文档库 最新最全的文档下载
当前位置:文档库 › 实验三 单片机工业顺序控制

实验三 单片机工业顺序控制

实验三 单片机工业顺序控制
实验三 单片机工业顺序控制

实验三单片机工业顺序控制(设计型)

一、实验目的与要求

1.学习和掌握单片机工业顺序控制程序的应用编程;

2.熟悉和掌握单片机中断功能的使用。

二、实验仪器

1、DJ-598KC单片机开发系统 1台

2、仿真器(EASYPROBE) 1只

3、PC 机 1台

三、实验内容 (2学时)

在工业控制中,象冲压、注塑、轻纺、制瓶等生产过程,都是一些连续生产过程,按某种顺序有规律地完成预定的动作,对这类连续生产过程的控制称顺序控制,象注塑机工艺过程大致按“合模→注射→延时→开模→产伸→产退”顺序动作,用单片机最易实现。

设由单片机P1.0~1.6控制注塑机的七道工序,模拟控制七只发光二极管的点亮,低电平有效,设定每道工序时间转换为延时时间,P3.4为开工启动开关,高电平启动。P3.3为外部故障输入模拟开关,低电平报警,P1.7为报警声音输出,设定前6道工序只有一位输出,第七道工序三位有输出。

(1)实验电路及接线图

(2)实验程序框图

四、实验步骤:

按图接好连线。执行程序,把K1接到高电平,观察发光二极管点亮情况,确定工序执行是否正常,然后把K2置为低电平,看是否有声音报警,恢复中断1.报警停,又从刚才报警时一道程序执行下去。可用单步、单步跟踪,非全速断点、全速断点,连续执行功能调试软件,直到符合自己程序设计要求为止。

五、实验参考程序

①汇编代码程序:(E:\DJ51\598KASM\HW04.ASM)

ORG 0000H

LJMP PO10

ORG 0013H

LJMP PO16

ORG 0190H

PO10:MOV P1,#7FH

ORL P3,#00H

PO11:JNB P3.4,PO11 ;开工吗?

ORL IE,#84H

ORL IP,#04H

MOV PSW,#00H ;初始化

MOV SP,#53H

PO12: M OV P1,#7EH ;第一道工序

ACALL PO1B

MOV P1,#7DH ;第二道工序

ACALL PO1B

MOV P1,#7BH ;第三道工序

ACALL PO1B

MOV P1,#77H ;第四道工序

ACALL PO1B

MOV P1,#6FH ;第五道工序

ACALL PO1B

MOV P1,#5FH ;第六道工序 ACALL PO1B

MOV P1,#0FH ;第七道工序

ACALL PO1B

SJMP PO12

PO16:MOV B,R2 ;保护现场

PO17:MOV P1,#7FH ;关输出

MOV 20H,#0A0H ;振荡次数

PO18: S ETB P1.7 ;振荡

ACALL PO1A ;延时

CLR P1.7 ;停振

ACALL PO1A ;延时

DJNZ 20H,PO18 ;不为0转

CLR P1.7

ACALL PO1A ;停振

JNB P3.3,PO17 ;故障消除吗?

MOV R2,B ;恢复现场

RETI

PO19:MOV R2,#10H

ACALL DELY ;延时1

RET

PO1A:MOV R2,#06H

ACALL DELY ;延时2

RET

PO1B: M OV R2,#30H

ACALL DELY ;延时3

RET

DELY: P USH 02H

DEL2: P USH 02H

DEL3: P USH 02H ;延时

DEL4: D JNZ R2,DEL4

POP 02H

DJNZ R2,DEL3

POP 02H

DJNZ R2,DEL2

POP 02H

DJNZ R2,DELY

RET

END

②C代码程序:(E:\DJ51\51C\HW04.C)

#include

sbit P1_7=P1^7;

sbit P3_3=P3^3;

sbit P3_4=P3^4;

void delay(unsigned int i)

{

unsigned int j,k;

for(k=0;k

for(j=0;j<100;j++);

}

void int1_int(void) interrupt 2

{

EX1=0;

while(P3_3==0)

{

P1_7=1;

delay(1);

P1_7=0;

delay(1);

}

EX1=1;

}

void main(void)

{

EA=1;

EX1=1;

PX1=1;

P1=0x7f;

while(1)

{

while(P3_4==1)

{

1)

{

P1=0x7e;

delay(500);

P1=0x7d;

delay(500);

P1=0x7b;

delay(500);

P1=0x77;

delay(500);

P1=0x6f;

delay(500);

P1=0x5f;

delay(500);

P1=0x0f;

delay(500);

}

}

}

}

六.思考:修改程序,使每道工序中有多位输出。七.实验报告要求

1.画出实验的硬件电路图及设计程序流程图;

2.整理实验程序清单,并给程序加详细注释;

3.总结实验中出现的问题并进行解决的方法;

4.给出实验结果及对实验的改进意见。

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

过程控制实验三

实验三管道流量定值控制实验 一、实验目的 1)、了解涡轮流量计的结构及其使用方法。 2)、熟悉单回路流量控制系统的组成。 3)、了解PID整定方法。 二、实验配置清单 表2-1、管道流量定值控制实验配置清单 序号名称电气代号型号数备份 1 1号水泵P101 MS60/220V/0.37KW 1台 2 电动调节阀QS QS-16KDN32-dg25 1台 2 涡轮流量计WL LWGY-15 1个 3 智能转速流量积算仪1 X 4 AI-708HAI2X3SV241块 4 智能调节仪1 X1 AI-818A2X3LS-24V 1块 5 精密电阻250欧1个 6 连接导线若 7 通信电缆1跟 8 232/485转换模块1个 9 计算机1台 10 组态软件1套 11 监控软件1套 三、实验面板位图和实验电气连接图 1、实验信号实物连接图 图2-5、实验信号实物连接图 2、实验仪表参数表 表2-2、智能转速流量积算仪1、智能调节仪1参数表

智能转速流量积算仪1 智能调节仪1 参数表 序号参数名称参数值序号参数名称参数值 1 Act 0 1 Ctrl 1 2 Sn 0 2 Sn 33 3 Frd 600 3 dip 1 4 FdIP 1 4 diL 0.0 5 FdIH 6.0 5 diH 6.0 6 CF 0 6 Sc 0 7 FoH 6.0 7 OP1 4 8 loL 40 8 OPL 0 9 loH 200 9 OPH 100 10 Addr 1 bAud 9600 CF 0 3、实验原理 用临界比例度法整定调节器的参数,在实际应用中,PID调节器的参数常用下述实验的方法来确定,具体的做法是: 1)、待系统稳定后,逐步减小调节器的比例度δ,并且每当减小一次比例度,待被调量回复到平衡状态后,再手动给系统施加一个5%~15%的阶跃扰动,然后观察被调量变化的动态过程。若被调量为衰减的振荡曲线,则应继续减小比例度δ,直到输出响应曲线呈等幅振荡为止,如果响应曲线出现发散,则表示比例度调得过小,应适当增大,使被调量变为等幅振荡。如图2-8所示。 图2-8、具有周期TK的等幅振荡

杭电《过程控制系统》实验报告

实验时间:5月25号 序号: 杭州电子科技大学 自动化学院实验报告 课程名称:自动化仪表与过程控制 实验名称:一阶单容上水箱对象特性测试实验 实验名称:上水箱液位PID整定实验 实验名称:上水箱下水箱液位串级控制实验 指导教师:尚群立 学生姓名:俞超栋 学生学号:09061821

实验一、一阶单容上水箱对象特性测试实验一.实验目的 (1)熟悉单容水箱的数学模型及其阶跃响应曲线。 (2)根据由实际测得的单容水箱液位的阶跃响应曲线,用相关的方法分别确定它们的参数。二.实验设备 AE2000型过程控制实验装置,PC机,DCS控制系统与监控软件。 三、系统结构框图 单容水箱如图1-1所示: Q2 图1-1、单容水箱系统结构图 四、实验原理 阶跃响应测试法是系统在开环运行条件下,待系统稳定后,通过调节器或其他操作器,手动改变对象的输入信号(阶跃信号),同时记录对象的输出数据或阶跃响应曲线。然后根据已给定对象模型的结构形式,对实验数据进行处理,确定模型中各参数。 图解法是确定模型参数的一种实用方法。不同的模型结构,有不同的图解方法。单容水箱对象模型用一阶加时滞环节来近似描述时,常可用两点法直接求取对象参数。 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀

h1( t ) h1(∞ ) 0.63h1(∞) 0 T V 2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V 2的开度大小会影响到水箱的时间常数),T=R 2*C ,K=R 2为单容对象的放大倍数,R 1、R 2分别为V 1、V 2阀的液阻,C 为水箱的容量系数。令输入流量Q 1 的阶跃变化量为R 0,其拉氏变换式为Q 1(S )=R O /S ,R O 为常量,则输出液位高度的拉氏变换式为: 当t=T 时,则有: h(T)=KR 0(1-e -1)=0.632KR 0=0.632h(∞) 即 h(t)=KR 0(1-e -t/T ) 当t —>∞时,h (∞)=KR 0,因而有 K=h (∞)/R0=输出稳态值/阶跃输入 式(1-2)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图1-2所示。当由实验求得图1-2所示的 阶跃响应曲线后,该曲线上升到稳态值的63%所对应时间,就是水箱的时间常数T ,该时间常数T 也可以通过坐标原点对响应曲线 图 1-2、 阶跃响应曲线

浙工大过程控制实验报告

实验一:系统认识及对象特性测试 一 实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。 二 实验内容 1 熟悉用MCGS 组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。 三 实验设备 1 AE2000B 型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。 四 实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h ,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得: 式中,T 为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C ,K=R2为单容对象的放大倍数,R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP ,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h 。电动调节阀的开度op 通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA 的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型 有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op ,近似看成与流量Q1成正比,当电动调节阀的开度op 为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op 的变化,则输出表达式是对应原来输出值得基础上的增量表达的是,用输出测量值数据做阶跃响应曲线,应减去原来的正常输出值。 五、实验步骤 A 、熟悉用MCGS 组态的智能仪表过程控制系统 1、设备的连接和检查

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验 实验一 过程控制系统建模 ............................................................................................................. 1 实验二 PID 控制 ............................................................................................................................. 2 实验三 串级控制 ............................................................................................................................. 6 实验四 比值控制 ........................................................................................................................... 13 实验五 解耦控制系统 . (19) 实验一 过程控制系统建模 指导内容:(略) 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 作业题目二: 某二阶系统的模型为2 () 22 2n G s s s n n ?ζ??= ++,二阶系统的性能主要取决于ζ,n ?两个参数。试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶 系统的理解,分别进行下列仿真: (1)2n ?=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ?分别为2, 5, 8, 10时的单位阶跃响应曲线。

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

plc实验报告

PLC原理及应用实验报告 课程题目 学院名称 专业名称 学生姓名 学生学号 指导老师 设计(论文)成绩 教务处制 2016年月日

第一章 可编程控制器的概述 可编程序控制器,英文称Programmable Logical Controller ,简称PLC 。 它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应 用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控 制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接 口,控制各种类型的机械或生产过程。PLC 是微机技术与传统的继电接触控制技 术相结合的产物,它克服了继电接触控制系统中的机械触点的复杂接线、可靠性 低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到 现场电气操作维修人员的技能与习惯,特别是PLC 的程序编制,不需要专门的计 算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使 用户程序编制形象、直观、方便易学;调试与查错也都很方便。用户在购到所需 的PLC 后,只需按说明书的提示,做少量的接线和简易的用户程序的编制工作, 就可灵活方便地将PLC 应用于生产实践。 一、可编程控制器的基本结构 可编程控制器主要由CPU 模块、输入模块、输出模块和编程器组成(如下图 所示)。 二、可编程控制器的工作原理 可编程控制器有两种基本的工作状态,即运行(RUN )状态与停止(STOP )状态。 在运行状态,可编程序控制器通过执行反映控制要求的用户程序来实现控制功能。为 了使可编程序控制器的输出及时地响应随时可能变化的输入信号,用户程序不是只执 行一次,而是反复不断地重复执行,直至可编程序控制器停机或切换到STOP 工作状态。 除了执行用户程序之外,在每次循环过程中,可编程序控制器还要完成内部处理、 通信处理等工作,一次循环可分为5个阶段(如图所示) 在内部处理阶段,可编程序控制器检查CPU ,模块内部 的硬件是否正常,将监控定时器复位,以及完成一些别的内 部工作。 在通信服务阶段,可编程序控制器与带微处理器的智能 装置通信,响应编程器键入的命令,更新编程器的显示内容。 在输入处理阶段,可编程序控制器把所有外部输入电路的 接通/断开(ON/OFF )状态读入输入映像寄存器。 在程序执行阶段,即使外部输入信号的状态发生了变化,输入映像寄存器的状态输入模块CPU 模块输出模块可编程序控制器编程装置接触器电磁阀指示灯电源 电源 限位开关选择开关按钮

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

单片机实验报告

南京晓庄学院电子工程学院 实验报告 课程名称:单片机系统设计与应用 姓名:森 专业:电子信息科学与技术 年级:14级 学号:05 2016年12 月1 日

实验项目列表 序号实验项目名称成绩指导教师 1 单片机仿真软件的使用 2 单片机I/O接口应用实验——流水灯 3 外部中断实验——工业顺序控制模拟 4 定时/计数器实验——矩形波 5 定时/计数器实验——计数器 6 综合实验 7 8 9 10 注: 1、实验箱端口为com6。 2、芯片选择切换到51 3、停止运行使用实验箱上的复位按钮

实验室号:___ 实验时间:成绩: 实验一仿真软件的使用 1.实验目的和要求 1)熟悉Keil C51软件界面,以及编辑、编译、运行程序的步骤; 2)掌握单片机仿真软件使用和调试的方法。 2.实验原理 Keil C51软件使用 在Keil C51集成开发环境下,建立一个工程并编辑源程序,熟悉Keil C51集成开发环境下各种菜单、命令的使用。 3.主要仪器设备(实验用的软硬件环境) 安装有Keil C51软件的PC机1台 4.操作方法与实验步骤 Keil C51软件使用 (1)建立用户文件夹 (2)建立工程 (3)建立文件并编码。输入以下源程序,并保存在项目所在的目录中 (4)把文件加入工程中 (5)编译工程。编译时观察在界面下方的“Build”页中的到编译错误信息和使用的系统资源情况等。 (6)调试。利用常用调试命令,如复位、运行、暂停、单步、单步跳过、执行完当前子程序、运行到当前行、下一状态、打开跟踪、观察跟踪、反汇编窗口、观察窗口、代码作用范围分析、1#串行窗口、内存窗口、性能分析、工具按钮等命令进行调试,观察并分析调试结果。 (7)目标代码文件的生成。运行生成相应的.HEX文件。 5.实验内容及程序 1)从DATA区地址起始地址为40H的连续10个内存单元的内容传送到XDATA区起始地址为2000H的10个内存单元中。 注意:DATA区地址起始地址为40H的连续10个内存单元必须先赋初值。 P83-5源程序 #include #define uchar unsigned char xdata unsigned char buffer1[10]_at_ 0x2000; //在xdata区定义数组变量BUF1,首地址为2000H data unsigned char buffer2[10]_at_ 0x40; //在data区定义数组变量BUF2,首地址为40H void main(void)

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

工业生产过程控制实验报告DOC

南昌大学实验报告 实验类型:□ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩: 实验一 单容自衡水箱液位特性测试实验 一、实验目的 1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线; 2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数; 3.掌握同一控制系统采用不同控制方案的实现过程。 二、实验设备 1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS 需两台计算机)、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个; 4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根; 5.SA-41挂件一个、CP5611专用网卡及网线; 6.SA-42挂件一个、PC/PPI 通讯电缆一根。 三、实验原理 所谓单容指只有一个贮蓄容器。自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。图2-1所示为单容自衡水箱特性测试结构图及方框图。阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q 1,改变电动调节阀V 1的开度可以改变Q 1的大小,下水箱的流出量为Q 2,改变出水阀F1-11的开度可以改变Q 2。液位h 的变化反映了Q 1与Q 2不等而引起水箱中蓄水或泄水的过程。若将Q 1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q 1之间的数学表达式。 根据动态物料平衡关系有 Q 1-Q 2=A dt dh (2-1) 将式(2-1)表示为增量形式 ΔQ 1-ΔQ 2=A dt h d (2-2) 式中:ΔQ 1,ΔQ 2,Δh——分别为偏 离某一平衡状态的增量; A ——水箱截面积。 在平衡时,Q 1=Q 2,dt dh =0;当Q 1 发生变化时,液位h 随之变化,水箱出 图2-1 单容自衡水箱特性测试系统 口处的静压也随之变化,Q 2也发生变化 (a )结构图 (b )方框图 。由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。但为了简化起见,经线性化处理后,可近似认为Q 2与h 成正比关系,而与阀F1-11

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

单回路控制系统实验过程控制实验指导书

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静(动)态水温定值控制实验 实验三 实验项目名称:单容液位定值控制系统 实验项目性质:综合型实验 所属课程名称:过程控制系统 实验计划学时:2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和(原理)要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱(也可采用上水箱或下水箱)的液位高度,实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制中水箱液位的目的。为了实现系统在阶跃

给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7、F1-11全开,将中水箱出水阀门F1-10开至适当开度,其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 (一)、智能仪表控制 1.按照图3-5连接实验系统。将“LT2中水箱液位”钮子开关拨到“ON”的位置。 图3-4 中水箱单容液位定值控制系统

过程控制系统实验指导书

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

鍗旷墖链鸿

河北工业大学计算机硬件技术基础(MCS-51)2007年课程设计 报告 一、题目:工业顺序控制 二、问题的提出 1.目的: (1)培养学生综合利用MCS-51单片机的软硬件知识进行程序设计的能 力,解决一些实际问题。 (2)进一步加深对MCS-51单片机内部结构和程序设计方法的理解。 (3)提高学生建立程序文档、归纳总结的书面表达能力。 (4)通过查阅和网上搜索资料,提高学生独立获取知识的能力。 (5)在设计的全过程中,通过理论与实践相结合,培养和提高学生的实 践能力和创新能力。 三、总体设计 1、分析问题的功能 在工业控制中,像冲压、注塑、轻纺、制瓶等生产过程,都是一些继续生产过程,按某种顺序有规律的完成某种预定的动作,对这类继续生产过程称为顺序控制,倒注塑机工艺大致按“合模-注射-延时-开模-产伸-产退”顺序工作。 P1.0~P1.6代表控制注塑机的七道工程,模拟控制七只发光二极管的点亮,低电平有效,设每道工序时间为延时,P3.4为开工启动开关,低电平启动,P3.3为外部故障输入模拟开关,低电平报警,P1.7为报警输出,前六道工序只有一位输出,第七道工序中有三位输出。 2、系统总体结构设计 根据上述问题描述,本设计运用了两个中断,一个外部INT1中断,一个定时 器T/C1中断, 四、详细设计: 1、画出电路图;

2. 流程图

3、设计中的主要困难及解决方案 1)困难1 实现蜂鸣器与故障中断的同步 解决方法:当语句LOOP: JNB P3.3,LOOP 循环执行时,开定时器不断给蜂鸣器高低方波,这样,只要定时器一直开着,蜂鸣器就一直处于鸣响状态,直到外部中断解除。 LOOP: JNB P3.3, LOOP SETB P1.7 CLR ET1 RETI 定时器停止工作,工程回到端点继续执行。 2)困难2 各工序的用时应该不同 我们准备了几个不同的子程序,每个灯亮时就可以调用不同的子程序了,这样等量的时间就不同了。 三、程序清单 ORG 8000H AJMP MAIN ORG 8013H LJMP INT1SV ORG 801BH LJMP T1S MAIN: MOV SP, #5FH SETB EA ;允许CPU中断 SETB EX1 ;允许INT1中断 CLR IT1 ;INT1为电平触发 L0: JNB P3.4, L1 AJMP L0 ;是否开工? L1: ;第一道工序 SETB P1.7 CLR P1.0 ACALL DLAY L3: SETB P1.0 ;第二道工序 CLR P1.1 ACALL DLAYA AJMP L4 L4:SETB P1.1 ;第三道工序 CLR P1.2 ACALL DLAYB AJMP L5 L5: SETB P1.2 ;第四道工序

过程控制实验报告

过程控制实验实验报告 班级:自动化1202 :益伟 学号:120900321

2015年10月 信息科学与技术学院 实验一 过程控制系统建模 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 答:常见的工业过程动态特性的类型有:无自平衡能力的单容对象特性、有自平衡能力的单容对象特性、有相互影响的多容对象的动态特性、无相互影响的多容对象的动态特性等。通常的模型有一阶惯性模型,二阶模型等。 单容过程模型 1、无自衡单容过程的阶跃响应实例 已知两个无自衡单容过程的模型分别为s s G 5.01)(=和s e s s G 55.01)(-=,试在Simulink 中 建立模型,并求单位阶跃响应曲线。 Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示: 2、自衡单容过程的阶跃响应实例 已知两个自衡单容过程的模型分别为122)(+=s s G 和s e s s G 51 22 )(-+= ,试在Simulink 中建立模型,并求单位阶跃响应曲线。 Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响的多容过程的阶跃响应实例 已知有相互影响的多容过程的模型为1 21 ) (2 2++= Ts s T s G ξ,当参数1=T , 2.1 ,1 ,3.0 ,0=ξ时,试在Simulink 中建立模型,并求单位阶跃响应曲线 在Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示: 4、无相互影响的多容过程的阶跃响应实例 已知两个无相互影响的多容过程的模型为) 1)(12(1 ) (++= s s s G (多容有自衡能力的对象)和 ) 12(1 )(+= s s s G (多容无自衡能力的对象),试在Simulink 中建立模型,并求单位阶跃响应曲线。 在Simulink 中建立模型如图所示: 得到的单位阶跃响应曲线如图所示:

相关文档
相关文档 最新文档