文档库 最新最全的文档下载
当前位置:文档库 › dan正弦波信号发生器(不全)

dan正弦波信号发生器(不全)

dan正弦波信号发生器(不全)
dan正弦波信号发生器(不全)

辽宁工学院

单片机与接口技术课程设计(论文)题目:正弦波信号发生器

院(系):信息科学与工程学院

专业班级:电气034班

学号: 030303101

学生姓名:张敬明

指导教师:李宝国

教师职称:副教授

起止时间:06-06-05至06-06-18

课程设计(论文)任务及评语

目录

第1章课程设计目的与要求 (1)

1.1 课程设计目的 (1)

1.2 课程设计的实验环境 (1)

1.3 课程设计的预备知识 (1)

1.4 课程设计要求 (1)

第2章课程设计内容 (2)

第3章课程设计的考核 (2)

3.1 课程设计的考核要求 (2)

3.2 课程性质与学分 (2)

第4章设计 (3)

4.1硬件框图及其设计 (3)

4.2显示部分设计 (4)

4.3数模(D/A)转换部分 (4)

4.4正弦信号的幅度控制电路 (5)

4.5软件流程图及其分析 (6)

4.6系统原理示意图 (11)

参考文献 (12)

第1章课程设计目的与要求

1.1 课程设计目的

“单片机与接口技术”课程设计是在教学及实验基础上,对课程所学理论知识的深化和提高。因此,要求学生能综合应用所学知识,设计与制造出具有较复杂功能的小型单片机系统,并在实践的基本技能方面进行一次系统的训练。能够较全面地巩固和应用“单片机”课程中所学的基本理论和基本方法,并初步掌握小型单片机系统设计的基本方法。培养独立思考、独立收集资料、独立设计规定功能的单片机系统的能力;培养分析、总结及撰写技术报告的能力。

1.2 课程设计的实验环境

利用windows操作系统及应用软件进行绘图和编程。

1.3 课程设计的预备知识

熟悉单片机与接口技术课程的相关知识及电子线路CAD工具软件。

1.4 课程设计要求

按课程设计指导书提供的课题,根据第二章给出的基本要求及参数独立完成设计,课程设计说明书应包括以下内容:

1、对设计课题进行简要阐述,并说明设计任务及具体要求。

2、论述系统设计方案,并画出总体电路结构图及功能分割图。

3、能够较熟练地应用电子线路CAD工具完成单片机系统的硬件设计任务。

4、各功能模块设计说明、设计实现过程及源程序。

5、能够较熟练地应用一种编辑软件编写程序,掌握单片机系统软件设计的基本方法

6、课程设计报告应内容完整、字迹工整、图表整齐规范、数据详实。

7、课程设计总结

8、字数4000左右,有系统电气原理图。

第2章课程设计内容

第3章课程设计的考核

3.1 课程设计的考核要求

课程设计采用五级(优、良、中、及格、不及格)评分制。

最后成绩依据课程设计论文及平时成绩决定,其中平时考核成绩占20%。

3.2 课程性质与学分

单片机与接口技术课程设计的课程性质:考查学分:2

第4章设计

在许多电子系统中,经常需要用到频率和幅度可调的正弦波信号作为基准或载波信号。正弦渡信号主要通过模拟电路或DDS(Direct Digital Synthesis)等两种方式产生.相对于模拟电路,DDS具有相位连续、频率分辨率高、转换速度快、信号稳定等诸多优点,因此,DDS存雷达、通信、测试、仪表等领域得到了广泛的应用。

4.1硬件框图及其设计:

该系统的核心部件是AD7008,AD7008是ADI公司推出的高集成度DDS频率台成器。首先单片机将频率控制字发送给AD7008,在AD7008的输出端口就可以得到所需的正弦信号,为了使输出信号的频率更为稳定,将输出信号通过由MAX262构成的中心频率可调带通滤波器进行滤波处理.MAX262的中心频率通过单片机按照AD7008的输出频率进行设置。DAC0832的作用是控制输出信号的幅度。系统组成框图如图1所示

AD7008可以和外围MPU构成并行或串行两种接口方式,其中并行接口又可以分为8位和16位两种。由于系统采用8位单片机,考虑到响应速度,采用8位并行接口方式。当单片机将数据送到PO口时.如果AD7008的WR引脚(与单片机的P1.0相连)出现负脉

冲,则PO口的数据被送入AD7008的并行寄存器。如果AD7008的LOAD引脚(与单片机的Pl.1相连)出现正脉冲,则根据TC3~TC0(与单片机的PO.3~PO.0相连)的逻辑关系,AD7008并行寄存器内的数据将会被送到片内命令寄存器、频率寄存器0、频率寄存器1或相位寄存器中。由此来对AD7008所产生的正弦信号进行控制。AD7008的输出引脚lOUT 和IOUT通过一电阻接地,将输出电流转换成电压,再通过一运算放大器组成的减法电路后产生正弦波

4.2显示部分设计

以14495芯片做译码,锁存驱动芯片,LED数码管作为显示器件,通过89C51构建键盘显示系统。按键输入字0—9,该系统示对应数字的平方值。MC14495芯片说明:MC14495常用于单片机系统中LED数码管静态显示接口的译码驱动芯片,他将输入的被显示字符的二进制码自动转换成相应的字型码,送给LED数码管显示。MC14495芯片的引脚及内部逻辑框图如图A,B所显。它是由4位锁存器、地址译码器和笔端ROM阵列以及带有限流电阻的驱动电路组成。A、B、C、D为二进制输入端,A为低位,D为高位,能直接与 MCS—51相连;a、b、c、d、e、f、g为译码输入端,a为低位,g为高位LE 为锁存控制端,LE为低电平时可输入数据,为高电平时代表输入数据大于或等于10,反之低电平VCR为输入数据等于15的输出指示端,高电平时代表输入数据等于15,否者

为高阻态。V

DD 为电源输入端,V

SS

为电源接地端,电源共给+5V即可。

根据以上MC14495芯片说明,其译码输出端a-g与LED数码管的连接不需要加限流电阻。由于具有输入锁存功能,不需要再加其他辅助的锁存芯片就能直接MCS—51相连,因此在设计中可以直接用端口对其进行操作,本题具体硬件设计原理,左边两个LED数码管用于显示输入的数字,右边两个LED数码管用于显示数字平方后的结果,VCR、h+i 本题不需要使用。

在程序处理上,设计一个显示子程序,每次调用都让四个LED数码管显示一遍所需的数据,这样在显示处理上相对方便,显示的正确性也较好,具体显示时,每次都将显示的数据与选通地址一次性送出,然后做稍微延时让数据到位,之后将数据锁存,本题采用查表法查平方结果,查表在工程上是一中很有效的处理方法。

4.3数模(D/A)转换部分

D/A转换部分选用的是DAC0832。DAC0832是CMOS工艺制造的8位单片D/A转换器,属于R-2RT型电阻网络的8位D/A转换器,建立时间150ms,为电流输出型,并且片内

带输入数字锁存器。DAC0832与8031接成的是单缓冲方式,由于DAC0832是电流输出,而我们用的是模拟电压,在这种情况下,要将输出的电流转换成电压,转换电路接成同

相电压输出形式,其输出电压V

out =IR(1+R

2

/R

1

)。在D/A转换电路中,ILE接+5V,片选信

号CS和转换控制信号XFER都通过非门连到P2.7,这样输出寄存器和DAC寄存器地址都是7000H,“写”选通线WR1和WR2都和8031的“写”信号线连接,CPU对0832执行一次“写”操作,把一个数据直接写入DAC寄存器,DAC0832的输出模拟信号随之对应变化。这样,由CPU送来的数据SD0~SD7,通过DAC0832转换成电流输出,由R4、R5等将电流信号转换成电压信号,经反相放大使得到了所需要的超低频正弦信号。

4.4正弦信号的幅度控制电路

为了提高输出信号的质量,必须对由AD7008所产生的正弦信号进行滤波处理。由于该信号发生器用在电测仪表中,其对正弦信号的频率要求是40Hz~5kHz。笔者选用工作频率为1Hz~140kHz的MAX262来构成一个中心频率可程控的带通滤波器。MAX262有三个可程控参数:中心频率、Q值和工作模式。所有程控参数都通过数据引脚DO和Dl 输入。地址引脚A3~A0控制输入数据进入不同的寄存器。当AD7008输出信号的频率确定后,就可以设定MAX262的中心频率和Q值。这样就构成一可程控的带通滤波器对AD7008的输出信号进行滤波处理

正弦信号的幅度控制是通过D/A转换器DAC0832来实现的。经过滤波处理的正弦信号接在DAC0832的参考电压引脚VREF上。DAC0832的八位数据输入引脚与单片机的P0口相连,由片选信号CS(与单片机的PI.2相连)来决定输入数据是否选通。由图2可知,DAC0832工作在单缓冲寄存器方式,即当CS为低电平时,DO~D7数据线送来的数据直接进行D/A转换。

根据D/A转换的工作原理有:

将代入,则有:

第一级运算放大器将电流转化为电压输出,则有:

将表达式代入,得

第二级运算放大器起反向放大作用,它的输入和输出电压之间的关系为:

将表达式代入,最后得到如下关系:

由于,所以输入电压通过该电路后,其输出受到由数字控制的衰减。R改变DO~D7的值时,输出电压也随之变化,即实现了对正弦渡信号的幅度控制。

4.5软件流程图及其分析

单片机上电复位后,先对A D 7 0 0 8和MAX262进行初始化设置。然后开始检测外围输入单元。当有频率设置输入时.则将频率控制字送入AD7008,然后根据信号频率设置MAX262的中心频和Q值。当有幅度设置输入时,则将幅度控制字送DAC0832。其程序流程框图如图所示。

正弦波程序

ORG 5000H

START:MOV R1,72

MOV A,#00H

MOV DPTR,#6000H LOOP4:MOV 20H,A

MOVC A,@A+DPTR

MOV R2,DPL

MOV R3,DPH

MOV DPTR,#0FEFFH

MOVX @DPTR,A

MOV DPL,R2

MOV DPH,R3

MOV A,20H

INC A

DJNZ R1,LOOP4

LJMP START

显示程序:

ORG 0000H

MOV R3,#0

MOV R4,#0

LCALL SHOW

INCNUM:SETB P3.6

JB P3.6,ACKIN

LCALL DELAYTIME

INC R3

CJNE R3,#10,JMPSHOW MOV R3,#0 JMPSHOW:LCALL SHOW ACK1: SETB P3.7

JB P3.7,INCNUM

LCALL DELAYTIME

MOV DPTR,#SQUTABLE MOV A,R3

MOVC A,@A+DPTR

MOC R4,A

LCALL SHOW

SJMP INCNUM

SHOW:MOV A,P3

ANL A,#0F0H

SWAP A

ORL A,#0E0H

MOV P1,A

NOP

SETB P1.4

MOV A,R3

ANL A,#0FH

ORL A,#0D0H

MO P1,A

NOP

SETB P1.5

MOV A,R4

ANL A,#0F0H

ORL A,#0B0H

MOV P1,A

NOP

SETB P1.6

MOV A,R4

ANL A,#0F0H

ORL A,#070H

MOV P1,A

NOP

SETB P1.7

RET

DELAYTIME:

MOV TMOD,#01H

MOV R2,#4

HH:MOV TH0,#00H

SETB TR0

CLR TF0

JNB TF0

DJNZ R2,HH

CLR TRO

RET

SOUTTABLE:DB 00H 01H 04H 09H 16H 25H 36H 49H 64H END

按键程序:

KEYWORK1:JNB P3.5,KEY1

KEYOUT:RET

KEY1 LCALL DISP

JB P3.5,KEYOUT

WAIT11:JNB P1.5,WAIT12

CPL 00H

MOV R2,#01H

MOV R3,#01H

RET

WAIT12:LCALL DISP

AJMP WAIT11

KEYWORK2:JNB P1.5,KEY1

JNB P1.6,KEY2

RET

KEY2:LCALL DISP

JB P3.6,KEYOUT

WAIT22:JNB P1.6,WAIT21 INC 7BH

KEY3 LCALL DISP

JB P1.7,KEYOUT

WAIT11:JNB P1.7,WAIT12 CPL 00H

MOV R5,#01H

MOV R6,#01H

2正弦波信号发生器硬件电路图:

结论:

本次单片机课设内容是正弦波信号发生器,通过老师的指导,按照课设的要求,自己在图书管和网络中找到了有关的设计资料,加上单片机学习时积累的知识点,完成了此次课程设计正弦波信号发生器,此次课设包括了显示电路,按键电路,软件,硬件设计,基本完成了课设的要求,以够用此次的设计方案产生正弦波,不过在此次设计中还是遇到了一些问题,通过和同学探讨最终解决了,使我有了更深的理解,从此次课设当中,学到了很多知识,相信对以后有很大的帮助。当然,此次课设还是存在一定的问题,希望老师给予指正。

参考文献:

1《单片机原理及应用技术》黄仁欣北京:清华大学出版社

2《8051单片机实践教程》徐爱钧四川:电子工业出版社

3《单片机接口与技术》梅丽凤王艳秋等编清华大学出版社

4《单片机实用技术》崔华北京:清华大学出版社

微处理

器51

逆变器自己制作过程大全

通用纯正弦波逆变器制作 概述 本逆变器的PCB设计成12V、24V、36V、48V这几种输入电压通用。制作样机是12V输入,输出功率达到1000W功率时,可以连续长时间工作。 该逆变器可应用于光伏等新能源,也可应用于车载供电,作为野外应急电源,还可以作为家用,即停电时使用蓄电池给家用电器供电。使用方便,并且本逆变器空载小,效率高,节能环保。 设计目标 1、PCB板对12V、24V、36V、48V低压直流输入通用; 2、制作样机在12V输入时可长时间带载1000W; 3、12V输入时最高效率大于90%; 4、短路保护灵敏,可长时间短路输出而不损坏机器。 逆变器主要分为设计、制作、调试、总结四部分。下面一部分一部分的展现。 第一部分设计 1.1 前级DC-DC驱动原理图 DC-DC驱动芯片使用SG3525,关于该芯片的具体情况就不多介绍了。其外围电路按照pdf里面的典型应用搭起来就OK。震荡元件Rt=15k,Ct=222时,震荡频率在21.5KHz左右。用20KHz左右的频率较好,开关损耗小,整流管的压力也小些,有利于效率的提高。不过频率低,不利于器件的小型化,高压直流纹波稍大些。 电池欠压保护,过压保护以及过流保护在DC-DC驱动上实现。用比较器搭成自锁电路,比较器输出作用于SG3525的shut_down引脚即可。保护电路均是比较器搭建的常规电路。DC-DC驱动部分使用了准闭环,轻载时,准闭环将高压直流限制在380V左右,一旦负载加重前级立即进入开环模式,以最高效率运行。并且使用了光耦隔离,前级输入和输出在电气上是隔离开的,这样设计也是为了安全。如图1.1所示,是DC-DC驱动电路原理图。

方波-三角波-正弦波函数信号发生器讲解

课程设计说明书 课程设计名称:电子课程设计 课程设计题目:设计制作一个产生方波-三角波-正弦波函数转换器学院名称:信息工程学院 专业:电子信息科学与技术班级:xxxxxxxx 学号:xxxxxxx 姓名:xxxxx 评分:教师:xxxxxx 20 13 年10 月15 日

电子课程设计 课程设计任务书 20 13 -20 14 学年 第 1 学期 第 1 周- 3 周 注:1、此表一组一表二份,课程设计小组组长一份;任课教师授课时自带一份备查。 2、课程设计结束后与“课程设计小结”、“学生成绩单”一并交院教务存档。

摘要 当今世界在以电子信息技术为前提下推动了社会跨越式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。由此可见科技已成为各国竞争的核心,尤其是电子通信方面更显得尤为重要,在国民生产各部门都得到了广泛的应用,而各种仪器在科技的作用性也非常重要,如信号发生器、单片机、集成电路等。 信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和 教学实验等领域。常用超低频信号发生器的输出只有几种固定的波形,有方波、 三角波、正弦波、锯齿波等,不能更改信号发生器作为一种常见的应用电子仪器 设备,传统的可以完全由硬件电路搭接而成,如采用LM324振荡电路发生正弦波、 三角波和方波的电路便是可取的路径之一,不用依靠单片机。 本系统本课题将介绍由LM324集成电路组成的方波——三角波——正弦波 函数信号发生器的设计方法,了解多功能函数信号发生器的功能及特点,进一步 掌握波形参数的测试方法,制作这种低频的函数信号发生器成本较低,适合学生 学习电子技术测量使用。制作时只需要个别的外部元件就能产生正弦波、三角波、 方波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。 关键字:信号发生器、波形转换、LM324

正弦波振荡器设计multisim(DOC)

摘要 自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定、反馈系数、输出波形、起振等因素的综合考虑,本次课程设计采用电容三点式振荡器,运用multisim软件进行仿真。根据静态工作点计算出回路的电容电感取值,得出输出频率与输出幅度有效值以达到任务书的要求。 关键词:电容三点式;振荡器;multisim;

目录 1、绪论 (1) 2、方案的确定 (2) 3、工作原理、硬件电路的设计和参数的计算 (3) 3.1 反馈振荡器的原理和分析 (3) 3.2. 电容三点式振荡单元 (4) 3.3 电路连接及其参数计算 (5) 4、总体电路设计和仿真分析 (6) 4.1组建仿真电路 (6) 4.2仿真的振荡频率和幅度 (7) 4.3误差分析 (8) 5、心得体会 (9) 参考文献 (10) 附录 (10) 附录Ⅰ元器件清单 (10) 附录Ⅱ电路总图 (11)

1、绪论 振荡器是不需外信号激励、自身将直流电能转换为交流电能的装置。凡是可以完成这一目的的装置都可以作为振荡器。一个振荡器必须包括三部分:放大器、正反馈电路和选频网络。放大器能对振荡器输入端所加的输入信号予以放大使输出信号保持恒定的数值。正反馈电路保证向振荡器输入端提供的反馈信号是相位相同的,只有这样才能使振荡维持 下去。选频网络则只允许某个特定频率0f能通过,使振荡器产生单一频率的输出。 振荡器能不能振荡起来并维持稳定的输出是由以下两个条件决定的;一个是反馈电压 U和输入电压i U要相等,这是振幅平衡条件。二是f U和i U必须相位相同,这是相位f 平衡条件,也就是说必须保证是正反馈。一般情况下,振幅平衡条件往往容易做到,所以在判断一个振荡电路能否振荡,主要是看它的相位平衡条件是否成立。 本次课程设计我设计的是电容反馈三点式振荡器,电容三点式振荡器,也叫考毕兹振荡器,是自激振荡器的一种,这种电路的优点是输出波形好。电容三点式振荡器是由串联电容与电感回路及正反馈放大器组成。因振荡回路两串联电容的三个端点与振荡管三个管脚分别相接而得名。 本课题旨在根据已有的知识及搜集资料设计一个正弦波振荡器,要求根据给定参数设计电路,并利用multisim仿真软件进行仿真验证,达到任务书的指标要求,最后撰写课设报告。报告内容按照课设报告文档模版的要求进行,主要包括有关理论知识介绍,电路设计过程,仿真及结果分析等。 主要技术指标:输出频率9 MHz,输出幅度(有效值)≥5V。

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原 理 什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。 函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。 函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。 函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。 函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

Proteus与cadence实训(高频正弦波振荡器)

课程设计任务书 学生姓名:专业班级:电子1001班指导教师:韩屏工作单位:信息工程学院题目: 高频晶体正弦波振荡器 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个高频晶体正弦波振荡器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus 软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对高频晶体正弦波振荡器电路进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日系主任(或责任教师)签名:年月日

目录 目录 (1) 摘要 (2) 一、工作原理说明 (3) 1.1、振荡器概念 (3) 1.2、静态工作点的确定 (3) 1.3、振荡器的起振检查 (4) 二、电路设计 (5) 2.1、正弦波振荡器的设计 (5) 2.2、电路功能的仿真 (7) 2.3、Cadence部分原理图设计 (9) 三、PCB版图设计 (15) 四、心得体会 (18) 五、参考文献 (19)

正弦信号发生器2

正弦信号发生器[2005年电子大赛一等奖] 文章来源:凌阳科技教育推广中心 作者:华中科技大学(华中科技大学曹震陈国英孟芳宇)发布时间:2006-4-21 17:33:13 本系统基于直接数字频率合成技术;以凌阳SPCE061A单片机为控制核心;采用宽带运放AD811和AGC技术使得50Ω负载上峰值达到6V±1V;由模拟乘法器AD835产生调幅信号;由数控电位器程控调制度;通过单片机改变频率字实现调频信号,最大频偏可控;通过模拟开关产生ASK、PSK信号。系统的频率范围在100Hz~12MHz,稳定度优于10-5,最小步进为10Hz。 一、方案论证 根据题目要求和本系统的设计思想,系统主要包括图1.1所示的模块。 图1.1 系统模块框图

1、单片机选型 方案一:采用现在比较通用的51系列单片机。51系列单片机的发展已经有比较长的时间,应用比较广泛,各种技术都比较成熟,但此系列单片机是8位机,处理速度不是很快,资源不够充足,而且其最小系统的外围电路都要自己设计和制作,使用起来不是很方便,故不采用。 方案二:选用凌阳公司的SPCE061A单片机。SPCE061A单片机是16位的处理器,主频可以达到49MHz,速度很快,再加上其方便的ADC接口,非常适合对高频信号进行数字调频,如果对音频信号进行A/D采样,经过数字调频并发射,完全可以达到调频广播的效果。 结合题目的要求及SPCE061A单片机的特点,本系统选用凌阳公司的此款单片机。 2、频率合成模块 方案一:锁相环频率合成。如图1.2,锁相环主要由压控LC振荡器,环路滤波器,鉴相器,可编程分频器,晶振构成。且频率稳定度与晶振的稳定度相同,达10-5,集成度高,稳定性好;但是锁相环锁定频率较慢,且有稳态相位误差,故不采用。 图1.2 锁相环的基本原理 方案二: 直接数字频率合成。直接数字频率合成DDFS(Direct Digital Frequency Synthesizer)基于Nyquist定理,将模拟信号采集,量化后存入存储器中,通过寻址查表输出波形数据,再经D/A转

1000W正弦波逆变器制作过程详解

1000W正弦波逆变器制作过程详解 1000W正弦波逆变器制作过程详解 作者:老寿 这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图 也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。 因为电流较大,所以用了三对6平方的软线直接焊在功率板上: 吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。

如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。 上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。 上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4 个大功率管,那个白色的东西是0.1R电流取样电阻。二个 直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。 上图是DC-DC升压电路的驱动板,用的是KA3525。这次 共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。 H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。 这是TO220封装的快恢复二极管,15A 1200V,也是张工

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

逆变器制作全过程(新手必看)

制作600W的正弦波逆变器 该机具有以下特点: 1.SPWM的驱动核心采用了单片机SPWM芯片,TDS2285,所以,SPWM驱动部分相对纯硬件来讲,比较简单,制作完成后要调试的东西很少,所以,比较容易成功。 2.所有的PCB全部采用了单面板,便于大家制作,因为,很多爱好者都会自已做单面的PCB,有的用感光法,有点用热转印法,等等,这样,就不用麻烦PCB厂家了,自已在家里就可以做出来,当然,主要的目的是省钱,现在的PCB厂家太牛了,有点若不起(我是万不得已才去找PCB厂家的)。 3.该机所有的元件及材料都可以在淘宝网上买到,有了网购真的很方便,快递送到家,你要什么有什么。如果PCB 没有做错,如果元器件没有问题,如果你对逆变器有一定的基础,我保证你制作成功,当然,里面有很多东西要自已动手做的,可以尽享自已动手的乐趣。 4.功率只有600W,一般说来,功率小点容易成功,既可以做实验也有一定的实用性。 下面是样机的照片和工作波形:

一、电路原理: 该逆变器分为四大部分,每一部分做一块PCB板。分别是“功率主板”;“SPWM驱动板”;“DC-DC驱动板”;“保护板”。 1.功率主板: 功率主板包括了DC-DC推挽升压和H桥逆变两大部分。该机的BT电压为12V,满功率时,前级工作电流可以达到55A以上,DC-DC升压部分用了一对190N08,这种247封装的牛管,只要散热做到位,一对就可以输出600W,也可以用IRFP2907Z,输出能力差不多,价格也差不多。主变压器用了EE55的磁芯,其实,就600W而言,用EE42也足够了,我是为了绕制方便,加上EE55是现存有的,就用了EE55。关于主变压器的绕制,下面再详细介绍。前级推挽部分的供电采用对称平衡方式,这样做有二个好处,一是可以保证大电流时的二个功率管工作状态的对称性,保证不会出现单边发热现象;二是可以减少PCB反面堆锡层的电流密度,当然,也可以大大减小因为电流不平衡引起的干扰。高压整流快速二极管,用的是TO220封装的RHRP8120,这种管子可靠性很好,我用的是二手管,才1元钱一个。高压滤波电容是470uf/450V的,在可能的情况下,尽可能用的容量大一些,对改善高压部分的负载特性和减少干扰都有好处。H桥部分用的是4个IRFP460,耐压500V,最大电流20A,也可以用性能差不多的管子代替,用内阻小的管子可以提高整机的逆变效率。H桥部分的电路采用的常规电路。 下面是功率主板的PCB截图,长宽为200X150MM,因为,这部分的电路比较简单,所以,我没有画原理图,是直接画了PCB图的。该板布板时,曾得到好友的提示帮助,特在此表示感谢。

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

正弦信号发生器(参考2)

正弦信号发生器 作者:曾立丁运鸿陈亮 赛前辅导及文稿整理辅导教师:肖看 摘要 本系统以51单片机及FPGA为控制核心,由正弦信号发生模块、功率放大模块、调幅(AM)、调频(FM)模块、数字键控(ASK,PSK)模块以及测试信号发生模块组成。采用数控的方法控制DDS芯片AD9851产生5Hz-20MHz正弦信号,经滤波、放大和功放模块放大至6v并具有一定的驱动能力。测试信号发生模块产生的1kHz正弦信号经过调幅(AM)模块、调频(FM)模块,对高频载波进行调幅或调频。二进制基带序列信号送入数字键控模块,产生二进制PSK或ASK 信号,同时对ASK信号进行解调,恢复出原始数字序列。另外,本系统还配备有液晶显示屏、遥控键盘,提供了友好的人机交互界面。 ABSTRACT This system is in the core of Micro-Processor and FPGA (Field Programmable Gate Array), consist of sine signal generating module, Power amplifier, Amplitude Modulator, Frequency Modulator, ASK/PSK module and test signal generating module. The AD9851 controlled by Micro-Process in digital way to generate sine signal with the bandwidth 5Hz to 20MHz adjustable per 1Hz. After processing by LPF & power amplifier, the output signal has a peak value of move than 6V. The sine signal at 1 KHz was send to AM and FM module to modulate the high frequency carrier waveform. The binary sequential was send to the relative module to generate ASK and PSK signal. At last demodulate module demodulate the ASK signal and got the same binary sequential as set before. In order to provide a friendly user interface, the LCD and remote infrared control keyboard was introduced in this system.

全硬件纯正弦逆变器制作教程

全硬件纯正弦逆变器制作教程 作者:科创论坛尤小翠 注:此文章参考了部分电源网老寿老师和老矿石老师的研究成果 做一个纯正弦逆变器,这个想法9个月之前就有了.做个逆变器,高频的,效率高,体积 小.前级肯定用SG3525或者TL494做的推挽升压,这没啥选择,关键是后级,它决定输 出波形是方波还是正弦波.输出正弦波的后级需要SPWM技术,肯定很多人的第一想法是使用单片机.的确,使用单片机的好处不少:SPWM波精度高,输出正弦波波形好,稳压精度高,方便加入电压指示功能等,单片机确实非常适合工业量产.但是对于咱们玩家,可不是这样了.单片机不是人人可以掌握的,即便掌握,像我这种只会做电子钟红外遥控之类的初级玩家也很难写出好的SPWM程序.因此,我考虑了全硬件方案. 一、高频前级(原理分析) 在HIFI界,有一句话说前级出声后级出力,同样在逆变界,有前级出功率后级出波形之说。一个好的前级是多么的重要,是确保足够功率输出的保证。 这就是前级电路图啦~ 电路采用了光藕隔离反馈,工作在准闭环模式.轻载或者空载时,由于变压器漏感,输出可能超压,容易穿后级和电容.此时占空比减小输出降低,实测在空载时占空比很小很小,这大概是空载电流小的原因吧(空载电流神一般的~60mA~).

当负载变大后,电路逐渐进入开环模式,以确保足够的电压和功率输出. 注:本图根据老矿石的作品修改 二、全硬件纯正弦后级(原理分析) 老寿老师很久之前就弄过全硬件了,他的方案有SG3525和lm393两种,前者简单,但是最大占空比低(母线电压利用率低),后者最大占空比理论上可以弄到100% (实际也很高)但是电路有点复杂,而且需要双电源供电。我把它们融合了一下,得到了自己的电路。 这是后级的框图 本电路优点: 1.电路极简单,可能为世界上最简单的分立SPWM电路 2.单电源宽电压供电(10V-30V) 3.输出最大占空比高,仿真时最大占空比已经接近100%.这将导致母线电压利用率高,母线电压340V就足够产生230V的工频正弦交流电. 4.隔离输出,受外围电路干扰少 本电路没有使用稳压反馈,故稳压功能全靠前级完成.前级一般由SG3525或者TL494组成,稳压功能不用可惜了. 看本图,由于使用了虚拟双电源,因此单电源供电即可,省略一个辅助电源变压器. 再看驱动板电路图(红圈里的内容是修改过的部分):

方波-正弦波-锯齿波函数信号发生器

《模拟电子技术基础》 课程设计 方波—三角波—正弦波函数信号发生器1设计要求 1.设计、组装、调试方波、三角波、正弦波发生器。 2.输出波形:方波、三角波、正弦波;锯齿波 3.频率范围:在0.02-20KHz范围内且连续可调;

2.方波、三角波、正弦波发生器方案与论证 原理框图 图1 方波、三角波、正弦波、锯齿波信号发生器的原理框图 该发生器通过将滞回电压比较器的输出信号通过RC 电路反馈到输入端,即可组成矩形波信号发生器。然后经过积分电路产生三角波,通过改变方波的占空比不仅可以得到锯齿波,还可得到额外的矩形波。三角波通过低通滤波电路来实现正弦波的输出。然后将各种信号通过比例放大电路得到需要幅值;峰峰值的信号波 3.各组成部分的工作原理 电压比较器RC 充放电反馈回路 方波 占空比可调 积分电路 锯齿波 积分电路 三角波 低频滤波 正弦波 比例放大电路,得到需要幅值;峰峰值的信号波 矩形波

3.1 方波发生电路的工作原理 C11uF R 10kΩ R31kΩ R2 1kΩ 3 5GND U1 OPAMP_3T_VIRTUAL R11kΩ 2 D2 1N4680 D1 1N4680 GND 1 4 图2 方波信号发生原理 此电路由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。设某一时刻输出电压+Uz,,此时滞回电压比较器的门限电压为UTH2。输出信号通过R 对电容C 1正向充电,充电波形如图3箭头所示。当该电压上升到 U TH2时,电路的输出电压变为-UZ,门限电压也随之变为UTH1,电容C1经电阻R 放电。当该电压下降到UTH 1时输出电压又回到+Uz ,电容又开始正相充电。上述过程周而复始,电路产生了自激振荡。 充放电波形 U TH2 U TH1 O

高频电容三点式正弦波振荡器课程设计报告

课程设计任务书 学生姓名:***专业班级:电子 指导教师:吴皓莹工作单位:信息工程学院 题目:高频电容三点式正弦波振荡器 初始条件: 具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。 要求完成的主要任务: 1.采用晶体三极管或集成电路,场效应管构成一个正弦波振荡器; 2.额定电源电压5.0V ,电流1~3mA; 输出中心频率 6 MHz (具一定的变化范围); 3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器; 4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P); 5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。 时间安排: 1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。 2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。 3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要............................................................................................................. 错误!未定义书签。Abstract ........................................................................................................... 错误!未定义书签。 1 绪论............................................................................................................. 错误!未定义书签。 2.1 反馈振荡器的原理........................................................................... 错误!未定义书签。 2.1.1 原理分析................................................................................. 错误!未定义书签。 2.1.2 平衡条件................................................................................. 错误!未定义书签。 2.1.3 起振条件................................................................................. 错误!未定义书签。 2.1.4 稳定条件................................................................................. 错误!未定义书签。 2.2 电容三点式振荡器........................................................................... 错误!未定义书签。 3 设计思路及方案......................................................................................... 错误!未定义书签。 3.1 总体思路........................................................................................... 错误!未定义书签。 3.2 设计原理........................................................................................... 错误!未定义书签。 3.3 单元设计........................................................................................... 错误!未定义书签。 3.3.1 电容三点式振荡单元............................................................. 错误!未定义书签。 3.3.2 输出缓冲级单元..................................................................... 错误!未定义书签。 4 电路仿真与实现......................................................................................... 错误!未定义书签。 4.1 基于................................................................................................... 错误!未定义书签。 4.2 硬件调试........................................................................................... 错误!未定义书签。 5 心得体会..................................................................................................... 错误!未定义书签。参考文献......................................................................................................... 错误!未定义书签。附录Ⅰ总电路图......................................................................................... 错误!未定义书签。附录Ⅱ元件清单......................................................................................... 错误!未定义书签。

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

正弦波逆变器设计

正弦波逆变器逆变主电路介绍 主电路及其仿真波形 图1主电路的仿真原理图 图1.1是输出电压的波形和输出电感电流的波形。上部分为输出电压波形,下面为电感电流波形。 图1.1输出电压和输出电感电流的波形 图1.2为通过三角载波与正弦基波比较输出的驱动信号,从上到下分别为S1、S3、S2、S4的驱动信号,从图中可以看出和理论分析的HPWM调制方式的开关管的工作波形向一致。

图1.2 开关管波形 从图1.3的放大的图形可以看出,四个开关管工作在正半周期,S1和S3工作在互补的调制状态,S4工作在常导通状态,S2截止;在负半周期,S2和S4工作在互补的调制状态,S3工作在常导通状态,S1截止。 图1.3放大的开关管波形 图1.4为主电路工作模态的仿真波形,图中从上到下分别为C3的电压波形、C1的电压波形、S3开关管的驱动波形,S1的驱动波形。从图中可以看出在S1关断的瞬间,辅助电容的电压开始上升,完成充电过程,同时S3上的辅助电容完成放电过程,S3开通。 图1.4工作模态仿真波形 图1.5为开关管的驱动电压波形和电感电流波形图,图中从上到下分别为电

感电流波形、S3驱动波形、S1驱动波形。从图中可以看出当S1关断瞬间到S3开通的瞬间,电感电流为一恒值,S3开通后,电感电流不断下降到S3关断时的最小值,然后到S1开通之前仍然为一恒值,直到S1开通,重复以上过程。根据以上结论可以看出仿真分析状态和前面的理论分析完全符合。 图1.5开关管的驱动电压波形和电感电流波形 2 滤波环节参数设计与仿真分析 2.1 输出滤波电感和电容的选取 对逆变电源而言,由于逆变电路输出电压波形谐波含量较高,为获得良好的正弦波形,必须设计良好的LC 滤波器来消除开关频率附近的高次谐波。 滤波电容C f 是滤除高次谐波,保证输出电压的THD 满足要求。C f 越大,则THD 小,但是C f 不断的增大,意味着无功电流也随之增加,从而增加了逆变电源的 电容容量,同时会导致逆变电源系统体积重量增加,同时电容太大,充放电时间也延长,对输出波形也会产生一定的影响。 逆变桥输出调制波形中的高次谐波主要降在滤波电感的两端,所以L 的大小关系到输出波形的质量。要保证输出的谐波含量较低,滤波电感的感值不能太小。增加滤波器电感量可以更好地抑制低次谐波,但是电感量的增加带来体积重量的加大。不仅如此,滤波电感的大小还影响逆变器的动态特性。滤波电感越大,电感电流变化越慢,动态时间越长,波形畸变越严重。而减小滤波电感,可以改善电路的动态性能,则使得输出电流的开关纹波加大,必然增大磁滞损耗,波形也会变差。综合以上的分析,在LC 滤波器的参数设计时应综合考虑。 本文设计的LC 滤波器如图 3.12中所示,电感的电抗2L X L fL ωπ==,L X 随频率的升高而增大。电容的电抗为 112C X C fC ωπ==,C X 随频率的升高而减小。1L C ωω=所对应

相关文档
相关文档 最新文档