寿命大幅衰降。 近日,中科大的DongxuOuyang(第一作者)和Jian Wang (通讯作者)等人就对充电倍率、放电倍率和循环倍率对锂离子电池在过充条件下的衰降的影响进行了研究,研究表明在锂离子电池过充条件下测试时,较低的充电倍率反而会严重的劣化锂离子电池的性能。

作者在实验中采用的为三洋的18650电池,电池电压为4.2V,电池容量为1300mAh,正极为LCO,负极为石墨,实验中采用的设备如下所示,所有的实验在20℃的环境下开展,电池表面分别粘贴3个K型热电偶,用来测试电池的表面的温度。实验安排如下表所示,其中分组1主要测试了不同的循环倍率的影响,分组2主要测试了不同充电倍率的影响,分组3主要测试了不同放电倍率的影响。

下图为一个典型的锂离子电池过充过程中温度(上图T2位置)和电压等参数变化曲线,从下图可以看到正常充电过程可以分为以下几个部分:1)极化阶段,这一阶段由于极化的存在因此在施加电流后电池的电压迅速升高,此时电池温度出现温度降低;2)在240s后电池进入温度平稳升高阶段,在此阶段电池温度以0.05℃/min的速度升高;3)温度稳定阶段,在这一阶段电池温度会持续升高,但是电池的温度并不会升高。一旦电池进入到过充时,电池的温度首先保持恒定,然后突然开始上升,最终达到峰值温度。

电池放电时间计算

电池放电时间计算 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

新电池估算方法: 估计算法:电池容量×÷负载电流 详细算法: 第一,先求出电池10小时率的放电电流,即容量除以10,一组500AH的电池,10小时率放电电流为50A,二组500AH的,10小时率放电电流为100A。 第二,用实际放电电流除以10小时率放电电流,求出一个比率,根据这个比率,查《电池放电率与放电容量》表中的放电倍率,从这个放电倍率数中选择一个最为相近的值,对应看到放电率,和有效放电容量倍率这一栏,记录好表中数据。 第三,查看当时的放电环境温度。 第四,计算放电时长:t=额定容量×放电容量倍率×〔1+温度系数×(环境温度-25)〕/放电电流 一般温度系数基站里选用,机房里选用 注意事项: 1、实际放电中,电流是逐渐增大的,并不恒定,因此放电时长肯定要与计算出来的有差别,电流越大,同容量的情况下,放电时间就越短。 2、长期使用后,电池容量肯定要下降的,应该用实际容量进行计算,在初期,可以用额定容量进行计算。 3、如果电池前后两次放电间,由于种种原因没充满电,算出来的时间肯定也不一样,而且充电容量不能以小时×电流直接进行计算,存在一个充电效率问题,充电时,电池会把一部分容量转换为热能散失掉。

4、一般48v用电,电池都是以24节串联一组使用,根据规定,当其中最低一节电压率先达到,也就是只要有一只电池达到,放电终止,计算此时的容量。但实际应用当中,不是以此来停止电池放电的,而是整组电压降到多少V就终止放电,所以放电放到这个项目的时候,往往会有更大的误差。而且电池测试的一个项目是单体电压的最大最小差值,说明一组电池的单体电压是不均衡的。如果均衡的,那么以×24=,即可以放到算做结束,但实际当中这种事情至少我是没碰到过,如果相差幅度较大,可能总电压在48v时,有一节达到,但由于终止放电判定条件以整组电压计量的,我设定在47v,那还继续放电,这个求出的容量于真正意义上的容量就不等了,所以反过来求放电时长,也就不准了。 5、综合上述所说,只能求一个大概值,除非在条件达到一定要求的情况下,才有可能算得很准。当然,具体相差多少,本人也没做过实验,但至少可以有这样一个概念:到底能放5小时左右还是10小时左右,这个左右可能是几十分钟,也可能是1或2个小时,但从大的方向来判断,还是可以依靠的。 电池常用术语解释一:放电倍率 电池放电电流的大小常用"放电倍率"表示,即电池的放电倍率用放电时间表示或者说以一定的放电电流放完额定容量所需的小时数来表示,由此可见,放电倍率表示的放电时间越短,即放电倍率越高,则放电电流越大。(放电倍率=额定容量/放电电流) 根据放电倍率的大小,可分为低倍率(<0.5C)、中倍率(-3.5C)、高倍率(- 7.0C)、超高倍率(>7.0C) 如:某电池的额定容量为20Ah,若用4A电流放电,则放完20Ah的额定容量需用5h,也就是说以5倍率放电,用符号C/5或0.2C表示,为低倍率。

相关文档
相关文档 最新文档