文档库 最新最全的文档下载
当前位置:文档库 › 数字通信系统数据纠错方法研究

数字通信系统数据纠错方法研究

数字通信系统数据纠错方法研究
数字通信系统数据纠错方法研究

数字通信系统数据纠错方法研究

内容摘要:通信系统包括数字通信系统和模拟通信系统,其实除了传统的通信外,对于现在的计算机拥有很强的数据处理能力以及数据分析能力,数据在计算机各部分的传递就是通信,不管什么样的通信,对通信系统的传输的可靠性需要较高的要求。我国的通信系统正处于世界通信系统的领先地位,其规模和水平已经达到国际水平,但是有些问题仍难以突破也就是数据传输的可靠性,所谓可靠性其实就是数据在信道传输的时,能够对外界噪声干扰所造成的错误数据,接收端能够发现并且纠正这些错误的性能。这性能系统叫做差错控制系统,完成差错控制系统的主要方式一是对传输的信息进行编码,利用代数的方法给信息提供一切保护数据,完成这些保护数据与传输数据之间建立一种互相约束的关系,从而完成编码。差错控制包含两种类型,一是“反馈纠错”,二是“前向纠错”,从这两类纠错方式又衍生出了“混合纠错”。

关键词:数字通信系统传输数据编码纠错

前言

现在对于数字通信系统传输数据纠错这块,在日新月异的当今社会拥有许多方式方法,这里通俗的简介了一种纠错方式就是差错控制纠错方式。对于数字通信系统数据纠错方法其实有很多,如提高发送信号的功率,提高接收端的信号噪声比,或者采用编码方法进行控制,前者通常都会受到条件的限制,并不能在任何情况下都能采用。对于采用编码方法进行控制,它是简历在Shannon理论基础上的,近几十年发展较为快速的差错控制编码技术,采用对信息编码提高发送功率有效地抑制噪声信号在接收端的干扰,从而更有效地在噪声信号中提取并恢复你所需要的传输信号。总而言之,提高发送信号功率与差错控制编码是等价的。

1 绪论

1.1差错控制编码的简介

当今世界需要的通信系统是必须具备能够自行发觉发错的能力以及自身系统采取纠正错误措施的能力,以确保数据传输的可靠性,要尽可能的使差错控制在所我们能够直接的的小范围。

在接收端对信号的差错进行编码并进行校验检查,判定在此过程传输一单位

帧中有无产生了错误、差错。现在纠正错误的编码我们一般采用的是反馈重发的方式来进行检测和纠正。在此检测过程中需要接收方收完一个单位帧后向发送端反馈一个信息是否正确的反馈信息。使发送端能够在接受到发送端所发送出的反馈信号之后确定该帧已经被发送完毕,反之则需要一直重复发送信号直到接收端接收到正确信号为止。

在传输信道传输数据时,外界噪声的影响以及数据传输不可能达到理论理想状态,对于一些传输数据的误差在接收终端是不可避免的。在基本原理的信息序列附加上监督码元从而使差错控制编码转换成纠错编码,通过冗余的码元,将毫无规则或者规则性不强的信号转化成为拥有规律的信号,差错控制译码是根据信号码元的规律来鉴别传输过程中是否产生错误,进而改正错误。

大多数差错控制编码都是利用FPGA技术去实现,该课题主要是想通过比较一些编码技术的不同,发现它们之间的相同与不同支出,这样为适合领域找到适宜的编码提供便捷。该课题主要研讨循环冗余差错校验编码(CRC)、卷积码、线性码,利用FPGA去完成,而CRC校验的使用则是在程序库在数据存储和数据通讯等领域,确保数据的完整和正确性,我们就必须采用检测手段。CRC编码是诸多校验里比较常用的,CRC的全名为循环冗余校验,CRC的优点在于检测错误能力强,成本低,易于用编码器及检测电路实现。对于检错能力的高低来看,未能检测出错误几率仅为0.0047%以下,性能以及成本上筹划,都大大地优于奇偶校验及算数和校验等方式(参考文献)。

1.2 EDA技术综述

当今社会大规模集成电路技术的不断拓新以及电子产品的飞速发展,EDA技术已经成为当今电子设计领域的主流,主要涉及有军事,医疗,民用电器等领域。

电子技术CAD基础上我们衍生出了EDA计算机软件系统,EDA是在计算机上进行操作、运行、制图、仿真,EDA技术里面融汇了电子技术,处理器技术,信息处理技术以及智能化处理技术的新型技术的应用。利用EDA计算机软件系统,设计师可以对市场的需求并且可以从一些特殊的定义、合计出完整的电子系统,计算机系统可以替我们去出力大部分的工作,并且能够把电子产品从电路设计、细性能分析到设计出IC版图或PCB版图的整个完整经历的计算机上自动处理并且完成。

2 应用EDA技术实现差错编码控制技术

通过在数字通信系统数据纠错方法利用差错编码控制技术,利用卷积码、CRC 编码、线性码去完成数字通信系统的纠错。运用FPGA技术可以完成CRC编码应用,编写代码我们可以运用VDHL语言,一次进行编译,下载,仿真。

2.1 循环冗余差错控制校验码的设计

在设计过程中,思路是采用至上而下的设计方式。根据整体的布局规划出模块外部功能,包括输入输出引脚定义和功能,也就是将小型芯片的功能布局完整,然后设计出芯片的外部特性以及功能,然后再完成芯片设计的细节问题。下面简介CRC编码通过工作原理,基本概念,原则,生成方法,算法,校验电路实现,这里仅仅是对原理简介。CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。

3卷积编码的仿真

3.1卷积编码的基本原理

由一个有k入段、n输出端、m位移寄存器所构成的一个有限有记忆系统构成了卷积码的编码器,一般而言被称为时序网络。描述该类时序网络的方法有很多种,一般我们大致分为两类型,解析表示法与图形表示法。解析法包含有码多项式法、离散卷积法、生成矩阵法,我们运用不同的方式方法去描述卷积码编译码的过程,如码树法、矩阵法、状态图法以及篱状图法等,若我们采用不同的方法去描述卷积码的编码器则其与译码的方法有很大的关系。例,在代数译码时,采用矩阵法译码原理的描述和理解比较适宜。但是利用树码和网格图能够更明了的直观的了解概率译码的过程和译码的性能。类似的(n、k)线性分组码,卷积码也用生成矩阵和监督矩阵来叙述。(参考文献)

3.2 卷积编码的仿真

信号流程可由内努力二进制生产器产生一个0,1等概序列来表示,通过卷积编码器对输入的二进制序列进行卷积编码,用BPSK调制方式对信号进行调制,再者

加入信道噪声再通过BPSK解调后送入Viterbi译码器进行硬裁断译码,最后由误码统计后显示输出,然后经过数据选通器把最后的结果输出到工作区间。(参考文献)。

3.3仿真模块的参数设置以及重要参数的意义

完成建立仿真模块之后,需要对各个模块分别进行设置后进行运行仿真。

有三项参数在贝努利二进制序列产生器模块中产生:第一项为probability of a zero取值为0.5,则表示1和0呈现的概率是等价的。Initial seed表示随机种子数。不同的二进制序列由不同的随机种子数产生。一个特定的二进制序列由特定的随机种子产生。Sample time=0.0002表示抽样时间,等同于输出的二进制序列符号持续时间为0.0002秒。Samples per frame代表每帧的抽样数用来确定抽样点的多少。Frame-based outputs是用来决定帧的输出模式。(参考文献)。

随后进行卷积编码器模块的运行和仿真,误比特统计模块的运行和仿真,数据选通器模块的运行和仿真,对参数进行记录以及对参数数据分析,参数的意义。

3.4卷积编码器VDHL仿真波形分析

仿真前设置输入信号序列为datain=“1111”,速率为32bit/s,对应的时钟为31.24us。其结果证明,卷积编码输出dataout=“11111010010000000001”所对应的速率为64bit/s,与理论分析结果一致。

4线性分组码的FPGA实现

4.1线性分组码的基本概念和原理

以k个码元分成一个信息组的信息序列成为分组码。将信息组遵照一定的规律形成r个多余的码元则是编码器的任务,形成一切长为n=k+r的码子,我们拥有2k个信息组,不同信息组编码器将输出不同码字,2k个信息组拥有2k个不同的码字。长度为n的2k个码字集合称为一个(n,k)分组码,K表示信息位的数目,N表示码长,r=k/n成为分组码的码率,这个参数是非常重要的。将信息员所提供的二元信息序列分成等长的不同的信息组,若信息位长为k,信息组则可能有2k个取值。编码器则按照一定的规律,将输入的信息序列进行编制,编制成长度为n的码字,信息元为码字的前k位,信息组必须与字码相对应。若各个校验元与之前的k个信息源之间呈线性关系,那么该码为线性分组码。

4.2线性码进行差错控制的仿真

运用EDA技术绘制出仿真电路图,对电路图进行评估分析设计最优化,对仿真电路图各个模块进行测试评估,对测试出来的结果进行记录并且记录下重要参数以便对系统的性能进行优化。

4.3线性分组码的误码率分析

分析仿真结果,对其误码率进行分析,参数分析,写下各个参数代表其在此系统中的所代表的含义,以及对某一项参数进行性深入解析,加入不同的数据参数与参数之间进行比较,找出最优。

4.4线性分组码编码的仿真结果

记录仿真结果,书写结果报告,解析仿真波形分析,画出波形对波形进行分析。

5结束语

本课题对于数字通信系统数据纠错方法研究进行浅谈,总结出在现代通信中运用比较出差错控制编码具备的高性能优点,同时在现代通信系统中EDA技术的渗透,以及VHDL语言软件的运用还是有许多不足。基于VDHL语言、应用FPFA 开发的差错编码控制技术有效地解决了现代通信问题中的传输错误以及传输错误中的纠正,信号传输的高效性得以保证。

此次课程研究有许多不足,绘图并没有在此报告中体现,参数分析也不够具体,另外此次课程选用先进的EDA软件平台进行开发测试,将所有的程序进行编译和仿真实验,经过不断的测试,调试,总结出来差错控制编码是有效地解决数字通信系统数据纠错的良好渠道,确保信息的可靠性,完成信号的有效传输。

总的来说,此次课设设计报告还是比较成功的,深入浅出,对自己也算是一种突破,对于在设计报告实验报告中出现的困难自己还是有刻苦的能力去寻找方法解决他。最后感谢孙活老师的给予我们这次实践的机会,让自己有所经验,以致于的毕业不会那么困惑。

参考文献

[1]潘松、黄继业.EDA技术与VHDL.清华大学出版社

[2]侯伯亨、顾新。VHDL硬件描述语言与数字逻辑电路设计。西安电子科技大学

出版社

[3]黄载禄殷蔚华。通信原理。科学出版社

[4]李白萍、吴文梅通信原理与技术人民邮电大学出版社

[5]樊昌信、曹丽娜:通信原理,国防工业出版社 ,2006.7,P69-89

数字通信系统的模型

数字通信系统的模型 ? 数字通信系统的分类 ?数字通信系统可进一步细分为数字频带传输通信系统、数字基带传输通信系统、模拟信号数字化传输通信系统。 1. 数字频带传输通信系统 数字通信的基本特征是,它的消息或信号具有“离散”或“数字”的特性,从而使数字通信具有许多特殊的问题。例如前边提到的第二种变换,在模拟通信中强调变换的线性特性,即强调已调参量与代表消息的基带信号之间的比例特性;而在数字通信中,则强调已调参量与代表消息的数字信号之间的一一对应关系。 另外,数字通信中还存在以下突出问题:第一,数字信号传输时,信道噪声或干扰所造成的差错,原则上是可以控制的。这是通过所谓的差错控制编码来实现的。于是,就需要在发送端增加一个编码器,而在接收端相应需要一个解码器。第二,当需要实现保密通信时,可对数字基带信号进行人为“扰乱”(加密),此时在收端就必须进行解密。第三,由于数字通信传输的是一个接一个按一定节拍传送的数字信号,因而接收端必须有一个与发端相同的节拍,否则,就会因收发步调不一致而造成混乱。另外,为了表述消息内容,基带信号都是按消息特征进行编组的,于是,在收发之间一组组的编码的规律也必须一致,否则接收时消息的真正内容将无法恢复。在数字通信中,称节拍一致为“位同步” 或“码元同步”,而称编组一致为“群同步”或“帧同步”,故数字通信中还必须有“同步”这个重要问题。 综上所述,点对点的数字通信系统模型一般可用图 1-3 所示。

需要说明的是,图中调制器 / 解调器、加密器 / 解密器、编码器 / 译码器等环节,在具体通信系统中是否全部采用,这要取决于具体设计条件和要求。但在一个系统中,如果发端有调制 / 加密 / 编码,则收端必须有解调 / 解密 / 译码。通常把有调制器 / 解调器的数字通信系统称为数字频带传输通信系统。 2. 数字基带传输通信系统 与频带传输系统相对应,我们把没有调制器 / 解调器的数字通信系统称为数字基带传输通信系统,如图 1-4 所示。 图中基带信号形成器可能包括编码器、加密器以及波形变换等,接收滤波器亦可能包括译码器、解密器等。 3. 模拟信号数字化传输通信系统 上面论述的数字通信系统中,信源输出的信号均为数字基带信号,实际上,在日常生活中大部分信号(如语音信号)为连续变化的模拟信号。那么要实现模拟信号在数字系统中的传输,则必须在发端将模拟信号数字化,即进行 A/D 转换;在接收端需进行相反的转换,即 D/A 转换。实现模拟信号数字化传输的系统如图 1-5 所示。

数字微波通信技术的发展及应用

数字微波通信技术的发展及应用 摘要:数字微波通信技术是在时分复用技术的基础上发展而来的一种新技术, 不仅可以传输电话信号,还可以传输数据信号及图像信号,所以在十分广泛的领 域都得到了应用,特别是在科学技术日新月异的当今时代,数字微波通信技术大 的发展前景十分广阔,应用范围也越来越广泛。可见,对数字微波通信技术的发 展及应用进行研究具有十分重要的现实意义,本文主要对此进行探究。 关键词:数字微波通信技术;发展;应用 微波是当今时代应用范围十分广阔的一种通信传输方式,数字微波通信技术 就是利用微波来传输数字信息的一种方式,同时还能够利用电波空间传输各种信 息甚至是对相互之间没有任何关联的信息进行传输,而且还能够在此基础上再生 中继,不得不说这是一种发展十分迅速的一种通信方式,本文主要对数字微波通 信技术的发展及应用进行研究,希望能够有效促进数字微波通信技术的不断发展。 1 数字微波通信技术的特点 数字微波通信技术之所以发展迅速且应用范围十分广泛是因为其具有其独特 的优势。数字微波通信技术的特点及其具体表现详见下表: 表1 数字微波通信技术的特点及其具体表现 2 数字微波通信技术的发展 微波通信技术是微波频段借助于地面视距进行信息传播的一种无线通信技术,已经出现了近几十年的时间。在出现初期阶段,微波通信系统通常是模拟制式的,它与当时的同轴电缆载波传输系统相同都是通信网长途传输干线的重要传输方式。具体而言,我国各个城市之间的电视节目是通过微波来进行传输的。20世纪70 年代初期随着科学技术的进步,人们开发出了几十兆比特每秒容量的数字微波通 信系统,可以说这个阶段是通信技术自模拟阶段向数字阶段转变的关键时期。20 世纪80年代末期,同步数字系列在传输系统中已经变得十分常见,可以说已经 被普遍应用,数字微波通信系统的容量也随之不断增大。当前,我们已经进入了 科学技术日新月异的新时代,数字微波通信技术与光纤、卫星一起被看作现代通 信技术的重中之重。 当今时代,数字微波通信技术不仅在传统传输领域内得到了关注,更在固定 宽带接入领域得到了众多专家学者的高度重视,可见数字微波通信技术发展态势 良好,发展前景十分广阔。 3 数字微波通信技术的主要发展方向 3.1 实现正交幅度调制级数的提升以及严格限带 要有效提升数字微波通信技术的频谱利用率一般需要应用到多电平正交幅度 调制技术,当前阶段,通常要应用到256与512正交幅度调制,未来还会应用到1024和2048正交幅度调制。此外,对于信号滤波器的设计要求也会变得越来越 严格,必须要确保其余弦滚降系数可以维持在一定范围内。 3.2 网格编码调制及维特比检测技术 采取复杂的纠错编码技术可以有效降低系统的误码率,但是这会导致系统的 频带利用率随之降低。这就要求我们必须采取有效措施来解决此问题,网格编码 调制技术就是不错的选择,可以有效处理该问题。需要注意的是,利用网格编码 调制技术需要使用维特比算法来进行解码。但是,在数字信号高速传输的当今时代,使用这种解码算法是具有一定难度的。

微波系统简介

微波系统简介 1微波发信设备 1.1设备组成 从目前使用的数字微波通信设备来看,分为直接调制式发信机(使用微波调相器)和变频式发信机。中小容量的数字微波(480路以下)设备可以用前一种方案。而中大容量的数字微波设备大多数采用变频式发信机,这是因为这种发信机的数字基带信号调制是在中频上实现的,可得到较好的调制特性和较好的设备兼容性。 下面以一种典型的变频式发信机为例加以说明,如图所示。 变频式发信机方框图 由调制机或收信机送来的中频已调信号经发信机的中频放大器放大后,送到发信混频器,经发信混频,将中频已调信号变为微波已调信号。由单向器和滤波器取出混频后的一个边带(上边带或下边带)。由功率放大器把微波已调信号放大到额定电平,经分路滤波器送往天线。 微波功放及输出功放多采用场效应晶体管功率放大器。为了保证末级的线性工作范围,避免过大的非线性失真,常用自动电平控制电路使输出维持在一个合适的电平。 一种微波功率放大器 公务信号是采用复合调制方式传送的,这是目前数字微波通信中采用的一种传递方式。它是把公务信号通过变容器实现对发信本振浅调频的。可见这种调制方式设备简单,在没有复用设备的中继站也可以上、下公务信号。

1.2性能指标 ◆工作频段 从无线电频谱的划分来看,我们把频率为0.3GHz~300GHz的射频称为微波频率。目前使用的范围只有1GHz~40GHz,工作频率越高,越能获得较宽的通频带和较大的通信容量。也可以得到更尖锐的天线方向性和天线增益。但是,当频率较高时,雨、雾及水蒸气对电波的散射或吸收衰耗增加,造成电波衰落和收信电平下降。这些影响对12GHz以上的频段尤为明显,甚至随频率的增加而急剧增加。 目前我国基本使用2、4、6、7、8、11GHz频段。其中2、4、6GHz频段因电波传播比较稳定,故用于干线微波通信,而支线或专用网微波通信常用2、7、8、11GHz。当然,对频率的使用,还要经申请,由上级主管部门和国家无线电管理委员会批准才行。 ◆输出功率 输出功率是指发信机输出端口处功率的大小。输出功率的确定与设备的用途、站距、衰落影响及抗衰落方式等因素有关。由于数字微波的输出比模拟微波有较好的抗干扰性能,故在要求同样的通信质量时,数字微波的输出功率可以小些。当用场效应晶体管功率放大器作末级输出时,一般为几十毫瓦到1瓦左右。 ◆频率稳定度 发信机的每个波道都有一个标称的射频中心工作频率,用f0表示。工作频率的稳定度取决于发信本振源的频率稳定度。设实际工作频率与标称工作频率的最大偏差值为Δf, 则频率稳定度的定义为 (3-1) 式中K为频率稳定度。 对于采用PSK调制方式的数字微波通信系统而言,若发信机工作频率不稳,即有频率漂移,将使解调的有效信号幅度下降,误码率增加。对于PSK调制方式,要求频率稳定度为1310-5~5310-6。 发信本振源的频率稳定度与本振源的类型有关。近年来由于微波介质稳频振荡源可以直接产生微波频率,并具有电路简单、杂波干扰及热噪声较小的优点,所以正在被广泛采用,其自身的频率稳定度可达到1310-5~2310-5左右。当用公务信号对介质稳频振荡源进行浅调制时,其频率稳定度会略有下降。对频率稳定度要求较高或较严格时,例如(1~5)310-6,可采用脉冲抽样锁相振荡源等形式的本振源。 除上述三项主要指标外,对发信机还有其他一些细节的技术要求,这里不再详述。2微波收信设备 2.1设备组成 数字微波的收信设备和解调设备组成了收信系统,这里所讲的收信设备只包括射频

(完整版)现代通信系统与网络课后题答案(部分)

第一章 1.你对信息技术如何理解?信息时代的概念是什么? 答:信息技术是研究完成信息采集、加工、处理、传递、再生和控制的技术,是解放、扩展人的信息功能的技术。概念是信息技术为核心推动经济和社会形态发生重大变革。 2.NII GII的含义是什么? 答:NII国家信息基础结构行动计划。GII全球信息基础设施。 3.现代通信的基本特征是什么?它的核心是什么? 答:现代通信的基本特征是数字化,核心是计算机技术。 4.数字通信与模拟通信的主要区别是什么?试举例说明人们日常生活中的信息服务,哪些是模拟通信,哪些是数字通信。 答:模拟信号的电信号在时间上、瞬时值上是连续的,模拟信号技术简单,成本低,缺点是干扰严重,频带不宽、频带利用率不高、信号处理难、不易集成和设备庞大等。数字信号在时间,瞬时值上是离散的,编为1或0的脉冲信号。 5.数字通信的主要特点有哪些? 答:数字通信便于存储、处理;数字信号便于交换和传输;数字信号便于组成多路通信系统;便于组成数字网;数字化技术便于通信设备小型化、微型化;数字通信抗干扰性强,噪声不积累。 6.为什么说数字通信抗干扰性强?噪声不积累? 答:在模拟通信中,由于传输的信号是模拟信号,因此

很难把噪声干扰分开而去掉,随着传输距离的增加,信号的传输质量会越来越恶化。在数字通信中,传输的是脉冲信号,这些信号在传输过程中,也同样会有能量损失,受到噪声干扰,当信噪比还未恶化到一定程度时,可在适当距离或信号终端经过再生的方法,使之恢复原来的脉冲信号,消除干扰和噪声积累,就可以实现长距离高质量的通信。 7.你对网络全球化如何理解?它对人类生活将带来什么样的影响? 答:我认为网络全球化是以内特网为全球范围的公共网,用户数量与日俱增,全球各大网络公司抢占内特网网络资源,各国政府高度重视,投资研发的网络,全球网络化的发展趋势是即能实现各国国情的应用服务,又能实现突破地区、国家界限的世界服务,使世界越来越小。 8.什么是现代通信?它与信息网关系如何? 答:现代通信就是数字通信系统与计算机融合,实现信源到信宿之间完成数字信号处理、传输和交换全过程。 信息网是多种通信系统综合应用的产物,信息网源于通信系统,但高于通信系统,通信系统是各种网不可缺少的物质基础。通信系统可以独立地存在并组成网络,而通信网不可能离开系统而单独存在。 9.信息网的网络拓扑结构有哪几种类型,各自有何特点? 答:有星型网,以一中点向四周辐射,现在的程控交换局与其所在的各电话用户的连线就是这种结构。

20通信系统概述

第一章通信系统概述 1.1 通信系统模型 一、通信的定义 1.信息:对收信者来说未知的、待传送、交换、存储或提取的内容 ﹙包括语音、图象、文字等﹚ 人与人之间要互通情报,交换消息,这就需要消息的传递。古代的烽火台、金鼓、旌旗,现代的书信、电报、电话、传真、电子信箱、可视图文等,都是人们用来传递信息的方式。 2.信号:与消息一一对应的电量。它是消息的物质载体,即消息是寄托在电信号的某一参量上。 3.通信就是由一地向另一地传递消息。 二、电通信 1.定义 利用“电”来传递信息,是一种最有效的传输方式,这种通信方式称为电通信。 2.特点 电通信方式能使消息几乎在任意的通信距离上实现既迅速、有效,而又准确、可靠的传递。 电通信一般指电信,即指利用有线电、无线电、光和其它电磁系统,对于消息、

情报、指令、文字、图象、声音或任何性质的消息进行传输。 (1)模拟信号与数字信号:按信号随时间分布的特性信号可分为模拟和数字信号。 模拟信号:信号的取值是连续的。 数字信号:信号的取值是离散的。 (2)基带信号与频带信号:按信号随频率分布的特性信号可分为基带和频带信号。 基带信号:发信源发出的信号。 频带信号:通过调制将基带信号变换为频带信号。 基带传输:在信道中直接传输的信号 (如直流电报、实线电话和有线广播等)。 频带传输:通过调制将基带信号变换为更适合在信道中传输的形式。(FM、AM、MODEM) 三、通信系统的模型 1.通信系统的一般模型 (1)通信系统:通信系统是指完成信息传输过程的全部设备和传输媒介。 (2)通信系统的基本模型

●发信源:是消息的产生来源,其作用是将消息变换成原始电信号。变换:将 非电物理量转换为掂量。 信源可分为模拟信源和离散信源。模拟信源(如电话机、电视摄像机)输出幅度连续的信号;离散信源(如电传机、计算机)输出离散的数字信号。 ●发送设备:作用是将信源产生的消息信号转换为适合于在信道中传输的信 号。它要完成调制、放大、滤波、发射等。在数字通信系统中还要包括编码 和加密。 ●信道:是传输的媒介。信道的传输性能直接影响到通信质量。 ●噪声源:将各种噪声干扰集中在一起并归结为由信道引入,这样处理是为了 分析问题的方便。 ●接收设备:完成发送设备的反变换,即进行解调、译码、解密等,将接收到 的信号转换成信息信号。 ●收信者:把信息信号还原为相应的消息。 2.模拟通信系统模型。

数字通信系统总结性复习

数字通信系统总结性复习 通信系统分为基带和频带传输两类。 数字基带通信系统模型 高速数字通信系统模型 一、A/D转换: 作用:完成模拟信号到数字信号的转换; 过程:采样、量化、编码 方法:PCM脉冲编码、增量调制(△M)、差分脉冲编码调制(DPCM)、自适应差分脉冲编码调制ADPCM 1、A律13折线(PCM脉冲编码):采用8bit量化,1bit极性码,3bit段落码,4bit段内 码,具体例子见习题答案。 2、增量调制(△M):对前后样值的变化进行编码:增大编为1,减小编为0,只用一位 编码。 a)避免过载的方法:一是增大Δ,二是减小Δt; b)增量调制一般采用的数据率为32Kbps或16Kbps; 3、PCM与△M的比较: a)在比特率较低(低于40Kbps)时,增量调制的量化信噪比高于PCM,话音质量 比PCM的好,增量调制抗误码性能好,可用于比特误码率为10-2~10-3的信道, 而PCM要求10-4~10-6 b)增量调制通常采用单纯的比较器和积分器作为编译码器,结构和设备较PCM简 单。 4、差分脉冲编码调制(DPCM):对信号的抽样值与信号的预测值的差值进行量化、编码, 其编码可采用N位二进制码。 5、自适应差分脉冲编码调制ADPCM:与DPCM相比,自适应的量化取代固定量化 二、信源编码:

作用:产生适合于信道传输的信号,提高系统有效性; 信源分类:语音信号和图像信号 语音压缩编码: 1、基本的语音编码方法:波形编码、参量编码和混合编码 2、应用举例:移动通信中多采用混合编码方式,如飞利浦的AMR-WB宽带自适应多速率语音 编码方法:语音带宽范围:50-7000Hz,16KHz抽样,6.6 Kbps~23.85 Kbps,应用领域:GSM、3G及其他 图像编码: 1、图像可压缩的原因:(1) 图像信号中存在着大量的冗余度;(2)人眼的视觉特性,对高频信 息的感受度低. 2、基本的图像压缩编码方法: i.JPEG(Joint Photographic Experts Group,联合图像专家组):静止图像编码标准 ii.MPEG(Moving Picture Experts Group,活动图像专家组)-1:存储介质图像编码标准 iii.MPEG-2:一般视频编码标准 iv.MPEG-4:多媒体通信编码标准 v.H.261(ITU-T 制定):会议电视图像编码标准 vi.H.263:极低码速率的编码标准 3、H.261与MPEG-1比较:H.261编码后的数据流速率更低,总体上图象质量略逊于MPEG-1,它适合在网或网上传输运动的图象 三、码型编码: 目的:选择适合于信道传输特性的码型。 基本的常用码型及特点: NRZ码:无定时 归零码:可提供定时信息 双极性码:减少直流分量,判决电平为“0” HDB3码:用在复接设备中,如PCM30/32一、二、三次群中 编码步骤: 1)1→+B、-B 2) 经过奇数个B的0000 →000V,经过偶数个B的0000 →B00V, V与前面的B极性一致 差分编码:用在DPSK调制中,传号差分码规则:“1”变,“0”不变具体编码实例见书p87,说明其中的差分编码参考码为“1” 四、信道编码: 作用:纠检错,提高可靠性 基本分类:ARQ(检错重传)、FEC(前向检错)、HEC(混合差错控制) 常见编码方法:奇偶编码、CRC循环冗余校验,具体见作业。 CRC循环冗余编码步骤: 1)生成码:由生成多项式得生成码 2)监督码:信息码补r个0对生成码求r位余数(不足r位,前面补0,r=n-k) 3)循环码:信息码+监督码 五、其他 眼图的特点:评价系统性能的基本方法,噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。 加密: 1.作用:加密;去除长的连零,有利于提取定时 2.基本方法:用移位寄存器的产生的m序列与信息序列模2加。具体见作业。

微波通信系统讲解学习

微波培训 一、概述 1.微波通信是在微波频段,通过地面视距进行信息传播的一种无 线通信手段。所谓微波是指频率在300MHz至300GHz范围内的 电磁波! 2.微波不像无线电广播那样从一个点向许多地点发送信号,微波 通信是一个点到点的通信系统,当两点间直线距离内无障碍物 的时候就可以使用微波通信。 3.微波通信设备对于无线通信的基站的互联具有较好的适应性, 体积小、重量轻、安装容易。其室外单元和天线可直接安装于 无线基站的轻型铁塔上,使用十分简便。配置也比较灵活,工 作频段和发射功率可以很容易的调整,我们在现场根据现场的 需要来进行调整即可,通信容量和备份配置也是多种多样,可 供用户选择。 4.备份最常用的就是1+1。就是在一端的微波设备里有两个室内 单元,一个做主用,另外一个做备有,当主用的室内单元出现 故障,不能继续工作的时候,通信就会自动的切换到备用的室 内单元上进行,这样就不会中断通信,。 5.现在省内移动所使用最多的微波设备有3种,分别是地杰的 SUPER STAR、戴维斯的WaveLink PDH、爱立信的MINI LINK E!另外今年刚出现带有美化天线烽火科技的虹信微 波,这几种微波的基本组成结构是一样的,都是由天线、室 外单元、馈线、室内单元组成。 6.

戴维斯的WaveLink PDH是智能化中、短距离点对点PDH数字微波传输设备,频段是从7GHZ----38GHZ,容量为4/8/16 E1等类型。根据基站的需要,安装的IDU配置也不一样,有4个E1的,8个E1的,16个E1的,最常用的是8个E1的。戴维斯的WaveLink PDH具有全频段无损切换,前向误码纠错及自动功率增益控制等先进功能。 7.硬件组成 它们的硬件是由天线、软波导、室外单元(ODU)、馈线、避雷器、室内跳线、室内单元(IDU)组成。 (1)天线:也就是我们经常在塔上看到那个大锅,根据系统频率,传输距离,和系统的需求,可以被配置为不同直径的天线, 常用的有0.3m、0.6m、1.2m、2m等几种,当然还有更大的2.5m、3m的。天线还分为垂直极化和水平极化两种,电磁波垂直于地磁方向称为垂直极化,如果是水平于地磁方向的成为水平极化。一般多采用垂直极化,因为垂直极化的抗干扰能力要比水平极化的强。 (2)软波导:除了0.3m的天线不使用软波导采用硬连接以外,其余各型号的天线均使用软波导叫软连接,软波导就是起到一个连接天线和ODU的作用。 (3)室外单元( Out Door Unit:ODU ):微波的大部分功能都是由室外单元来完成的,通信的处理,微波容量的大小就是由ODU 来完成的,ODU里面的容量卡决定了这跳微波的容量,跟IDU上面的E1输出口数量是应该对应的,如果容量卡和IDU 对应不上就会出现E1不通的现象。

数字微波技术及建设方案

数字微波技术及建 设方案

泰立TL 数字电视系统 X X X X X X X X X X 数字电视MMDS传输覆盖系统 技术参考方案 7月

泰立TL 数字电视系统方案 一、数字电视的特点 1、概述 随着先进的计算机技术、集成电路技术、通信技术迅速向电视领域渗透,电视业正迎来一场革命性的变化,这种变化概括地说主要体现在两方面,即电视的数字化和网络化。电视的数字化是网络化的前提和必要条件,网络化是数字化的有益延伸和拓展。 电视技术从模拟向数字过渡是必然的发展方向,从技术角度来讲,数字电视技术具有的优点主要体现在以下几个方面: (1)数字信号在传输过程中经过再生技术和纠错编解码技术使噪声不逐步积累,基本不产生新的噪声,保持信噪比基本不变,收端图像质量基本保持与发端一致,适合多环节、长距离传输。 (2)利用数字压缩技术使传输信道带宽比模拟电视明显减少,一般为模拟电视的1/6左右,甚至更小,这样能够合理利用各种类型的频谱资源,传送更多的电视节目。 (3)采用数字编码方法,便于实现加扰和解扰技术,使收费电视在实际中得以应用。

2、数字电视系统组成的关键技术 数字有线电视是一个系统工程,它的关键技术包括:数字压缩、信道编码与调制、条件接收CA、用户管理系统SMS、中间件技术、机顶盒技术STB等。它们的成熟度不尽相同,在做系统集成方案时必须考虑到上述关键技术的彼此关联度及现实的应用与发展,并遵循总局对数字电视平台的统一规划,有重点、分阶段的实施。 信源压缩编码:主要包含离散余弦变换(DCT)、差分编码、运动补偿、熵编码等。对于运动图像的压缩编码,国际组织已制订了MPEG的国际标准(MPEG是运动图片专家组的简称)。 MPEG影视压缩过程包括滤波、彩色空间变换、数字化、分辨率转换、图像变换、量化和编码7个步骤。其中前4个步骤又称为图像预处理,以获得较大的压缩率与提高图像质量。后3个步骤为图像压缩,即将图像分成8×8个像素的图像块,然后用数学方法如离散余弦变换,把空间域表示的图像变成频率域中的系数,再对系数按不同等级量化,减少高频分量,最后再采用无损压缩技术

数字通信系统结构

潜艇声纳的原理? 声纳是利用水中声波进行探测、定位和通信的电子设备。声学(声纳)是各国海军进行水下监视使用的主要技术,用于对水下目标进行探测、分类、定位和跟踪;进行水下通信和导航,保障舰艇、反潜飞机和反潜直升机的战术机动和水中武器的使用。此外,声纳技术还广泛用于鱼雷制导、水雷引信,以及鱼群探测、海洋石油勘探、船舶导航、水下作业、水文测量和海底地质地貌的勘测等。声纳可按工作方式,按装备对象,按战术用途、按基阵携带方式和技术特点等分类方法分成为各种不同的声纳。例如按工作方式可分为主动声纳和被动声纳;按装备对象可分为水面舰艇声纳、潜艇声纳、航空声纳、便携式声纳和海岸声纳,等等。声纳装置一般由基阵、电子机柜和辅助设备三部分组成。基阵由水声换能器以一定几何图形排列组合而成,其外形通常为球形、柱形、平板形或线列行,有接收基阵、发射机阵或收发合一基阵之分。电子机柜一般有发射、接收、显示和控制等分系统。辅助设备包括电源设备、连接电缆、水下接线箱和增音机、与声纳基阵的传动控制相配套的升降、回转、俯仰、收放、拖曳、吊放、投放等装置,以及声纳导流罩等。主动声纳技术是指声纳主动发射声波"照射"目标,而后接收水中目标反射的回波以

测定目标的参数。大多数采用脉冲体制,也有采用连续波体制的。被动声纳技术是指声纳被动接收舰船等水中目标产生的辐射噪声和水声设备发射的信号,以测定目标的方位。影响声纳工作性能的因素除声纳本身的技术状况外,外界条件的影响很严重。比较直接的因素有传播衰减、多路径效应、混响干扰、海洋噪声、自噪声、目标反射特征或辐射噪声强度等,它们大多与海洋环境因素有关。例如,声波在传播途中受海水介质不均匀分布和海面、海底的影响和制约,会产生折射、散射、反射和干涉,会产生声线弯曲、信号起伏和畸变,造成传播途径的改变,以及出现声阴区,严重影响声纳的作用距离和测量精度。现代声纳根据海区声速--深度变化形成的传播条件,可适当选择基阵工作深度和俯仰角,利用声波的不同传播途径(直达声、海底反射声、会聚区、深海声道)来克服水声传播条件的不利影响,提高声纳探测距离。又如,运载平台的自噪声主要与航速有关,航速越大自噪声越大,声纳作用距离就越近,反之则越远;目标反射本领越大,被对方主动声纳发现的距离就越远;目标辐射噪声强度越大,被对方被动声纳发现的距离就越远。

SDH 数字微波通信技术

SDH 数字微波通信技术 摘要:SDH微波通信是新一代的数字微波传输体制。数字微波通信是用微波作为载体传送数字信息的一种通信手段。它兼有SDH数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。本文主要介绍SDH数字微波通信技术的组成、特点及应用。 一、SDH数字微波通信系统的组成 (1)数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。 组成此通信线路设备的连接方框图如图2所示。它分为以下几个部分: (2)用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。 (3) 交换机。这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。这种交换可以是模拟交换,也可以是数字交换。 (4) 数字电话终端复用设备(即数字终端机)。其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。 (5) 微波站。按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。SDH微波终端站的发送端完成主信号的发信基带处理、调制、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收、解调、收信基带处理。终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。 (6) 数字微波中继站。主要完成信号的双向接收和转发。有调制、解调设备的中

数字通信系统中信道编码技术的研究

数字通信系统中信道编码技术的研究 xx (xx,湖北武汉,xx) 摘要:目前,中国固定和移动两大网络的规模都已位居世界第2位,上网用户也在不断增加,中国的信息通信制造业也得到很大的发展。中国将加快建设新一代信息通信网络技术、生产体系。在信息通信网络的高速发展下,要有效地提高传输速率,然而在实际信道上传输数字信号时,由于信道特性的不理想以及加性噪声和人为干扰的影响,系统输出的数字信息不可避免地会出现差错。因此,为了保证通信内容的可靠性和准确性,每一个数字通信系统对输出信息码的差错概率即误码率都有一定的要求。 为了降低误码率,常用的方法有两种:一种是降低数字信道本身引起的误码,可采取的方法有:选择高质量的传输线路、改善信道的传输特性、增加信号的发送能量、选择有较强的抗干扰能力的调制解调方案等; 另一种方法就是采用差错控制措施,使用信道编码。在许多情况下,信道的改善是不可能的或是不经济的,这时只能采用信道编码方法。因此实现信道编码方法具有重要的意义。 关键词:信道;误码率;信道编码 1. 信道编码 在数字电视和通信系统中,为提高信息传输可靠性,广泛使用了具有一定纠错能力的信道编码技术,如奇偶校验码、行列监督码、恒比码、汉明码、循环码(CRC)等编码技术。信道编码的本质是增加通信的可靠性,或者说增加整个系统的抗干扰性。对信道编码有以下要求:1.透明性:要求对所传消息的内容不加任何限制;2.有纠错能力;3.效率高:为了与信道频谱匹配和具有纠错能力,通常要向原信号添加一些码,要求加入最少的比特数而得到最大的利益;4.包含适当的定时信息。在这些要求中,除编码的必须信息外,所作的处理主要有两条:一是要求码列的频谱特性适应通道的频谱特性从而使传输过程中能量损失最小,提高信噪比。减少发生差错的可能性;二是增加纠错能力,使得即便出现差错,也能得到纠正。 2.三种不同系统的无线信道 (1)数字微波中继通信系统中的无线信道 一般意义下的数字微波中继系统主要用于固定站点之间的无线通信,通常使用1GHZ以上的频段,采用视距通信。为了能够传输更远的距离,需要微波站建设在海拔较高的地方,通常在站点设计时使用微波链路满足自由空间传播条件,即视线距离地面有足够的余隙,此时信号的衰减近似看作只有由于距离的增加而带来的信号能量的扩散,信道条件比较稳定。 (2)短波电离层信道 对于短波电离层信道,电离层随机扰动和多径效应是最主要的特点。电离层扰动本质上决定了短波电离层反射通信的特点,即信道不稳定,信号的起伏和衰落较大。多径效应是指无线信号经过

数字通信技术与应用1

一、判断题(共10道小题,共50.0分) 1.数字通信系统只需做到位同步和帧同步,便可保证通信的正常进行。 A.正确 B.错误 https://www.wendangku.net/doc/9114372929.html,ITT的G.732建议规定后方保护计数n=2。 A.正确 B.错误 3.收端定时系统产生位脉冲、路脉冲等的方法与发端一样。 A.正确 B.错误

4.PCM30/32路系统信令码的编码没有任何限制。 A.正确 B.错误 5.A律13折线编码器和解码器均要进行7/11变换。 A.正确 B.错误 6.某一位码的判定值与所有其它码元均有关。 A.正确 B.错误 7.A律13折线解码器中串/并变换记忆电路的。

B.错误 8.模拟压扩法是实际常采用的非均匀量化实现方法。 A.正确 B.错误 9.N不变时,非均匀量化与均匀量化相比,大、小信号的量化误差均减小。 A.正确 B.错误 10.时分多路复用的方法不能用于模拟通信。 A.正确

二、单项选择题(共10道小题,共50.0分) 1.PCM30/32路系统收端时钟产生的方法是()。 A.用石英晶体震荡器产生 B.定时钟提取 C.外同步定时法 D.用原子钟产生 2.PCM30/32路系统第23路信令码的传输位置(即在帧结构中的位置)为()。 A.F7帧TS16的前4位码 B.F7帧TS16的后4位码 C.F8 帧TS16 的前4位码 D.F8 帧TS16 的后4位码

3.PCM30/32路系统传输复帧同步码的位置为()。 A.Fo帧TS16前4位码 B.Fo帧TS16后4位码 C.F1帧TS16前4位码 D.F1帧TS16后4位码 4.PCM30/32路系统帧同步码的码型为()。 A.0011011 B.0110110 C.0000 D.1101110 5.非均匀量化的特点是()。 A.大、小信号的量化误差相同 B.量化误差>/2

《数字通信原理(第三版)》教材课后习题答案课件

《数字通信原理》习题解答 第1章概述 1-1 模拟信号和数字信号的特点分别是什么? 答:模拟信号的特点是幅度连续;数字信号的特点幅度离散。 1-2 数字通信系统的构成模型中信源编码和信源解码的作用是什么?画出话音信号的基带传输系统模型。 答:信源编码的作用把模拟信号变换成数字信号,即完成模/数变换的任务。 信源解码的作用把数字信号还原为模拟信号,即完成数/模变换的任务。 话音信号的基带传输系统模型为 1-3 数字通信的特点有哪些? 答:数字通信的特点是: (1)抗干扰性强,无噪声积累; (2)便于加密处理; (3)采用时分复用实现多路通信;

(4)设备便于集成化、微型化; (5)占用信道频带较宽。 1-4 为什么说数字通信的抗干扰性强,无噪声积累? 答:对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号,所以说数字通信的抗干扰性强,无噪声积累。 1-5 设数字信号码元时间长度为1 ,如采用四电平传输,求信息传输速率及符号速率。 答:符号速率为 信息传输速率为 1-6 接上例,若传输过程中2秒误1个比特,求误码率。 答: 1-7 假设数字通信系统的频带宽度为 ,可传输 的比特率,试问其频带利用率为多少

? 答:频带利用率为 1-8数字通信技术的发展趋势是什么? 答:数字通信技术目前正向着以下几个方向发展:小型化、智能化,数字处理技术的开发应用,用户数字化和高速大容量等。 第2章数字终端编码技术 ——语声信号数字化 2-1 语声信号的编码可分为哪几种? 答:语声信号的编码可分为波形编码(主要包括PCM、ADPCM等)、参量编码和混合编码(如子带编码)三大类型。 2-2 PCM通信系统中A/D变换、D/A变换分别经过哪几步? 答:PCM通信系统中A/D变换包括抽样、量化、编码三步; D/A变换包括解码和低通两部分。 2-3 某模拟信号频谱如题图2-1所示,(1)求满足抽样定理时的抽样频率 并画出抽样信号的频谱(设 )。(2)若 画出抽样信号的频谱,并说明此频谱出现什么现象?

SDH数字微波通信系统

SDH数字微波通信系统 摘要:SDH数字微波通信是新一代的数字微波传输体制。它兼有SDH数字通信和微 波通信两者的优点,本文简单介绍了SDH的速率和帧结构,阐明了SDH数字微波传输设备采用的关键技术以及SDH数字微波通信系统的组成。 关键字:SDH 微波通信数字 ABSTRACT:SDH digital microwave communication is the new generation of digital microwave transmission system. It both SDH digital communications and microwave communication advantage of the two, this article simply introduces the rate and frame structure SDH, expounds SDH digital microwave transmission equipment the key technologies used and SDH digital microwave communication system composition. Keywords:SDH digital microwave communication 1.SDH简介 SDH是新一代的数字传输体制。SDH有全世界统一的数字信号和帧结构标准,它把北美、日本和欧洲、中国流行的两大准同步数字体系(三个地区性标准)在STM—l等级上获得统一第一次实现了数字传输体制上的世界睦标准,因采用了同步复用方式和灵活的复用映射结构,避免对整个高速复用信号分解,达到一步复用特性,使上、下业务十分容易,也大大简化了数字交叉连接设备(DXC);SDH帧结构中安排了丰富的开销比特,大大加强了网络的运行管理和维护能力;不同厂家的产品可以互通,降低了联网成本。毫无疑问,传输网的发展方向应该是高度灵活和规范化的SDH网。SDH不仅可以应用于光纤通信系统中,而且还可以运用于微波通信系统之中,从而可以建立一个全新的SDH数字微波通信网络。 1、SDH的比特速率 同步数字体系最基本的模块信号(即同步传送模块)是STM—l,其比特速率为155.520Mbit /s,更高级的STM-N信号可以按字节同步复接获得,其fbN=(155.520*N)Mbit/s,目前SDH只能支持一定的N值,即N为l、4、16、64等。 S rM—l l55.520Mbit/s STM-4 622.080Mbit/s sTM一16 2488.320Mbit/s STM一64 9953.280Mbit/s 2、s1M一1的帧结构 STM—l的帧结构为净负荷区域、段开销区域和管理单元指针区域组成。以矩阵结构表达,共为9行270列(字节),帧长125us。SOH较为复杂,已经包含了定帧信息、公务、段误码监测、自动备用倒换、段数据通信等信息。

数字通信系统的应用与发展趋势

数字通信系统的应用与发展趋势 发表时间:2018-12-25T10:45:27.833Z 来源:《基层建设》2018年第31期作者:姜鹏张钊诚柴炯炯[导读] 摘要:数字通信是通信行业发展的必然趋势,也是万千用户的愿望所归。 河南理工大学河南焦作 454000 摘要:数字通信是通信行业发展的必然趋势,也是万千用户的愿望所归。数字通信可以大大改善通信质量、提高通信传播速率、丰富通信内容。数字通信也促进了经济的发展进步,本文介绍了数字通信系统的优点和数字通信系统的应用。并简述数字通信技术的发展趋势。希望能以此提高现代通信的稳定性与高效性,进而促进社会向着更好的方向发展。 关键词:数字通信;应用;发展趋势 1 引言 数字通信是用数字信号作为载体来传输消息,或用数字信号对载波进行数字调制后再传输的通信方式[1]。它可传输电报、数字数据等数字信号,也可传输经过数字化处理的语声和图像等模拟信号[2]。无论在时间上还是幅度上,它都属于离散的负载数据信息的信号。数字通信的主要技术设备包括发射器、接收器以及传输介质[3]。数字通信系统的通信模式主要包括数字频带传输通信系统、数字基带传输通信系统以及模拟信号数字化传输通信系统三种[4]。 2 数字通信系统的优点 (1)数字信号具有极强的抗干涉能力。由于在信号传输的过程中不可避免的会受到系统外部以及系统内部的噪声干扰,而且噪声会跟随信号的传输而进行放大,这无疑会干扰到通信质量。但是数字通信系统传输的是离散性的数字信号,虽然在整个过程中也会受到的噪声干扰,但只要噪声绝对值在一定的范围内就可以消除噪声干扰[5]。 (2)数字信号更适合进行高质量的远距离通信。在数字通信系统当中利用再生中继方式,能够消除长距离传输噪音对数字信号的影响,而且再生的数字信号和原来的数字信号一样,可以继续进行传输,这样一来数字通信的质量就不是因为距离的增加而产生强烈的影响,所以它也比传统的模拟信号更适合进行高质量的远距离通信,通信质量也依然能够得到有效保证。 (3)数字信号具有更强的保密性。与现代技术相结合的形式非常简便,目前的终端接口都采用数字信号。 (4)数字信号应用范围广。数字通信系统还能够适应各种类型的业务要求,例如电话、电报、图像以及数据传输等等,它的普及应用也方便实现统一的综合业务数字网,便于采用大规模集成电路,便于实现信息传输的保密处理,便于实现计算机通信网的管理等优点。 3 数字通信系统的应用 编码、调制、解调、解码以及过滤等都是数字通信系统的关键性技术,其中数字信号的调制以及解调更是被广泛各个行业广泛应用。当前,调幅、调相以及调频是最为常见的三种调制方式,数字调制可将信号源转换成符合信道传输数据的格式,通俗说来即是在保证信号传播安全、信息完整的前提下,通过数字调制,将基带信号转变为带通信号[6]。 通信系统向数字化时代的转变就是要从有线通信想无线通信,从公用移动网络到专用网络,从而实现全球化的数字通信理念[7]。并且,通过现有的综合业务数字网络为基础,通过一个多用途的用户网络接口就可以轻松实现信号发出端到接收端全程数字传输与交换的新型通信网。利用这种新型技术可以扩充通信业务的范围,而且还具有更加经济以及灵活的特点,能够与现有的计算机互联网、多媒体信息网、公共电话网以及分组交换数字网等进行任意转换。随着数字通信设备的发展和不断完善,利用微处理技术对数字通信系统的信号进行转变,还能够使设备更加灵活的应用到各种长途以及市话当中。由于长途通信线路的投资远大于终端设备,为了提高长距离传输的经济性,未来高度、大容量的数字通信系统也将成为主流趋势,而且随着数字集成电路技术的发展,数字通信系统的设备制造也越来越容易,成本更低、可靠性也更高。 此外,数字通信息系统还可为全球数字化的实现贡献一份力量。用户可通过网络接口,在一地方、任一时间与现有的综合业务数字网络连接,从中获取互联网、多媒体、通话等服务。我们日常生活中的电脑、手机上网、视频电话、网络会议以及数字电视等都是通过数字通信系统来进行信号传输。 4 数字通信技术的发展趋势 数字通信逐渐占主宰地位,接替原来的模拟通信。程控更换已占优势,取代原来的机电交换,计算机软件技术的重要性十分突出。信息时代的主要标志是电子计算机,而程控交换机又是通信与计算机的结合,这就促使通信的现代化不断前进。 终端技术将朝着数字化、智能化,高效率和多媒体方向发展。通信技术现代化首先要求信息业务的信号要数字化,随着光纤通信技术和交换技术的发展,新型的通信系统倾向于数字化。微电子技术和微处理技术应用于通信设备,必将使终端设备智能化和小型化。传输技术特朝着高速率、大容量远距离和用户线数字化方向发展。 5 总结 综上所述,数字通信网技术在现代社会发展中占有举足轻重的地位,直接影响着国民经济发展与人们的生活质量。目前,我国数字压缩技术已经日臻成熟,通信网中的数据业务也越来越完善,为数字通信网技术的快速发展奠定了坚实基础,有利于提高智能化水平,为人们带来更加优质的通信体验。在光纤传输媒介还没有完全普及以前,数字通信系统主要是利用电缆、微波等有限的媒介进行传输,但目前光纤技术的发展无疑将会推动数字通信的发展。随着数字通信系统的发展,它将真正便利我们的生活,促进经济的发展和社会的进步。 参考文献: [1]王小文,阎兵早.无线移动激光数字通信系统的设计[J].激光杂志,2017,38(08):168-171. [2]蔡巧恋.常用数字通信信号的参数估计研究[D].电子科技大学,2013. [3]魏海红.基于数字通信系统特点及应用方法的探究[J].电子世界,2013(07):10-11. [4]马俊杰.浅谈数字通信的优点以及应用[J].价值工程,2012,31(09):145. [5]王方淳.数字通信信号模拟器的设计与实现技术[D].西安电子科技大学,2011. [6]张永芹.数字通信系统基带接收机的设计与实现[D].南京理工大学,2010.

数字微波通信系统

填空: 1、分集技术是指通过两条或两条以上的途径传输同一信息,以减轻衰落的技术措施。 2、微波中继通信最基本的特点是:微波、多路、接力。 3、微波频率波段频率为300M~300GHZ,波长为1mm~1m范围的电磁波。 4、SDH三大核心特点是:同步复用、标准的光接口、强大的网络管理能力。 5、基带传输系统频带利用率的最大值,也就是说任何基带传输系统在单位频带最多每秒钟 传输2个码元,不管二元还是多元码。 6、数字微波中继通信线路是由终端站、中继站、枢纽站、分路站等组成。 7、在传输线路上以1000bit/s的速率传输数据,经测试1小时内共有50bit的误码,则该系 统的误比特率为50X100% 1000X3600 选择: 当电波的电场强度方向垂直于地面时,此电波就为垂直极性波。 在SDH微波中继通信系统中,没有上下话路功能的站是中继站。 两个以上的电台使用同一频率而产生的干扰就是同频干扰。 在天线通信系统中,很多都采用两个接收天线,以达到空间分极效果。 厘米波频率范围是3G~30GHZ 地球表面传播的无线电波称为散射波。 判断: 无线通信可以传送电报电话传真图像数据以及广播和电视节目等通信业务。正确 无线电波的传播不受气候和环宽的影响。错 基本同步传输模块是STU-1,其速率为155.520μb/s,STU-N是将STM-1同步复用并插入一些字节实现的。错 由于大气折射作用实际的电波不是按直线传播,是按曲线传播的。正确 QAM是一种调幅调制模式,不是调相调制模式。错(既调幅又调相) 简答: 1、SDH结构图及各部位作用 1)信息净负荷(payload)是存放各种信息的负载。 2)段开销(SOH)是为了保证信息净负荷正常传送所必须附加的网络运行、管理和维护字节。 3)管理单元指针(AU-PTR) AU-PTR是用来指示信息净负荷的第一个字节的准确位置,以便接收端能进行正确分接。各种信号装入SDH帧结构的净负荷区需经过三个步骤:映射、定位、复用。 基本网络单元有再生中继器,终端复用器,分插复用器,同步数字交叉连接设备。

相关文档
相关文档 最新文档